COMP 204
Object Oriented Programming (OOP)

Mathieu Blanchette

1/13

Object-Oriented Programming

OOP is a way to write and structure programs to make them
easier to design, understand, debug, and maintain.

It allows putting together (i.e. encapsulating) all the data
that pertains to a certain concept, along with the functions
(called Methods) that operate on it.

Nearly all large-scale software projects are written using OOP

Became popular in the 90's

2/13

Back to our bus simulation system

Remember our bus simulation code. It had the information relative
to a given bus dispersed over many variables:

» bus_station (dictionary mapping busID to stations)

» bus_content (dictionary mapping busID to list of people on
board)

We could also have needed a lot more information: name of driver,
capacity of bus (different bus may have different capacities), etc.

Having all this data in separate dictionaries makes the code
complex and slow.

3/13

Classes
A class can also be thought of as a template for a user-defined
compound type. It defines

> Attributes: what type of information we want to keep
together

» Methods: what kinds of operations want to be able to
perform on that data.

We have used Python built-in classes (aka compound types)
before:

» String: Contains some data (the characters), and some
methods that can be applied to that data (isdecimal(), split(),
etc.)

» List: Contains an ordered sequence of objects. Methods:
sort(), append(), etc.

» Dictionary: Contains a set of tuple (key,value). Methods:
items(), keys(), etc.

4/13

oG RE W N

Defining a class

A Python class is defined using: class some_class_name:

Within a class, we define Methods, which are functions that can be
applied to objects of that class. Most classes contain a methods

called __init__(self) , which defines and initializes the

attributes of the class.

Example: A Bus class.

class Bus:
def __init__(self):

self.station = 0 # the position of the bus
self.capacity = 5 # the capacity of the bus
self.passengers = [] # the content of the bus
self.terminus = 5 # The last station

The Bus class contains 4 attributes: station (int), capacity (int),
passengers (list) and terminus (int).

5/13

Instantiating a class
Instantiating a class means creating an object from that class.

class Bus:
def __init__(self):
self.station = 0
self.capacity = 5
self.passengers = []
self.terminus = 5
end of Bus class definition

the position of the bus
the capacity of the bus
the content of the bus
The last station

knight = Bus() # Create an object of class Bus
desire = Bus() # Create a second object of class Bus

Each object has its own set of attributes. The station, capacity, passengers, and
terminus of knight and desire are different from each other.

knight

desire

Memory

Station: 0
Capacity: 5
Passengers: []
Terminus: 5

Passengers: []
Terminus: 5

6/13

Using objects

We can evaluate and modify the values of attributes of an object.

1 class Bus:

2 def __init__(self):

3 self.station = 0 # the position of the bus
4 self.capacity = 5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station

7 # end of Bus class definition

8

9 knight = Bus() # Create an object of class Bus

10 desire = Bus() # Create a second object of class Bus
11

12 # We can change the value of an object's attributes
13 knight.station =1

14

15 # We can evaluate an object's attribute

16 print(knight.station) # 1

17 print(desire.station) # 0

18 # update the station of desire

19 desire.station = knight.station + 2

20

21 # add a passenger to knight

22 knight.passengers.append(3)

23 print (knight.passengers) # [3]

4 print(desire.passengers) # []

N]

7/13

Initializer methods

1 class Bus:

2 def __init__(self):

3 self.station = 0 # the position of the bus
4 self.capacity =5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station

The initializer method (aka constructor) :
» Defines what the attributes of the class are, and how to
initialize them.
» Created using syntax: def __init__(self):
» Gets executed when we create a new object of that class. For
example: knight = Bus()
» Should always take at least one argument, called self.

> Self refers to the object that is being initialized.
> When we write self.capacity = 5, this means: assign value 5 to
the attribute capacity of the object being created.

» Any class definition should include an initializer method

8/13

-
N

-
S

class Bus:
def __ini

self.
self.
self.
self.
end of Bus

We create an object of class Bus,

with statio

A more flexible initializer

t__(self,

passengers =[],
station station
capacity capacity
passengers = passengers
terminus terminus
class definition

station=0, capacity=5,
terminus=5):

initialized

n=0, capacity=5, passengers=[2,4], terminus=4

knight=Bus(passengers=[2,4],terminus=4)

desire=Bus()

creates an object of class Bus, initialized

with default values

Memory

Station: 0
Capacity: 5

Passengers: [2,4]
Terminus: 4

knight ————~—wu__,

desire

Station: 0
Capacity: 5

Passengers: []
Terminus: 5

9/13

Defining class methods

We can define other methods within a class.

Each method takes as first argument self, plus possibly more.

class Bus:

def __init__(self, ...):
Same as before

Increases station by one,
unless bus is already at terminus
def move(self):

if

self.station< self.terminus:
self.station+=1

knight=Bus(passengers=[2,4] ,terminus=4)
desire=Bus()

knight . move () # knight.station is now 1
knight . move () # knight.station is now 2
desire .move() # desire.station is now 1

To call a method on an object, we write my_object.my_method().
Note: All methods take self as first argument. However, when
calling the method, it is not explicitly provided as an argument.
Instead, self refers to the object on which the method is called.

10/13

=
o

One more methods: unload

class Bus:
def __init__(self, ...):
Same as before

def move(self):
Same as before

Removes passengers who have reached their station
Returns number of passengers who disembark
def unload(self):
out=[d for d in self.passengers if d=—self.station]
self.passengers = [d for d in self.passengers \
if dl=self.station]
return len (out)

knight=Bus(passengers=[2,4,2],terminus=4, station=2)

disembarked = knight.unload() # disembarked is now 2,
knight.passengers is [4]

11/13

One last methods: load

1 class Bus:

2 def __init__(self, ...):
3 # Same as before

4 def move(self):

5 # Same as before

6 def unload(self):

7 # Same as before

8

9

Fills the bus with as many people in waiting_line as

possible .
10 # Returns the number of people who boarded
11 def load(self, waiting_line):
12 number_boarding = min(len(waiting_line),\
13 self.capacity—len(self.passengers))
14 people_boarding = waiting_line [0: number_boarding]
15 self.passengers.extend(people_boarding)
16 return number_boarding

17

18 knight=Bus(station=1,passengers=[2,4,2],terminus=4)
19

20 nb_loaded = knight.load ([4,5,3,5,4,3]) # 2

21 print(knight.passengers) # prints [2,4,2,4,5]

12/13

Putting it all together

See busSim_object_oriented.py
Notice how much simpler the simulation loop becomes!

Advantage: All the code that pertains to the bus behavior is in the
Bus class. The programmer of the simulation loop does not need
to know all the details of the Bus class. It only needs to know how
to use its methods properly.

13/13

