
COMP 204
Variables

Mathieu Blanchette,
based on material from Yue Li, Carlos Oliver and Christopher

Cameron

1 / 27

Quiz 3 password: on the blackboard

2 / 27

Reminder: Data types

In Python, data comes in different native types:

I Strings (called str): sequence of zero or more characters.

I Integers (called int): Any positive or negative integer: 17, 0,
-53, 64729237463928

I Decimal numbers (called float): Any decimal number: 3.1416,
-2.43, 0.0

I Boolean (called bool): True or False

I and many more we will encounter later

To know the type of an object, use the type function:

type("Yue") # returns <class ’str’>
type(29.34) # returns <class ’float’>

In Python, data types are automatically handled by the interpreter.
However, in other languages such as Java or C, we will need to
declare the specific type of variable before we use it.

3 / 27

Operations on whole and fractional numbers
Python supports all basic arithmetic operations, which can
be done on either whole numbers (int) or fractional numbers (float).

Operations Example Value Type

Addition 7+12 19 int
Subtraction 3.14 - 2.78 0.3600000000000003 float
Multiplication 2 * 3.1416 6.2832 float
Division 33 / 8 3.3 float

33 / 11 3.0 float
Modulus (only
on int)

27 % 10 7 int

Exponentiation 4**3 43 = 64 int
Combination 2 + 6*2 - 8**2 / 4 -2.0 float

(2+6)*(2 - 8**2/4) -112.0 float

Precedence of arithmetic operators:

Exponentiation > multiplication/division > addition/subtraction
Use parentheses to group terms as desired

4 / 27

Basic operations on strings

String Operations Example Value Type

Concatenation 'Hello'+'World' 'HelloWorld' str
...

and many more later!

5 / 27

So Python is just a fancy calculator?

I No! Programming is about linking multiple operations
together

I For this, it is useful to be able to save to memory the results
of an operation

I To this end, we use variables

6 / 27

Variables

Variables allow a program to remember values throughout the
execution of the program.

This is how a program uses the computer’s memory.

A variable has a name and a value.

A program can

I Create new variables

I Set the value of variables

I Look up the value of variables to include them in expressions

I Change the value of variables (hence the name)

7 / 27

Variables assignment

We can think of a variable as a box:

I the name of variable is the name of the box

I the value of the variable is the content of the box

A variable assignment assigns a certain value to the variable:
Syntax: variable name = some value
Meaning: the object some value is stored in the variable named
variable name. Important:

I The value of a variable can be changed by assigning a new
value to it. The old value is lost.

I In an assignment, the right hand side is evaluated first, and
the result is stored in the variable.

8 / 27

Example

age = 42
puts 42 in the box called age.
type(age) is int

weight = 76.6
puts 76.6 in the box called weight.
type(weight) is float

name = ”Mathieu”
puts ”Mathieu” in the box called name.
type(name) is str

age = 43
changes value of age to 43.
Previous value is overwritten

44 = age # Illegal: variable’s name must always
be on the left side of the = sign.

Global	
 variables	
 Computer	
 memory	

9 / 27

Example

age = 42
puts 42 in the box called age.
type(age) is int

weight = 76.6
puts 76.6 in the box called weight.
type(weight) is float

name = ”Mathieu”
puts ”Mathieu” in the box called name.
type(name) is str

age = 43
changes value of age to 43.
Previous value is overwritten

44 = age # Illegal: variable’s name must always
be on the left side of the = sign.

Global	
 variables	
 Computer	
 memory	

age	

42	

10 / 27

Example

age = 42
puts 42 in the box called age.
type(age) is int

weight = 76.6
puts 76.6 in the box called weight.
type(weight) is float

name = ”Mathieu”
puts ”Mathieu” in the box called name.
type(name) is str

age = 43
changes value of age to 43.
Previous value is overwritten

44 = age # Illegal: variable’s name must always
be on the left side of the = sign.

Global	
 variables	
 Computer	
 memory	

age	

42	
 weight	

76.6	

11 / 27

Example

age = 42
puts 42 in the box called age.
type(age) is int

weight = 76.6
puts 76.6 in the box called weight.
type(weight) is float

name = ”Mathieu”
puts ”Mathieu” in the box called name.
type(name) is str

age = 43
changes value of age to 43.
Previous value is overwritten

44 = age # Illegal: variable’s name must always
be on the left side of the = sign.

Global	
 variables	
 Computer	
 memory	

age	

42	
 weight	

76.6	
 name	

“Mathieu”	

12 / 27

Example

age = 42
puts 42 in the box called age.
type(age) is int

weight = 76.6
puts 76.6 in the box called weight.
type(weight) is float

name = ”Mathieu”
puts ”Mathieu” in the box called name.
type(name) is str

age = 43
changes value of age to 43.
Previous value is overwritten

44 = age # Illegal: variable’s name must always
be on the left side of the = sign.

Global	
 variables	
 Computer	
 memory	

age	

43	
 weight	

76.6	
 name	

“Mathieu”	

13 / 27

Accessing variables

We can access the value stored in a variable by just writing the
variable’s name.
Example:

age = 42

print(age) # prints 42

next year = age + 1 # starts by evaluating
age+1, which requires looking up the value of the
age variable (which is 42). Then calculates 42+1,
and stores the result (43) in next year.

age = 55 # age is now 55, but next year is still 43

Global	
 variables	
 Computer	
 memory	

age	

42	

14 / 27

Accessing variables

We can access the value stored in a variable by just writing the
variable’s name.
Example:

age = 42

print(age) # prints 42

next year = age + 1 # starts by evaluating
age+1, which requires looking up the value of the
age variable (which is 42). Then calculates 42+1,
and stores the result (43) in next year.

age = 55 # age is now 55, but next year is still 43

Global	
 variables	
 Computer	
 memory	

age	

42	
 next_year	

43	

15 / 27

Accessing variables

We can access the value stored in a variable by just writing the
variable’s name.
Example:

age = 42

print(age) # prints 42

next year = age + 1 # starts by evaluating
age+1, which requires looking up the value of the
age variable (which is 42). Then calculates 42+1,
and stores the result (43) in next year.

age = 55 # age is now 55, but next year is still 43

Global	
 variables	
 Computer	
 memory	

age	

55	
 next_year	

43	

16 / 27

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

17 / 27

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12	

18 / 27

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12	

weightOxygen	

16	

19 / 27

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12	

weightOxygen	

16	
 weightCO2	

44	

20 / 27

Variables - example

weightCarbon = 12
weightOxygen = 16
print('The weight of carbon is:', weightCarbon)
print('The weight of oxygen is:', weightOxygen)
weightCO2 = weightCarbon + 2 * weightOxygen
print('The weight of CO2 is:', weightCO2)

Improved measurement of atomic masses
weightCarbon = 12.001
print('The weight of CO2 is:', weightCO2)
weightCO2 remains 44

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12.001	

weightOxygen	

16	
 weightCO2	

44	

21 / 27

Variables - example

weightCarbon = 12
weightOxygen = 16
print('The weight of carbon is:', weightCarbon)
print('The weight of oxygen is:', weightOxygen)
weightCO2 = weightCarbon + 2 * weightOxygen
print('The weight of CO2 is:', weightCO2)

Improved measurement of atomic masses
weightCarbon = 12.001
print('The weight of CO2 is:', weightCO2)
weightCO2 remains 44

weightCO2 = weightCarbon + 2 * weightOxygen
now weightCO2 becomes 44.001
print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12.001	

weightOxygen	

16	
 weightCO2	

44.001	

Changing the value of a variable (weighCarbon) does not affect the
value of other variables (weightCO2) unless we explicitly
recompute that variable.

22 / 27

Live Demo in Spyder

23 / 27

Variables - example 2
Goal: Write a program that computes the body mass index (BMI)
of a person: BMI = weight/(height2)

weight = 69

height = 1.8

BMI = weight/(height∗∗2)
print(’A person with weight’, weight, ’and height’,
height, ’has BMI =’, BMI)

weight = 74 # suppose the weight changes

The value of BMI still has not changed

print(’A person with weight’, weight, ’and height’,
height, ’has BMI =’, BMI)

We need to recalculate BMI to get the correct BMI

BMI = weight/(height∗∗2)
print(’A person with weight’, weight,
’and height’, height, ’has BMI =’, BMI)

24 / 27

Live Demo in Spyder

25 / 27

Variables - example 3 (user input)
Goal: Write a program that asks the user for their weight and
height and then computes BMI.
How? Use the input(String) function, which prompts the user to
enter data, and returns the string that was typed.

weight = input(’Please enter your weight (in kg): ’)

height = input(’Please enter your height (in m): ’)

BMI = weight/(height∗∗2)
print(’Your BMI is’, BMI)

Problem: We get a runtime error:
TypeError: unsupported operand type(s) for ** or pow(): ’str’ and ’int’

Use the Python shell to find out what the type of the weight and
height variables are.

type(weight) # Aha, it’s a String, not an integer

type(height) # and this one too!

That’s because the input function always produces a string,
irrespective of what is actually typed by the user.

26 / 27

Converting between types
Python allows data to be converted from one type to another using
type conversion functions:

int(someObject) # convert someObject to an integer

float(someObject) # convert someObject to a float

str(someObject) # convert someObject to a string

Example,

name=’Yue’ # name is a String

weight=’66’ # weight is a String

height=’1.8’ # height is a String

weightInt = int(weight) # weightInt is an integer 68

heightFloat = float(height) # heightInt is a float 1.8

heightInt = int(height) # heightInt is an integer 1

#Note: int() truncates decimal values

nameInt = int(name) # this causes an error, because

the content of name cannot be converted to number

27 / 27

BMI program corrected

We use the type conversion functions to convert the output of the
input function to float.

weight = input(’Please enter your weight (in kg): ’)

weightFloat= float(weight)

height = input(’Please enter your height (in m): ’)

heightFloat= float(height)

BMI = weightFloat/(heightFloat∗∗2)
print(’Your BMI is ’ ,BMI)

Or more succinctly, we directly convert the output of the input
function to a float, without saving the String in a variable:

weight=float(input(’Please enter your weight (in kg): ’))

height=float(input(’Please enter your height (in m): ’))

BMI = weight/(height∗∗2)
print(’Your BMI is ’ ,BMI)

28 / 27

Live Demo in Spyder

29 / 27

