
COMP 204
Object Oriented Programming (OOP) - Part II

Mathieu Blanchette

1 / 12

Object-Oriented Programming Vocabulary

From http://interactivepython.org/courselib/static/

thinkcspy/ClassesBasics/Glossary.html

I class: A user-defined compound type. A class can also be
thought of as a template for the objects that are instances of
it.

I object (aka instance): A bundle of data (attributes) built
from a particular class.

I attribute: One of the named data items that makes up an
object.

I method: A function that is defined inside a class definition
and is invoked on instances of that class.

2 / 12

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html

Object-Oriented Programming Vocabulary

From http://interactivepython.org/courselib/static/

thinkcspy/ClassesBasics/Glossary.html

I initializer (or constructor) method: A special method in
Python (called init) that is invoked automatically to set a
newly-created object’s attributes to their initial state.

I to instantiate: To create an object (or instance) of a class,
and to run its initializer.

I object-oriented programming: A powerful style of
programming in which data and the operations that
manipulate it are organized into classes and methods.

I object-oriented language: A language that provides
features, such as user-defined classes and inheritance, that
facilitate object-oriented programming.

3 / 12

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html

Defining and instantiating a class (recap)
1 c l a s s Bus :
2 de f i n i t (s e l f) :
3 s e l f . s t a t i o n = 0 # the p o s i t i o n o f the bus
4 s e l f . c a p a c i t y = 5 # the c a p a c i t y o f the bus
5 s e l f . p a s s e n g e r s = [] # the con t en t o f the bus
6 s e l f . t e rm inu s = 5 # The l a s t s t a t i o n
7 # end o f Bus c l a s s d e f i n i t i o n
8

9 kn i gh t = Bus () # Crea te an o b j e c t o f c l a s s Bus
10 d e s i r e = Bus () # Crea te a second ob j e c t o f c l a s s Bus

Each object has its own set of attributes. The station, capacity,
passengers, and terminus of knight and desire are different from
each other.

Sta$on:	 0	
Capacity:	 5	
Passengers:	 []	
Terminus:	 5	

Sta$on:	 0	
Capacity:	 5	
Passengers:	 []	
Terminus:	 5	

Memory	

knight	
	
	
desire	

4 / 12

The str (self) method

It is often useful to define how an object of given class should be
converted to a string (e.g. for printed). This is achieved by
defining the method str (self):

1 de f s t r (s e l f) :
2 ”””
3 Args : S e l f ,
4 Retu rns : S t r i n g d e s c r i b i n g bus
5 ”””
6 r e t u r n ”Bus at s t a t i o n ”+s t r (s e l f . s t a t i o n) + \
7 ” c o n t a i n s p a s s e n g e r s ” + s t r (s e l f . p a s s e n g e r s

)

Then:
my bus = Bus()
print(my bus) # will execute str () on my bus to get a String,
which then gets printed.

5 / 12

Putting it all together

See busSim object oriented.py

Notice how much simpler the simulation loop becomes!

Advantage: All the code that pertains to the bus behavior is in the
Bus class. The programmer of the simulation loop does not need
to know all the details of the Bus class. It only needs to know how
to use its methods properly.

6 / 12

Revisiting our medical diagnostic program
Our program was a bit complicated because data and code
pertaining to different concepts are intermingled.
I Symptoms

I Data: Symptoms present and absent were store in a tuple.
Programmer needs to remember that the first element of the
tuple corresponds to the symptoms that are present, and the
second to the symptoms that are absent.

I Code: symptom similarity function

I Patients
I Data: patients’ symptoms and diagnostics were stored in

separate dictionaries: all patients symptoms,
all patients diagnostics

I Code: most similar patients(), diagnostics from symptoms(),
recommend symptom to test()

I Probabilistic diagnostics
I Data: dictionary of diseases with associated probabilities.
I Code: count diagnostics(), pretty print diagnostics(),

diagnostic clarity():

7 / 12

Class diagram

Patient Class

Attributes:

 ID # int

 symptoms # Symptom object

 diagnostic # String

Methods:

 __init__(self, my_patient_ID, my_symptoms, my_diagnostic)

 most_similar_patients(self, all_patients, n_top=10)

 diagnostics_from_symptoms(self, all_patients, n_top=10)

 recommend_symptom_to_test(self, all_patients, n_top=10)

Symptoms Class

Attributes:

 present

 absent

Methods:

 __init__(self, pres, ab)

 symptom_similarity(self, other)

 __str__(self)

Probabilistic_diagnostic Class

Attributes:

 prob # dict key: symp; value: prob

Methods:

 __init__(self)

 count_diagnostics(self,patient_set)

 pretty_print_diagnostics(self)

 diagnostic_clarity(self)

8 / 12

Symptoms class

I Attributes:
I present: Set of symptoms (Strings) that are present
I absent: Set of symptoms (Strings) that are absent

I Methods:
I init (self,pres,abs)
I symptom similarity(self, other)
I str (self)

See symptoms.py

9 / 12

Probabilistic diagnostic class

I Attributes:
I prob: Dictionary of diagnostic probabilities
I symptoms: Object of class Symptoms
I diagnostic: String

I Methods:
I init (self)
I count diagnostics(self,patient set):
I pretty print diagnostics(self):
I diagnostic clarity(self):

See probabilistic diagnostic.py

10 / 12

Patient class
I Attributes:

I ID: Integer
I symptoms: Object of class Symptoms
I diagnostic: String

I Methods:
I init (self, my patient ID, my symptoms, my diagnostic)
I most similar patients(self, all patients, n top=10)
I diagnostics from symptoms(self, all patients, n top=10)
I recommend symptom to test(self, all patients, n top=10)
I str (self)

See patient.py

Note: The Patient class needs to know about the Symptoms and
Probabilistic diagnostic classes. So:

1 # impor t the c l a s s Symptoms from f i l e symptoms . py
2 from symptoms impor t Symptoms
3 # impor t the c l a s s P r o b a b i l i s t i c d i a g n o s t i c from f i l e

p r o b a b i l i s t i c d i a g n o s t i c . py
4 from p r o b a b i l i s t i c d i a g n o s t i c impor t

P r o b a b i l i s t i c d i a g n o s t i c
11 / 12

Tester code

Our code that puts everything together is in a separate file:
medical diagnostic tester.py.

It needs to import the three other modules:

1 from symptoms impor t Symptoms
2 from p a t i e n t impor t Pa t i e n t
3 from p r o b a b i l i s t i c d i a g n o s t i c impor t

P r o b a b i l i s t i c d i a g n o s t i c

12 / 12

