
COMP 204
Intro to machine learning with scikit-learn

(part two)

Mathieu Blanchette, based on material from
Christopher J.F. Cameron and Carlos G. Oliver

1 / 17

Return to our prostate cancer prediction problem

Suppose you want to learn to predict if a person has a prostate
cancer based on two easily-measured variables obtained from blood
sample: Complete Blood Count (CBC) and Prostate-specific
antigen (PSA). We have collected data from patients known to
have or not have prostate cancer:

CBC PSA Status

142 67 Normal
132 58 Normal
178 69 Cancer
188 46 Normal
183 68 Cancer
...

Goal: Train classifier to predict the class of new patients, from
their CBC and PSA.

2 / 17

A perfect classifier

3 / 17

More realistic data

Here, it is impossible to cleanly separate positive and negative
examples with a straight line.
→ We will be bound to make classification errors.

4 / 17

True/false positives and negatives
True positive (TP)
Positive example that is predicted to be positive
I A person who is predicted to have cancer and actually has

cancer

False positive (FP)
Negative example that is predicted to be positive
I A person who is predicted to have cancer and but doesn’t

have cancer

True negative (TN)
Negative example that is predicted to be negative
I A person who is predicted to not have cancer and actually

doesn’t have cancer

False negative (FN)
Positive example that is predicted to be negative
I A person who is predicted to not have cancer and but actually

has cancer

5 / 17

More realistic data
Here: TP = 10, TN = 12, FP = 2, FN = 3.

Can you find a straight line that does better than 2 + 3 = 5 errors?

6 / 17

Confusion matrices

Confusion matrix: A table describing the counts of TPs, FPs, TNs,
and FNs

Predicted positive Predicted negative

Actual positive TP = 10 FN = 3
Actual negative FP = 2 TN = 12

In scikit-learn, we can get the confusion matrix for the SVC by:

1 from s k l e a r n . me t r i c s impor t c o n f u s i o n ma t r i x
2

3 c l f = svm .SVC()
4 c l f . f i t (X t r a i n , y t r a i n)
5 p r ed s = c l f . p r e d i c t (X t e s t)
6 tn , fp , fn , tp = c o n f u s i o n ma t r i x (y t e s t , p r ed s) . r a v e l ()

7 / 17

True/false positive rates
Sensitivity: Pproportion of positive examples that are predicted to
be positive

I Fraction of cancer patients who are predicted to have cancer

Sensitivity =
TP

TP + FN
=

10

10 + 3
= 77%

Specificity: Proportion of negative examples that are predicted to
be negative

I Fraction of healthy patients who are predicted to be healthy

Specificity =
TN

FP + TN
=

12

2 + 12
= 86%

False-positive rate (FPR): Proportion of negative examples that
are predicted to be positive

I Fraction of healthy patients who are predicted to have cancer

FPR =
FP

FP + TN
= 1− specificity =

2

2 + 12
= 14%

8 / 17

Accuracy on training vs testing sets
To get an unbiased estimation of the accuracy of a predictor, we
need to evaluate it against our test data (not used for the training).

Predicted positive Predicted negative

Actual positive TP = 9 FN = 4
Actual negative FP = 3 TN = 15

Sens = TP
TP+FN = 9

9+4 = 69%, FPR = FP
FP+TN = 3

3+15 = 17%
9 / 17

Decision tree
Linear classifiers are limited in how well they can match the
training data.
Another type of classifier is called a decision tree.
http://scikit-learn.org/stable/modules/tree.html

Family	 history?	

AR_GCC	 repeat	 	
copy	 number?	

European	 ancestry?	

<16	

Yes	

Medium	 risk	

Low	 risk	

Low	 risk	

Mixed	

No	

>=16	

High	 risk	

AR_GCC	 repeat	
copy	 number?	

CYP3A4	
haplotype?	

AA	

High	 risk	

No	

<16	 >=16	 GA	 or	 AG	 or	 GG	

CYP3A4	
haplotype?	

CYP3A4	
haplotype?	

Medium	 risk	

AA	

High	 risk	

GA	 or	 AG	 or	 GG	

Low	 risk	

AA	

High	 risk	

GA	 or	 AG	 or	 GG	

Yes	

10 / 17

http://scikit-learn.org/stable/modules/tree.html

Decision tree in Python

Note: Requires installing graphviz by running ”pip install graphviz”

1 impor t g r a ph v i z
2 from s k l e a r n impor t mo d e l s e l e c t i o n
3 from s k l e a r n . me t r i c s impor t c o n f u s i o n ma t r i x
4 from s k l e a r n impor t mod e l s e l e c t i o n , t r e e
5

6 depth = 3
7 c l f = t r e e . D e c i s i o n T r e e C l a s s i f i e r (max depth=depth)
8 c l f . f i t (X t r a i n , y t r a i n)
9 p t r a i n = c l f . p r e d i c t (X t r a i n)

10 p t e s t = c l f . p r e d i c t (X t e s t)
11

12 #p l o t t r e e
13 do t da t a = t r e e . e x p o r t g r a p h v i z (c l f , o u t f i l e=None)
14 graph = g r aph v i z . Source (do t da t a)
15 graph . r e nd e r (” p r o s t a t e t r e e d e p t h ”+s t r (depth))
16

17 # c a l c u l a t e t r a i n i n g and t e s t i n g e r r o r
18 tn , fp , fn , tp = c o n f u s i o n ma t r i x (y t r a i n , p t r a i n) . r a v e l ()
19 p r i n t (” T r a i n i n g data : ” , tn , fp , fn , tp)
20 tn , fp , fn , tp = c o n f u s i o n ma t r i x (y t e s t , p t e s t) . r a v e l ()
21 p r i n t (”Test data : ” , tn , fp , fn , tp)

11 / 17

Decision tree

Sens = TP
TP+FN = 12

12+1 = 92%, FPR = FP
FP+TN = 0

0+17 = 0%
Great accuracy on training set!

12 / 17

Decision tree

Sens = TP
TP+FN = 9

9+8 = 53%, FPR = FP
FP+TN = 1

1+11 = 8%
Not so good on the test set...

13 / 17

A harder example

14 / 17

Decision tree (max depth = 3)

X[1] <= 103.074

gini = 0.5

samples = 95

value = [47, 48]

X[1] <= 72.255

gini = 0.483

samples = 81

value = [33, 48]

True

gini = 0.0

samples = 14

value = [14, 0]

False

X[0] <= 154.321

gini = 0.375

samples = 36

value = [27, 9]

X[0] <= 70.221

gini = 0.231

samples = 45

value = [6, 39]

gini = 0.133

samples = 28

value = [26, 2]

gini = 0.219

samples = 8

value = [1, 7]

gini = 0.0

samples = 19

value = [0, 19]

gini = 0.355

samples = 26

value = [6, 20]

sens(train) = TP
TP+FN = 41

41+6 = 87%,

FPR(train) = FP
FP+TN = 9

9+39 = 19%

sens(test) = TP
TP+FN = 36

36+7 = 84%,

FPR(test) = FP
FP+TN = 8

8+44 = 15%

15 / 17

Deeper trees - max depth = 4
X[1] <= 103.074

gini = 0.5

samples = 95

value = [47, 48]

X[1] <= 72.255

gini = 0.483

samples = 81

value = [33, 48]

True

gini = 0.0

samples = 14

value = [14, 0]

False

X[0] <= 154.321

gini = 0.375

samples = 36

value = [27, 9]

X[0] <= 70.221

gini = 0.231

samples = 45

value = [6, 39]

X[0] <= 52.888

gini = 0.133

samples = 28

value = [26, 2]

X[1] <= 63.281

gini = 0.219

samples = 8

value = [1, 7]

gini = 0.0

samples = 1

value = [0, 1]

gini = 0.071

samples = 27

value = [26, 1]

gini = 0.375

samples = 4

value = [1, 3]

gini = 0.0

samples = 4

value = [0, 4]

gini = 0.0

samples = 19

value = [0, 19]

X[0] <= 97.128

gini = 0.355

samples = 26

value = [6, 20]

gini = 0.0

samples = 5

value = [5, 0]

gini = 0.091

samples = 21

value = [1, 20]

sens(train) = TP
TP+FN = 45

45+2 = 96%,

FPR(train) = FP
FP+TN = 1

1+47 = 2%

sens(test) = TP
TP+FN = 37

37+6 = 86%,

FPR(test) = FP
FP+TN = 11

11+41 = 21%
Accuracy on training data is much higher than on testing data:
overfitting! We’ve gone too far!

16 / 17

ML - closing comments
Very powerful algorithms exist and are available in scikit-learn:
I Decision trees and decision forests
I Support vector machines
I Neural networks
I etc. etc.

These algorithms can be used for classification / regression based
on all kinds of data:
I Arrays of numerical values
I Images, video, sound
I Text
I etc. etc.

Applications in life sciences
I Medical diagnostic
I Interpretation of genetic data
I Drug design, optimization of medical devices
I Modeling of ecosystems
I etc. etc.

Experiment with different approaches/problems! 17 / 17

