COMP 204

Intro to machine learning with scikit-learn
(part two)

Mathieu Blanchette, based on material from
Christopher J.F. Cameron and Carlos G. Oliver

1/17

Return to our prostate cancer prediction problem

Suppose you want to learn to predict if a person has a prostate
cancer based on two easily-measured variables obtained from blood
sample: Complete Blood Count (CBC) and Prostate-specific
antigen (PSA). We have collected data from patients known to

have or not have prostate cancer:

CBC | PSA || Status
142 67 Normal
132 58 Normal
178 69 Cancer
188 46 Normal
183 63 Cancer

Goal: Train classifier to predict the class of new patients, from

their CBC and PSA.

2/17

PSA

A perfect classifier

® normal . []

90 L] cancer °
o o
85 ° ° .° o
ol
J ® L o §%s°
80 o a : . . 'o. ‘..
75 1 o . ° e
ot
® L]
70 - A~ []
g KT ®
65 g e f(CBC, PSA)=0.8 * CBC - PSA-20
® L]
60 e * f(CBC, PSA) > 0 ==> Cancer
f(CBC, PSA) < 0 ==> Normal

o

55 -
o

50 T T T T T T

80 100 120 140 160 180

CBC

3/17

More realistic data

100

]
]
90 4 XX
o* *
x & x X . x e
°
801 o x®e ®
x *X x x x
]
ﬁ ox X o
70 * o
x [}
x x X ® X Xx
°
60 -
o: Positive training examples
L4 % o: Negative training examples
50 x: Positive testing examples
° x: Negative testing examples
T T T T T
50 100 150 200 250
CBC

Here, it is impossible to cleanly separate positive and negative
examples with a straight line.

— We will be bound to make classification errors.
4/17

True/false positives and negatives
True positive (TP)
Positive example that is predicted to be positive
> A person who is predicted to have cancer and actually has
cancer
False positive (FP)
Negative example that is predicted to be positive
P A person who is predicted to have cancer and but doesn't
have cancer
True negative (TN)
Negative example that is predicted to be negative
P> A person who is predicted to not have cancer and actually
doesn’t have cancer
False negative (FN)
Positive example that is predicted to be negative
» A person who is predicted to not have cancer and but actually
has cancer

5/17

More realistic data
Here: TP = 10, TN = 12, FP = 2, FN = 3.

100 A
L]
L]
[f(CBC, PSA) =90 - 0.1*CBC - PSA |
90
. L
False positives {E} L] o ©

o
True positives (10)

80 4

< o f(CBC, PSA) =0
g 70 4 e o / L4 ==> Cancer
S———
False negatives (3) @ f(CBC, PSA) <0
o ==>norma|
60) °
True negatives (12) o: Positive training examples
0: Negative training examples
50 4
o
5|0 160 150 260 25|0

CBC

6/17

Confusion matrices

Confusion matrix: A table describing the counts of TPs, FPs, TNs,
and FNs

‘ Predicted positive ‘ Predicted negative
Actual positive TP =10 FN =3
Actual negative FP =2 TN =12

In scikit-learn, we can get the confusion matrix for the SVC by:

from sklearn.metrics import confusion_matrix

clf = svm.SVC()

clf.fit(X_train, y_train)

preds = clf.predict(X_test)

tn, fp, fn, tp = confusion_matrix(y-test, preds).ravel()

7/17

True/false positive rates
Sensitivity: Pproportion of positive examples that are predicted to
be positive
» Fraction of cancer patients who are predicted to have cancer
TP 10
TP+FN 10+3

Specificity: Proportion of negative examples that are predicted to
be negative

Sensitivity = =T77%

» Fraction of healthy patients who are predicted to be healthy
TN 12
= — 86%
FP+ TN 2-+12 %
False-positive rate (FPR): Proportion of negative examples that
are predicted to be positive

Specificity =

» Fraction of healthy patients who are predicted to have cancer

FP 2
FPR 1 — specificity = ——— = 14%

“FPL TN 2112

8/17

Accuracy on training vs testing sets

To get an unbiased estimation of the accuracy of a predictor, we
need to evaluate it against our test data (not used for the training).

100

|f(GBC, PSA) =90 - 0.1*CBC - PSA
XX

90 4

X
f(CBC, PS@) >0

<
£ 50 '.x ==> Cancer
xx X ® X Xx f(CBC, PSA) <0
(] ==> norm
604
o: Positive training examples
L % o: Negative training examples
50 - x: Positive testing examples
° x: Negative testing examples
50 100 150 200 250

‘ Predicted positive ‘ Predicted negative

Actual positive TP =9 FN =4
Actual negative FP =3 TN =15
_ TP _ 9 _ _ FP _ _3 _

9/17

Decision tree
Linear classifiers are limited in how well they can match the

training data.
Another type of classifier is called a decision tree.
http://scikit-learn.org/stable/modules/tree.html

Family history?

No Yes
Low risk VIVEuVrtr);?ean ancresrtlr'y'r.r’r
No -
Mixe: Yes
AR_GCC repeat \ 14 AR_GCC repeat N CYP3A4
copy number? / \ copy number? / N\ haplotype?
< >=16 <16 >=16 AA GA or AG or GG
Highrisk Medium risk Low risk High risk
CYP3A4 Y [CYP3A4
haplotype? . haplotype?
AA A or AG or GG AA A or AG or GG
Medium risk High risk Low risk High risk

10/17

http://scikit-learn.org/stable/modules/tree.html

O © W N O A W N

NN e O s
= O © o N O O WwN R

Decision tree in Python

Note: Requires installing graphviz by running " pip install graphviz”

import graphviz

from sklearn import model_selection

from sklearn.metrics import confusion_matrix
from sklearn import model_selection , tree

depth = 3

clf = tree.DecisionTreeClassifier (max-depth=depth)
clf.fit(X_train, y_train)

p-train = clf.predict(X_train)

p-test = clf.predict(X_test)

#plot tree

dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render (" prostate_tree_depth_"+str(depth))

calculate training and testing error

tn,fp,fn,tp = confusion_matrix(y_train, p_train).ravel()
print(” Training data:” ,tn,fp,fn, tp)

tn,fp,fn,tp = confusion_matrix(y_test ,p_test).ravel ()
print (" Test data:"” ,tn,fp,fn,tp)

11/17

X[0] <= 174.719

Decision tree

gini =0.491
samples = 30
value = (17, 13] ° CBC<=174.719
110 g
True °
False
100 .
L]
X[1] <= 88.895 L
.. gini =0.0 2
gini =0.351 _ PSA<=88.895 (]
samples = 8 .
samples = 22 alue = [0, 8] g 0 (] o
value = [17, 5] vale=19, L
70 ® °
'. °
60 .® . .
gini =0.105 gini =0.0 w0 %
samples = 18 samples = 4 he
value = [17,1] value = [0, 4] 50 100 ca?o 200 250
TP 12 0 0 0
ns = sy = =92%, FPR = =
Sens = wppy = 131 = 92%, i = or = 0%

Great accuracy on training set!

X[0] <= 174.719

Decision tree

gini =0.491
samples = 30
value =[17, 13] . CBC<= 174719
110
True .
False
100 .
L4 X
X[1] <= 88.895
< gini =00)
gini =0.351 X % .
samples = 8 PSA<=88.895 ox °
samples =22 alue = [0, 8] 5 80 P o x
value = [17, 5] vawe =1 &, s o
70 *
x X L x
/o o
60 P ° N e
gini =0.105 gini =00 “ o
samples = 18 samples = 4
value = [17,1] value = [0, 4] 0 50 100 150 200 250 300
csc
TP 9 0 1 0
ns = =% = FPR = =
Sens = w5 gy = g5 = 93%, FP+TN 71 = 8%

Not so good on the test set...

13/17

A harder example

x

100 150 200 250 300

50

CBC

14 /17

Decision tree (max_depth = 3)

[50 100 150 200 250 300

sens(train) = % 41+6 = 87%,
FPR(train) = ety = 5155 = 19%
sens(test) = TPZP,_-N 36+7 = 84%,

FPR(test) = gpoiry = g = 15%

15/17

Deeper trees - max_depth = 4

x £
[PSA<Z103:074 -

Ckc =97.128
0BC<70.221
.

oY K| Xy

PsA

* CBC{=52888 cgke=isa.321

0 50 00 150 200 250 300
cBC

TP _
TP+FN — 45+2 96%,
FP

sens(train) =

sens(test) = TPTFN ars +6 = 86%,
FPR(test) = zpiry = 1ria1 = 21%
Accuracy on training data is much higher than on testing data:

overfitting! We've gone too far!

16/17

ML - closing comments
Very powerful algorithms exist and are available in scikit-learn:
» Decision trees and decision forests
» Support vector machines
» Neural networks
> etc. etc.
These algorithms can be used for classification / regression based
on all kinds of data:
» Arrays of numerical values
» Images, video, sound
> Text
> etc. etc.
Applications in life sciences
» Medical diagnostic
> Interpretation of genetic data
» Drug design, optimization of medical devices
» Modeling of ecosystems
> etc. etc.
Experiment with different approaches/problems! 17/17

