COMP 204

More loop examples, nested loops

Mathieu Blanchette

/29

Quiz 6 password

2/29

© o N oA W N R

11
12
13
14
15
16
17
8

=

While loops - input validity

Goal: Ask the user to enter their age. Keep asking until a valid
number is entered.

isValid = False
ageString = ""

while not isValid:

ageString =

input(” Enter your age:

")

if not ageString.isdecimal(): # isdecimal checks if a

string
valid decimal number

represents a

isValid = False

else:
ageFloat = float(ageString) #convert string to float
isValid = (ageFloat>=0 and ageFloat <200)

if not isVa
print(”

print(”"Input”,

lid :

Invalid input:

ageString ,

"is

" ,ageString ,".

a

valid

age”)

Try again”)

29

While loops - input validity, part Il

Goal: Modify program so that it stops asking after 5 attempts

validity = False
n_attempts = 0 # this will serve as a counter
while validity=—=False and n_attempts <5:
ageString = input (" Enter your age: ")
n_attempts=n_attempts + 1 # or just write n_attemps+=1
if ageString.isdecimal ()=True:
ageFloat = float(ageString) #convert string to float
validity = (ageFloat>=0 and ageFloat <200)
if validity=—=False: # same as "if not validity:”
print(”Invalid input: ",k ageString,”. Try again”)
if validity=—True: # same as "if wvalidity:”
print (" Input”, ageString, "is a valid age”)
else:
print ("Too many failed attempts!”)

/29

For loops

As we see, while loop allows us to repeat the execution of a block
of code, as long as a certain condition hold.
Another type of loop is called for loop:

for

someVariable in somelist:
body of the loop

#rest of code

Execution:

>

Line 1: someVariable gets the value of the next element in
somelList.

If this is the first turn of the loop, the next element is the first
element in the list. If there is no next element, jump to line 4,
else execute body of loop (Line 2).

Line 2: Body of loop
After 2: Jump back to line 1.
Line 4: rest of the program (outside loop)

5/29

Sidetrack: the range function

The range function is often used in combination with for loops.

» range(stop): integer list from O up to stop-1
» range(start, stop): integer list from start up to stop-1

» range(start, stop, step): integer list from start up to
stop-1 but with increment set by step

range(5) # 0, 1, 2, 3, 4

range(3,7) # 3, 4, 5, 6 (note: 7 is not included)

3 range(3,9,2) # 3, 5, 7 (Start at 3, up to but not
including 9, in increments of 2)

range(5,0,—1) # 5, 4, 3, 2, 1 (Start at 5, down to
but excluding 0, in increments of —1)

29

For loops - countdown example (vs while-loop version)

N oA W N =

0w N oA W N R

countdown_forLoop.py:

countdown program (for—loop version)
duration = int(input(”Enter countdown duration: "))

for counter in range(duration, —1, —1): # fixed range
print(counter)

print (" Lift—off!")

countdown_whileLoop.py:

countdown program (while—loop version)
duration = int(input(”Enter countdown duration: "))

while duration >= 0
print(duration)

duration = duration — 1 # decrease value of counter

print (" Lift—off!")

/29

while loops vs for loops

You can always replace a for loop with a while loop, and
vice-versa. But there are times where using one is much simpler
than the other.

Use a while loop when:

» The number of iterations is not known ahead of time, but

depends on the results of some computation, or on some user
input.

Use a for loop when:
» We want to repeat a block of code for a fixed number of times
» OR

» We want to perform the same operation on each element of a
sequence (see next lecture)

29

1
2

Sidetrack: how to access substring in a string

name = "Watson”

3 # we can access individual characters from a string by
4 # specifying the index (position) of the character you want

5
6

7

8

9
10
11
12
13
14
15
16
17

18
19

firstLetter = name[0] # = "W’'. Note: number of positions
starts at zero, not 1
secondLetter = name[l] # = "a”
lastLetter = name[6] # wrong! Causes exception because
name doesn't contain a position 6

correctlLastlLetter = name[5] # = "n".
numChar = len(name) # = 6. number of characters in string
lastLetter = name[len(name) — 1] # = "n". This is a

more general way to get the last letter

© o N oA W N R

=
= o

12
13
14
15
16
17
18

Sidetrack: how to access substring in a string

we can extract several consecutive characters

firstHalf = name[0:3] # = "Wat”. This extracts characters

at positions 0, 1, and 2

’

secondHalf = name[3:6] # = "son”.
at positions 3, 4, and 5 = "son

middle = name[2:4] # = "ts”

#we can operate from the end of the string by giving
negative indices

lastLetter = name[—1] # "n”

penultimatelLetter = name[—2] # "o"

reverseName = name[:: —1] # "nostaW”

revAllButFirst = name[5:0: —1] # "nosta”

=This extracts characters

/29

How to iterate over a string using loops

Task: change every occurrence of ‘T’ to 'U’ to convert a DNA
sequence to an RNA sequence

Before we see the solution code, let’s step back and think
about how shall we approach this problem by hand:

» Here is a DNA sequence: ACTGAGCTAGCT

Points to think about:

1. Where do we save the converted RNA sequence?
2. How do we access each letter in the DNA sequence?

3. How do we go to the next letter and then next letter and so
on in the DNA sequence?

4. How do we change every T to a U but keep other letters the
same?

11/29

Example 1: Farenheit to Celsius conversion table

Goal: Your are building a thermometer that needs to be graduated
with both Celcius and Fahrenheit degrees. Write a program that
computes and prints, for every temperature ranging from -40 C to
+ 40C, the corresponding temperature in Fahrenheit.

Expected output:

40 C=-40F
39 C=-382F
40C =104 F

General idea of algorithm:
> Use a loop to iterate through all integers from -40 to +40

» For each temperature, calculate Fahrenheit equivalent
> Print result

12/29

o v E W N =

Farenheit to Celsius conversion table

for—loop version

for tempCelcius in range(—40,41):
tempFahrenheit = tempCelcius * 9 / 5 + 32
print (tempCelcius ,” C =" ,tempFahrenheit ,”F")

while—loop version

tempCelcius = —40

while tempCelcius <= 40:
tempFahrenheit = tempCelcius * 9 / 5 + 32
print (tempCelcius ,” C =" ,tempFahrenheit ,”F")
tempCelcius = tempCelcius + 1

13/29

© o N oA W N R

© o N oA W N R

=
o

For loops vs while loop: DNA Transcription
Task: Write a program that looks at a DNA sequence (String) and
produce a second String that is the corresponding RNA sequence.
This simply involves changing every 'T" to a 'U’".

for—loop version (better choice than while—loop):
dna=input(” Enter a DNA sequence: ")

rna=
for index in range(0,len(dna)): # iterate thru fixed range
if dna[index] = "T":
rna = rna + "U"”
else:
rna = rna + dna[index]
print (" The RNA sequence is:", rna)

while—loop version
dna=input(” Enter a DNA sequence: ")

rna=
index = 0
while index < len(dna):
if dna[index] = "T":
rna = rna + "U”
else:
rna = rna + dna[index]
index = index + 1 # increment index

print (" The RNA sequence is: rna)

Example 2: The guessing game

Write a program that implements the following game:

> First, the computer chooses a random integer between 1 and
10.

» Then the player has 5 guesses to find the number. For every
guess, the program tells the player if it guessed too high or
too low.

> The game ends when the player has guessed correctly, or
when they used up their 5 attempts without success.

General idea of algorithm:
» Choose random number, save to variable

> Repeat the following, until 5 attempts are done or player
made correct guess
» Ask for player's guess
» Compare player's guess to number, print appropriate message

15/29

© N oA W N R

e e e
o O r W N = O

17

The guessing game

import random

hiddenNumber = random.randint(1,10) # Gives a random number
between 1 and 10
correctGuess = False +# Has player guess correctly yet?
nbGuesses = 0 # Keeps track of the number of guesses made
while correctGuess = False and nbGuesses <5:
guess = int(input(” Guess integer between 1 and 10: "))
nbGuesses = nbGuesses + 1
if guess = hiddenNumber:
print (" Bingo!")
correctGuess = True

elif guess < hiddenNumber:
print(”"Too low, guess again”)
else:
print(”Too high, guess again”)

if correctGuess:
print(”"You win!")
else:
print(”"You lose!”)

16 /29

w

© © N o »

10
11
12
13
14
15
16
17
18
19
20
21

Debugging exercise: fix errors in this code

import random

hiddenNumber = random.randint(1,10) # Gives a random number
between 1 and 10

correctGuess = False

nbGuesses = 0

while correctGuess = False and nbGuesses <5:
guess = input(” Guess an integer between 1 and 10: ")
nbGuesses = nbGuesses + 1

if guess = hiddenNumber:
print (" Bingo!")
correctGuess = True
elif guess < hiddenNumber:
print(”"Too low, guess again”)
else:
print(”Too high, guess again”)

if correctGuess:
print(”"You win!")
else:
print(”"You lose!”)

17/29

1

N o g W N

8

The break statement
Sometimes it is useful to stop executing the body of the loop
mid-way through its execution, without waiting for the execution
to return to the “while ...:" or “for ..." line.
while booleanCondition:

some code block 1

if (otherBooleanCondition):
break

#some code block 2

9 # rest of program

» Line 1: booleanCondition is evaluated. If True, jump to line 2.

If False, exit loop and jump to line 9.

Line 2: beginning of the body of the loop

Line 4-5: If otherBooleanCondition is True, break out of loop,
jump to line 9. Else continue

Line 7: rest of the body of the loop

After Line 7: Jump back to line 1

Line 9: rest of the program (outside loop)

vy

v vy

18 /29

The guessing game revisited: Stop loop on invalid input

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

import random

hiddenNumber = random.randint(1,10) # Gives a random number
between 1 and 10
correctGuess = False # Has player guess correctly yet?
nbGuesses = 0 # Keeps track of the number of guesses made
while correctGuess = False and nbGuesses <5:
guess=int (input(” Guess an integer between 1 and 10: "))
nbGuesses = nbGuesses + 1

if guess < 1 or guess > 10:
print(”"Invalid input!”)

break

if guess = hiddenNumber:
print (" Bingo!")
correctGuess = True

elif guess < hiddenNumber:
print(”"Too low, guess again”)
else:
print(”"Too high, guess again”)

if correctGuess:
print(”You win!")
else:

print(”"You lose!”) o /a0

Example 3: Palindrome

A palindrome is a word (or sentence) that reads the same in the
forward and reverse direction. Example: kayak, racecar, ...
Task: Write a program that checks is a given string is a
palindrome or not.

One possible algorithm:

1. Compare the first character to the last.
2. If they don't match, it's not a palindrome; stop.
3. If they match, continue with the next position

... until all the first half of the word has been checked

> ‘

kayak racecar

20/29

Palindrome

word = input(”Type a word: ")
wordLength = len (word)
index = 0 # used to scan the positions in the word
isPalindrome = True
while index < wordLength /2:
opposite_index = wordLength — index — 1
if word[index] != word|[opposite_index]|:
could also write if word[index] != word[—(index+1)]:
isPalindrome = False
break # no need to continue looking at the rest,
so we break the loop
index = index + 1 # don’'t forget this. Otherwise
you get an infinite loop
if isPalindrome:
print(”" This is a palindrome”)
else:
print (" This is not a palindrome”)

21/29

Example 4: Password checking

A solid password should include at least one lowercase letter, one
uppercase letter, one number, and one special character. Write a
program that checks that a given password is solid.

One possible algorithm:

» Ask user to type in password; save it in a string

» Count the number of lower, upper, number, special character
(need counter variables for each)
» for each position in the password string,
> determine type of character
> increase (increment) the corresponding counter variable

» check that all four counter variables are at least 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Example 4: Password checking

password = input(” Type a password: ")

nbLowerCase = nbUpperCase = nbNumber = nbSpecial = 0

for

index in range(0, len(password)):
current = password[index]
if current>="A’ and current<='Z":
nbUpperCase = nbUpperCase + 1
elif current>="a’ and current<='z':
nbLowerCase = nbLowerCase + 1
elif current>="'0" and current<='9":
nbNumber = nbNumber + 1
else:
nbSpecial = nbSpecial + 1

nbLowerCase <1:

print (" Must include a lowercase character”)
nbUpperCase <1:

print ("Must include an uppercase character”)
nbNumber <1:

print ("Must include a number”)

nbSpecial <1:

print ("Must include a special character”)

23 /29

Nested loops

Just like nested conditionals, we can have nested loops.

1 while booleanExpressionl:

o g~ W N

beginning of the outer loop
while booleanExpression2:

body of the inner loop
rest of the outer loop

7 # rest of program (outside while loop)

Execution:

>

v

vV Vv VvYyVvyy

Line 1: booleanConditionl is evaluated. If not true, jump to
line 7. If true go to line 2

Line 2: execute "beginning of outer loop”

Line 3: booleanCondition2 is evaluated. If not true, jump to
line 5. If true go to line 4

Line 4: Execute body of inner loop

After line 4: Return to line 3

Line 5: execute rest of outer loop

After line 5: Return to line 1

Line 7: execute rest of program

24 /29

Nested loops example 1 - BMI table
Task: Print the BMI for every combination of weights and heights.
Weight should range from 50 kg to 70 kg (in increment of 10).
Height should range from 1.6 m to 1.8m, in increment of 0.1m.
Output should look like this:

BMI for 50 kg, 1.6 m is 19.53
BMI for 50 kg, 1.7 m is 17.30
BMI for 50 kg, 1.8 m is 15.42
BMI for 60 kg, 1.6 m is 23.43

BMI for 70 kg, 1.8m is 21.60

Algorithm:

» Use a loop to iterate through weights from 50 to 70 by 10

» Use an inner loop to iterate through heights from 1.0 to 2.0
» Calculate BMI from current values of weight and height, print

25 /29

Nested loops - BMI table

1 weight = 50
2 while weight <= 70:
3 height = 1.6 # reset height to 1.6 INSIDE the loop
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,’
height = height + 0.1
weight = weight + 10

kg,”, height,” m is ” ,BMI)

®w N o g »

26 /29

0w N oA W N

© o N oA W N R

Nested loops - BMI table

weight = 50
while weight <= 70:
height = 1.6 # reset height to 1.6 INSIDE the loop
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,’
height = height + 0.1
weight = weight + 10

kg,”, height,” m is ” ,BMI)

What's wrong with this code?
weight = 50
height = 1.6 # reset height to 1.6 OUTSIDE of the loop
while weight <= 80:
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,’
height = height + 0.1
weight = weight + 10

kg,”, height,” m is ” ,BMI)

26 /29

© o N oA W N R W N oA W N

[N N N N

Nested loops - BMI table

weight = 50
while weight <= 70:
height = 1.6 # reset height to 1.6 INSIDE the loop
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,’
height = height + 0.1
weight = weight + 10

kg,”, height,” m is ” ,BMI)

What's wrong with this code?
weight = 50
height = 1.6 # reset height to 1.6 OUTSIDE of the loop
while weight <= 80:
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,’
height = height + 0.1
weight = weight + 10

kg,”, height,” m is ” ,BMI)

import numpy as np # for floating —point range function
for weight in range(50,80,10): # for—loop
for height in np.arange(1.6,1.9,0.1): # for—loop
for height in np.arange(1.6,1.9,0.1): # for—loop
BMI = weight/(heightx%2)
print ("BMI for”, weight,’

kg,”, height,” m is ” ,BMI)

26 /29

Nested loops example 2 - Prime numbers

A prime number is a number that is divisible only by 1 and itself.

Task: Print all prime numbers up to a given limit.

Algorithm:

> Use a loop to enumerate each candidate number, starting
from 2 up to the given number

» Test each candidate by using a second loop that enumerates
every possible factor of the candidate prime, from 2 up to
squared root of the candidate number

» If never found a factor, then the number is prime. Print it.

27/29

© N oA W N R

o e
N = O

13
14
15
16
17
18
19
20
21
22
23

Nested loops - Prime numbers

import math
maxNumber = int(input(” Enter max. number to consider: "))

candidatePrime = 2
while candidatePrime <= maxNumber:

isPrime = True # By default the number is prime
candidateFactor = 2 # Test at all possible factors
of candidatePrime ,starting with 2
while candidateFactor <= math.sqrt(candidatePrime):
if the remainder of the integer division is zero,
then candidateFactor is a factor of candidatePrime

so candidatePrime is not prime

if candidatePrime % candidateFactor — 0:
isPrime = False
break; # break out of the inner loop, since

we've found a factor
candidateFactor = candidateFactor + 1

if isPrime:
print(candidatePrime)

candidatePrime = candidatePrime + 1

28/29

Nested loops - Prime numbers

1 # for—loop version
import numpy as np

© © N o A WwN

= e
N = O

13
14
15
16

17
18

maxNumber = int(input(” Enter max. number to consider
candidatePrime = 2
for candidatePrime in range(2, maxNumber+1):

isPrime = True # By default the number is prime
candidateFactor = 2 # Test at all possible factors

of candidatePrime ,starting with 2

for candidateFactor in np.arange(2, np.sqrt(
candidatePrime)):

if candidatePrime % candidateFactor — 0:
isPrime = False
break; # if not prime break out of the
loop
if isPrime:

print(candidatePrime)

)

inner

29 /29

