COMP 204

Introduction to image analysis with scikit-image
(part two)

Mathieu Blanchette, based on slides from
Christopher J.F. Cameron and Carlos G. Oliver

1/24

Grayscaling

Many image processing algorithms assume a 2D matrix

» not an image with a third dimension of color

To bring the image into two dimensions
P> we need to summarize the three colors into a single value
» this process is more commonly know as grayscaling

» where the resulting image only holds intensities of gray
» with values between 0 and 1

skimage submodule color has useful functions for this task
> API
http://scikit-image.org/docs/dev/api/skimage.
color.html

2/24

http://scikit-image.org/docs/dev/api/skimage.color.html
http://scikit-image.org/docs/dev/api/skimage.color.html

© o N oA W N R

e e e
R W N = O

Grayscaling

Goal: Create a grayscale version of a color image (see next slide)

import skimage.io as io

import skimage.color as color
import matplotlib. pyplot as plt
from skimage.color import rgb2gray

read image into memory

image = io.imread (" monkey.jpg")
convert to grayscale
gray_image = rgb2gray(image)

print(image[0,0]) # prints [255,255,255]
print(gray-image[0,0]) # prints 1.0
plt.imshow(gray_-image)

plt.show ()

io.imsave(”" monkey_grayscale.jpg” ,gray-image)

3/24

© o N oA W N R

e e
o O r W N = O

Binary image

Goal: Produce a black-and-white version of a color image (see next
slide).

import skimage.io as io

import skimage.color as color
import matplotlib. pyplot as plt
from skimage.color import rgb2gray
import numpy as np

image = io.imread (" monkey.jpg”)
gray_-image = rgb2gray(image)

this creates a new array,
with 1's everywhere gray_image >0.5, and 0 elsewhere
black_and_white = np.where(gray_-image >0.5, 255, 0)

plt.imshow(black_and_white)
plt.show()
io.imsave (" monkey_black_and_white.jpg” , black_and_white)

5/24

6/ 24

Blurring an image

Goal: Reduce the resolution of an image by blurring it, e.g. to
reduce fine-level "noise” (unwanted details).

7/24

Blurring an image
Blurring is achieved by replacing each pixel by the average value of
the pixels in a small window centered on it.
Example, window of size 5:

Original image Blurred image
i i

> Average -

o|o|o|o

o|lN|lo|lw|lo|N|o|s|N]||w
=
N
Njlwnv|ojlo|o|lo|o|o|o

viN|lo|lw|N|lo|N|u|d|lw

olwlu|lu|lw|lw|loa|lu|w|wv

N|lo|(N|o|ju|lu|lw|v|u|o

bwoooo:kooo

ooooooc;\ooo

o|o|e|o|e|o|opo|o|e

o|o|o|o|o|o|o|o|o|o

o|o|lo|o|o|o|o|ofo|o

vlunlu|lu|lo|lo|lw|lu|lw|wn

A RESIRCERNE EN]

8/24

2w N =

© © N o »

11
12
13
14
15

Blurring an image

def blur(image, filter_size):

n_row, n_col, colors = image.shape
blurred=np.zeros((n_-row, n_col, colors),dtype=np.uint8)
half_size=int(filter_size /2)

for i in range(n_row):

for j in range(n_col):
define the boundaries of window around (i,])
left=max(0,j—half_size)
right=min(j+half_size ,n_row)
top=max(0,i—half_size)
bot=min(n_col ,i+half_size)
calculate average of RGB values in window
blurred[i,j] =\
image[bot:top, left:right ,:]. mean(axis=(0,1))
return blurred_image

image[bottom:top, left:right , ,:] corresponds to

the sub-image ranging from rows bottom to top-1 and

columns left to right-1, and all 3 color dimensions.

means (axis=(0,1)) states that we want to take an average
over dimension 0 (rows) and dimension 1 (columns) but not
dimension 2 (RGB). This returns that a 1d ndarray containing

the average red, green, and blue values in the subimage. 9/24

Original image

Window size = 5

Window size = 21

Window size = 101

Running time issues

Note: When our window size is large (say 101), blurring the image
is slow (> 1 minute). Why?

» Our image is 674 x 1200 pixels.

P For each pixel in the image, we need to calculate the average
of the 101 x 101 pixels around it, and for each of the three
colors!

» The total number of operations is proportional to
674 x 1200 x 101 x 101 = 25 Billion operations!

Sklmage has many built-in blurring functions (called filters) with

faster implementations:
http://scikit-image.org/docs/dev/api/skimage.filters.html

14 /24

h

Edge detection

Goal: ldentify regions of the image that contain sharp changes in
colors/intensities.
Why? Useful for

» delineating objects (image segmentation)
> recognizing them (object recognition)
> etc.

15 /24

Edge detection

Edge detection

Edge detection

What's an edge in an image?

Horizontal edge at row i: image(i — 1,j) is very different from
image(i + 1,)

Vertical
edge at column j: image(i, j—1) is very different from image(i, j+1)

Idea:

For each position (i,;) and each color (RGB), calculate
change_hor = image(i-1,j, color) - image(i+1,j, color)
change_vert = image(i,j-1, color) - image(i,j+1, color)
edge_image(i,j,color) = sqrt(change_hor? + change_vert?)

18/24

Edge detection

1 def detect_edges(image):

2 n_row, n_col, colors = image.shape

3 edge_image = np.zeros((n_row,n_col ,3), dtype=np.uint8)
4 for i in range(1l,n_row—1):

5 for j in range(l,n_col—1):

6 for ¢ in range(3):

7

8 # conversion to int needed to accommodate
9 # for potentially negative values

10 d_r=int(image[i—1,j,c])—int(image[i+1,j,c])
11 d_c=int(image[i,j—1,c])—int(image[i,j+1,c])
12 grad = math.sqrt(d_r*x2+d_c*%2)

13

14 # limit value to 255

15 edge_image[i,j,c]=np.uint8(min(255,grad))
16 return edge_image

19/24

Edge detection on monkey image

Blurring + Edge detection

To smooth out fine details like leaves:
Start by blurring the image, then apply edge detection.

Analysis of microscopy images

Edge detection

Edge detection

Skimage has many edge detection algorithms:
http://scikit-image.org/docs/0.5/auto_examples/plot_
canny.html

24 /24

http://scikit-image.org/docs/0.5/auto_examples/plot_canny.html
http://scikit-image.org/docs/0.5/auto_examples/plot_canny.html

