COMP 204

Introduction to image analysis with scikit-image
(part one)

Mathieu Blanchette, based on slides from
Christopher J.F. Cameron and Carlos G. Oliver

1/28

Until the end of the semester...

We will learn how to use Python modules that are very useful in
life science applications:

» Scikit-image: Analysis of images (3 lectures)
» BioPython: Bioinformatics applications (2 lectures)
» Scikit-learn: Machine learning (2-3 lectures)

Our goal is not to learn everything about those packages (they
contain hundreds of functions), but to learn the key ideas about
them, and let you more easily use them in the future.

2/28

Image processing and analysis in Python

Goal: Process and analyze digital images.

» Very useful for processing microscopy images, medical
imaging, etc.

» Closely linked with machine learning for image analysis
scikit-image module or (skimage)
P image processing module in Python

» holds a wide library of image processing algorithms: filters,
transforms, point detection, etc.
» Documentation (Application Program Interface - API)
> http://scikit-image.org/docs/dev/api/api.html

3/28

http://scikit-image.org/docs/dev/api/api.html

RGB Colors
The RGB color cube (source: Wikipedia)

Each pixel’s color is represented using 3 integers, each between 0
and 255 (inclusively): (R, G, B), where R= red intensity, G = green
intensity, B = blue intensity. All colors can be expressed as RGB:

» black = (0,0,0)

> white = (255,255,255)

> red = (255,0,0)

> purple = (255,0,255)

» dark purple = (120,0,120)

> yellow = (255, 255, 0) 4/28

mascot for today

Reading an image into memory
Skimage's io submodule allows reading images into memory and
writing them out to file.
API: http://scikit-image.org/docs/dev/api/skimage.io.html
> image = io.imread(filename) reads the image stored in
filename

» io.imsave(filename, image) saves image to filename

read_write.py program:

1 import skimage.io as io

2 import matplotlib.pyplot as plt
3

4 # read image into memory

5 image = io.imread (" monkey.jpg”)
6

7 # show the image on screen

8 plt.imshow(image)

9

10 # write image to disk
11 io.imsave (" monkey_copy.jpg” ,image)

6/28

http://scikit-image.org/docs/dev/api/skimage.io.html

What's an image in Python?
An image is stored as a NumPy ndarray (n-dimensional array).
» ndarrays are easier and more efficient than using
2-dimensional lists as we've seen before.
A color image with R rows and C columns is
> represented as a 3-dimensional ndarray of dimensions
Rx Cx3
» element at position (/, /) of the array corresponds to the
pixel's RGB value at row j and column j of the image
P each pixel is represented by 3 numbers, each between 0 and
255: Red, Green, Blue

7/28

NumPy’s ndarray

When loading an image with

image=io.imread ("monkey.jpg") , you get a object of type
ndarray, which contains the pixel values of the entire image.
Things to know about ndarrays:

» Get their dimensions:
n_row, n_col, n_colours = image.shape

P> Get a particular element at row r, column ¢, and depth d
value = imagelr,c,d]

> Get an RGB pixel value at row r and column c:
pixel_RBG = imagel[r,c]

» Change the color at row r and column c:
image[r,c] = [120,134, 231]

8/28

© N A W N R

e e e
a2 W N = O

16
17
18
19
20
21
22
23
24
25

Playing with an image - modify.py

import skimage.io as io
import matplotlib. pyplot as plt

read image into memory
image = io.imread (" monkey.jpg")

n_row, n_col, n_colours = image.shape
print(n_row, n_col, n_colours) # prints 1362 2048 3

print pixel value at row 156 and column 293
pixel = image[156,292]
print(pixel) # prints [112 158 147]

change pixel value to red
image[156,292]=[255,0,0]

Create a purple rectangle between rows 1000—1200
and column 500-900
for i in range(1000,1200):
for j in range(500,900):
image[i,j] = (255,0,255)

plt.imshow(image)
plt.show()

io.imsave (" monkey_bar.jpg” ,image) K

© o N oA W N R

R e
2 W N = O

15
16

-
3

Creating the negative of an image

import skimage.io as io
import matplotlib. pyplot as plt

read image into memory
image = io.imread (" monkey.jpg”)
n_row, n_col, n_colours = image.shape

Create the negative of an image
for i in range(n_-row):
for j in range(n_col):
for ¢ in range(n_colours):
image[i,j,c] = 255—image[i,j,c]

we could just have written:
#image = 255 — image

plt.imshow(image)
io.imsave (" monkey_negative.jpg” ,image)

11/28

© o N oA W N R

R e
B~ W N = O

Flipping the image horizontally (incorrect!)

import skimage.io as io
import matplotlib. pyplot as plt
read image into memory
image = io.imread (" monkey.jpg”)
n_row, n_col, colours = image.shape
Flip the image horizontally
for i in range(0,n_row):

for j in range(0,n_col):

image[i,j] = image[i, n_col—j—1]

plt.imshow(image)

io.imsave (" monkey_flipped_wrong.jpg” ,image)

13/28

Problem: For each row i, this mirrors the right half of the image
into the left half (as it should), but by the time it reaches the right
half (j; n_col/2), the left half of the image has already been
changed. so we can no longer recover the original pixel values.

© o N oA W N R

e e N <
W ~N o A W N~ O

Flipping the image horizontally (correct)

import skimage.io as io

import matplotlib. pyplot as plt

read image into memory

image = io.imread (" monkey.jpg”)

n_row, n_col, colours = image.shape

Flip the image horizontally

for i in range(n_-row):

for j in range(int(n_col/2)):

colour = image[i,j].copy()
opposite_colour = image[i, n_col—j—1].copy()
image[i,j] = opposite_colour
image[i, n_col—j—1] = colour

plt.imshow(image)

plt.show ()
io.imsave(”" monkey_flipped_right.jpg” ,image)

15/28

Combining images

Since images are just arrays are numbers, we can easily combine
them.
Example: Create an image that is the average of monkey and tiger.

17/28

© N oA W N

N e e <
S ©®»w N o 0 A WN RO

21
22

N
w

Combining images

import skimage.io as io

import matplotlib. pyplot as plt
import numpy as np

from skimage.transform import resize

monkey = io.imread (" monkey.jpg")
tiger = io.imread (" tiger.jpg")

#resize images to 500x1000 pixels
monkey_resized = resize (monkey, (500, 1000))
tiger_resized = resize(tiger, (500, 1000))

combined = np.zeros([500,1000,3])
for i in range(500):
for j in range(1000):
for ¢ in range(3):
combined[i,],c]J=monkey_resized[i,]j,c]/2 +)\
tiger_resized[i,j,c]/2

we could also have replaced lines 13—19 with:
#combined = monkey_resized /2 + tiger_resized /2

plt.imshow(combined)
o.imsave (" combined.jpg” ,combined)

18/28

Combining images

Hae
19/28

© o N oA W N R

O
N o U hA W N RO

18
19

21

Color separation

Goal: Produce three images, one for each colors (see next slides)

import skimage.io as io
image = io.imread (" monkey.jpg")
n_row, n_col, colours = image.shape

create three copies of the image
red = image.copy()

green = image.copy()

blue = image.copy ()

set to zero the B and G channels of the

red image

set to zero the R and B channels of the green image

set to zero the R and G channels of the
for i in range(n_-row):
for j in range(n_col):
red[i,j,1]=red[i,]j,2]=0
green[i,j,0]=green[i,]j,2]=0
blue[i,j,0]=blue[i,j,1]=0

blue image

We could have replaced the 5 lines above with:

#red[:,:,(1,2)] =0
#green[0, (0,2)] =
#blue[:,:,(0,1)] = O

o.imsave (" monkey_red.jpg” ,red)
io.imsave (" monkey_green.jpg"” ,green)

20/28

red intensity

green intensity blue intensity

21/28

© N oA W N

N R R e T e <
W N RO W©W®NO U AWN~R O

Shifting colors

Goal: Produce an image where the three colour channels are

shifted (see next slide)

import skimage.io as io

import matplotlib. pyplot as plt
import numpy as np

image = io.imread (" monkey.jpg")
n_row, n_col, colors = image.shape

create a blank image

new_image = np.zeros((n_row, n_col,

3), dtype=np.uint8)

assemble a new image made of shifted colors

blue is shifted right by 100 pixels

green is shifted up by 100 pixels

for i in range(n_-row):
for j in range(n_col):
new_image[i,j,0] = image[i,],0] # keep red
if i>=100:

new_image[i,j,1]=image[i —100,j,1]

if j>=100:

new_image[i,j,2]=image[i,]j—100,2]

plt.imshow(new_image)
io.imsave(”" monkev shifted ipg”

‘new._imacge)

move green

move blue

Grayscaling

Many image processing algorithms assume a 2D matrix

» not an image with a third dimension of color

To bring the image into two dimensions
P> we need to summarize the three colors into a single value
» this process is more commonly know as grayscaling

» where the resulting image only holds intensities of gray
» with values between 0 and 1

skimage submodule color has useful functions for this task
> API
http://scikit-image.org/docs/dev/api/skimage.
color.html

24 /28

http://scikit-image.org/docs/dev/api/skimage.color.html
http://scikit-image.org/docs/dev/api/skimage.color.html

© N oA W N

e
w N = O

Grayscaling

Goal: Create a grayscale version of a color image (see next slide)

import skimage.io as io
import matplotlib.pyplot as plt
from skimage.color import rgb2gray

read image into memory

image = io.imread (" monkey.jpg")
convert to grayscale
gray_image = rgb2gray(image)

print(image[0,0]) # prints [255,255,255]
print(gray-image[0,0]) # prints 1.0
plt.imshow(gray_image)

io.imsave (" monkey_grayscale.jpg” , gray_image)

25/28

© N oA W N

e e e e N e
© N oA W N R O

20
21

23

Binary image

Goal: Produce a black-and-white version of a color image (see next

slide).

import skimage.io as io

import matplotlib. pyplot as plt
from skimage.color import rgb2gray
import numpy as np

image = io.imread (" monkey.jpg”)
n_row, n_col, c_colours = image.shape

gray_image = rgb2gray(image)

black_and_white=gray_image.copy()
for i in range(n_-row):
for j in range(n_col):
if gray_-image[i,j]>0.5:
black_and_white[i,j]=1.0
else:
black_and_white[i, j]=0

We could have replaced the 7 lines above with:

black_and_white = np.where(gray_image >0.5,

plt.imshow(black_and_white)
io.imsave (" monkev bw ipe” black_and white)

i

0)

27/28

28/28

