COMP 204

Introduction to image analysis with scikit-image
(part three)

Mathieu Blanchette, based on slides from
Christopher J.F. Cameron and Carlos G. Oliver

1/17

Edge detection

Goal: ldentify regions of the image that contain sharp changes in
colors/intensities.
Why? Useful for

» delineating objects (image segmentation)
> recognizing them (object recognition)
> etc.

2/17

Edge detection

Edge detection

4/17

Edge detection

What's an edge in an image?

Horizontal edge at row i:
» image[i — 1,/] is very different from image[i + 1,]
Vertical edge at column j:

» imageli,j — 1] is very different from imagel[i,j + 1]

Idea: To determine if an RGB pixel (7, /) belongs to an edge:
For each color € {R, G, B}:

» Ly [color| = imageli,j — 1, color] — imageli,j + 1, color]
» L,[color] = image[i — 1, , color] — image[i + 1, j, color]
> gradient[color] = +/Ly[color]? + L, [color]?

edginess = \/gradient[R]? + gradient[G]? + gradient[B]?
if edginess > some_threshold, then pixel (/,/) belongs to an edge

5/17

Edge detection

def detect_edges(im, min_gradient=50):

o

Args:
im: The image on which to detect edges
min_gradient: The minimum gradient value
for a pixel to be called an edge
Returns: An new image with edge pixels set to white,
and everything else set to black

o

n_row, n_col, colors = image.shape

create a empty empty of the same size as the original
edge_image = np.zeros((n_row,n_col ,3), dtype=np.uint8)

for i in range(l,n_row—1): # avoid the first/last row
for j in range(l,n_col—1): # and first/last col
grad=[0,0,0]
for ¢ in range(3): # for each color
Lx = float(im[i—1,j,c])—float(im[i+4+1,j,c])
Ly = float(im[i,j—1,c])—float(im[i,j+1,c])
grad[c] = math.sqrt (Lx**24+Ly*x2)
norm = math.sqrt(grad[0]**2 + grad[1]*%2 \
+ grad[2]*x2)
if (norm > min_gradient):
edge_image[i,j] = (255,255,255)

retnirn edoce imace 6/17

Analysis of microscopy images
Cells (purple "circles") are infected by Plasmodium falciparum

(small red dots).

threshol

c
.0
)
(®)
Q
=
[0}
)
()
{eY0]
O
L

=1

.f'g_

i
%

S

2 ¢
N

& 903

-

-

i)

(
En O(_}

Edge detection

Edge detection

Skimage has many edge detection algorithms:
http://scikit-image.org/docs/0.5/auto_examples/plot_
canny.html

10/17

http://scikit-image.org/docs/0.5/auto_examples/plot_canny.html
http://scikit-image.org/docs/0.5/auto_examples/plot_canny.html

Counting/annotating cells

What if we want to automatically identify/count cells in the image?

Idea:

1. Find edges in the image

O Opf
)

0%eel
6306
o6 o
©©

®,
L o°
Oo

y @OVOV 1)

o°

£
Each closed shape is assigned a different color.
Number of closed shapes (= approximation to cell count) is
calculated.

11/17

Seed filling algorithm

How to take an edge image and fill-in each closed shape?
Seed filling (aka flood filling) algorithm:

» Start from a black pixel.

» Color it and expand to its neighboring pixel, unless neighbor is
an edge (white).

P> Keep expanding until no more expansion is possible

» Repeat from a new starting point, until no black pixels are left

12/17

Seed filling algorithm

Oops: I've swapped black and white!...

Black = edge, white = background
Seed = pixel at position (4,4)

Front: [1]

[
[
Front: (2,3, 4,5,6,7)
I
I

]

Front: [6,7,8,9,10, 11,

]

14]

Front: [9, 10, 11, 12, 14, 15, 16]

Front: (10, 11, 12, 14, 15, 16, 17]

Front: (11, 12,14, 15, 16,117, 18]

Front:{12, 14, 15,16, 17,/18/19, 20]
13 /17

Seed filling implementation

1 def seedfill (im, seed_row, seed_col, fill_color ,bckg):

) non

3 im: The image on which to perform the seedfill algorithm
4 seed_row and seed_col: position of the seed pixel

5 fill_color: Color for the fill

6 bckg: Color of the background, to be filled

7 Returns: Number of pixels filled

8 Behavior: Modifies image by performing seedfill

9 mon

10 size=0 # keep track of patch size

11 n_row, n_col, foo = im.shape

12 front=[(seed_row ,seed_col)] # initial front

13 while len(front)>0:

14 r, c = front.pop(0) # remove 1lst element of front
15 # This is how to test equality of two np.arrays

16 if np.array_equal(im[r, c],bckg):

17 im[r, c]=fill_color # color the pixel

18 size4+=1

19 # look at all neighbors

20 for i in range(max(0,r—1), min(n_row,r+42)):

21 for j in range(max(0,c—1),min(n_col , c+2)):
22 # if background, add to front

23 if np.array_equal(im[i,j], bckg) and\
24 (i,j) not in front:

25 front.append ((i,]j))

NG retinirn cive 14 /17

© o N oA W N R

NN N e e O <
N RO ©®w~NO o hrwWwNRO

N
w

Seeding from all possible starting pixel...

filename="malaria2”
fig=plt.figure() # ignore this
image = io.imread(filename+4".jpg”)

edge_image = detect_edges(image, 60)
io.imsave(filename+" _edge.jpg” ,edge_image)

min_cell_size=100 # based on prior knowledge
max_cell_size=300 # based on prior knowledge
n_cells=0

for i in range(edge_image.shape[0]):
for j in range(edge_image.shape[1l]):
if pixel is black, seedfill from here
if np.array_equal(edge_.image[i,j,:],(0,0,0)):
rand_color = (random.randrange(255),
random.randrange (255),
random.randrange (255))
size=seedfill_with_animation (edge_image, i ,j,
rand_color ,(0,0,0))
if size>= min_cell_size and size<max_cell_size:
n_cells+=1
print (" Number of cells:” ,n_cells) # Number of cells: 208

15/17

Seed filling execution

See live execution of program

16/17

Issues

Several things would need to be improved to get a more accurate
cell count:

» Some cells are not surrounded by a closed edge because of
lack of contrast; those end up not being counted.

» In some cells, the nucleus is enclosed by an edge. Those cells
often end up not being counted, because both the cytoplasmic
and nuclear portions are too small to be called a cell.

» Some cells may not be red blood cells, and should not be
counted

> etc...

17/17

