COMP 204

Intro to machine learning with scikit-learn
(part two)

Mathieu Blanchette, based on material from
Christopher J.F. Cameron and Carlos G. Oliver
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Return to our prostate cancer prediction problem

Suppose you want to learn to predict if a person has a prostate
cancer based on two easily-measured variables obtained from blood
sample: Complete Blood Count (CBC) and Prostate-specific
antigen (PSA). We have collected data from patients known to

have or not have prostate cancer:

CBC | PSA || Status
142 67 Normal
132 58 Normal
178 69 Cancer
188 46 Normal
183 63 Cancer

Goal: Train classifier to predict the class of new patients, from

their CBC and PSA.
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PSA

A perfect classifier
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More realistic data
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Here, it is impossible to cleanly separate positive and negative
examples with a straight line.

— We will be bound to make classification errors.
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True/false positives and negatives
True positive (TP)
Positive example that is predicted to be positive
> A person who is predicted to have cancer and actually has
cancer
False positive (FP)
Negative example that is predicted to be positive
P A person who is predicted to have cancer and but doesn't
have cancer
True negative (TN)
Negative example that is predicted to be negative
P> A person who is predicted to not have cancer and actually
doesn’t have cancer
False negative (FN)
Positive example that is predicted to be negative
» A person who is predicted to not have cancer and but actually
has cancer
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More realistic data
Here: TP = 10, TN = 12, FP = 2, FN = 3.
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Confusion matrices

Confusion matrix: A table describing the counts of TPs, FPs, TNs,
and FNs

‘ Predicted positive ‘ Predicted negative
Actual positive TP =10 FN =3
Actual negative FP =2 TN =12

In scikit-learn, we can get the confusion matrix for the SVC by:

from sklearn.metrics import confusion_matrix

clf = svm.SVC()

clf.fit(X_train, y_train)

preds = clf.predict(X_test)

tn, fp, fn, tp = confusion_matrix(y-test, preds).ravel()
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True/false positive rates
Sensitivity: Pproportion of positive examples that are predicted to
be positive
» Fraction of cancer patients who are predicted to have cancer
TP 10
TP+FN  10+3

Specificity: Proportion of negative examples that are predicted to
be negative

Sensitivity = =T77%

» Fraction of healthy patients who are predicted to be healthy
TN 12
= — 86%
FP+ TN 2-+12 %
False-positive rate (FPR): Proportion of negative examples that
are predicted to be positive

Specificity =

» Fraction of healthy patients who are predicted to have cancer

FP 2
FPR 1 — specificity = ——— = 14%

“FPL TN 2112
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Accuracy on training vs testing sets

To get an unbiased estimation of the accuracy of a predictor, we
need to evaluate it against our test data (not used for the training).
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Decision tree
Linear classifiers are limited in how well they can match the

training data.
Another type of classifier is called a decision tree.
http://scikit-learn.org/stable/modules/tree.html

Family history?

No Yes
Low risk VIVEuVrtr);?ean ancresrtlr'y'r.r’r
No -
Mixe: Yes
AR_GCC repeat \ 14 AR_GCC repeat N CYP3A4
copy number? / \ copy number? / N\ haplotype?
< >=16 <16 >=16 AA GA or AG or GG
Highrisk  Medium risk Low risk High risk
CYP3A4 Y [ CYP3A4
haplotype? . haplotype?
AA A or AG or GG AA A or AG or GG
Medium risk High risk Low risk High risk
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http://scikit-learn.org/stable/modules/tree.html
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Decision tree in Python

Note: Requires installing graphviz by running " pip install graphviz”

import graphviz

from sklearn import model_selection

from sklearn.metrics import confusion_matrix
from sklearn import model_selection , tree

depth = 3

clf = tree.DecisionTreeClassifier (max-depth=depth)
clf.fit(X_train, y_train)

p-train = clf.predict(X_train)

p-test = clf.predict(X_test)

#plot tree

dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render (" prostate_tree_depth_"+str(depth))

# calculate training and testing error

tn,fp,fn,tp = confusion_matrix(y_train, p_train).ravel()
print(” Training data:” ,tn,fp,fn, tp)

tn,fp,fn,tp = confusion_matrix(y_test ,p_test).ravel ()
print (" Test data:"” ,tn,fp,fn,tp)
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X[0] <= 174.719

Decision tree
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Great accuracy on training set!



X[0] <= 174.719

Decision tree
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Not so good on the test set...
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A harder example
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Decision tree (max_depth = 3)

[ 50 100 150 200 250 300

sens(train) = % 41+6 = 87%,
FPR(train) = ety = 5155 = 19%
sens(test) = TPZP,_-N 36+7 = 84%,

FPR(test) = gpoiry = g = 15%
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Deeper trees - max_depth = 4
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sens(train) =

sens(test) = TPTFN ars +6 = 86%,
FPR(test) = zpiry = 1ria1 = 21%
Accuracy on training data is much higher than on testing data:

overfitting! We've gone too far!
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ML - closing comments
Very powerful algorithms exist and are available in scikit-learn:
» Decision trees and decision forests
» Support vector machines
» Neural networks
> etc. etc.
These algorithms can be used for classification / regression based
on all kinds of data:
» Arrays of numerical values
» Images, video, sound
> Text
> etc. etc.
Applications in life sciences
» Medical diagnostic
> Interpretation of genetic data
» Drug design, optimization of medical devices
» Modeling of ecosystems
> etc. etc.
Experiment with different approaches/problems! 17/17



