
COMP 204
Algorithm design: Selection and Insertion Sort

Mathieu Blanchette
based on material from Yue Li, Christopher J.F. Cameron and

Carlos G. Oliver

1 / 23



Sorting algorithms

A sorting algorithm is an algorithm that takes

I a list/array as input

I performs specified operations on the list/array

I outputs a sorted list/array

For example:

I [a, c , d , b] could be sorted alphabetically to [a, b, c , d ]
I [1, 3, 2, 0] could be sorted:

I increasing order: [0, 1, 2, 3]
I or decreasing order: [3, 2, 1, 0]

2 / 23



Why is it useful to sort data?

Sorted data searching can be optimized to a very high level

I also used to represent data in more readable formats

Contacts

I your mobile phone stores the telephone numbers of contacts
by names

I names can easily be searched to find a desired number

Dictionary

I dictionaries store words in alphabetical order to allow for easy
searching of any word

Remember binary search?

3 / 23



Adding more algorithms to your toolbox

In the last lecture, we covered searching algorithms, specifically:

I linear search

I binary search

Today, we will cover the following sorting algorithms:

I selection sort

I insertion sort

Images for selection sort are taken from an online tutorial: https:

//www.tutorialspoint.com/data_structures_algorithms/

4 / 23

https://www.tutorialspoint.com/data_structures_algorithms/
https://www.tutorialspoint.com/data_structures_algorithms/


Selection sort

Conceptually the most simple of all the sorting algorithms

Start be selecting the smallest item in a list

I then place this item at the start of the list
I repeat for the remaining items in the list

I move next smallest/largest item to the second position
I then the next
I and so on and so on...
I until the list is sorted

Let’s consider the following unsorted list:

5 / 23



Selection sort - Iteration #1

Scan the whole list to find the smallest number (10)

Swap 14 (first element) and 10 (smallest element).

6 / 23



Selection sort - Iteration #2

Search for smallest element starting from second element: Find 14.

Swap 33 (second element) with 14 (smallest).

7 / 23



Selection sort - Iterations #3, 4, 5...
The same process is applied to the rest of the items in the list

8 / 23



Selection sort #6

Until the list is sorted

9 / 23



Selection sort algorithm

Selection sort (sequence)

Step 1 - find the item with the smallest value in sequence

Step 2 - swap it with the first item in sequence

Step 3 - find the item with the second smallest value in sequence

Step 4 - swap it with the second item in sequence

Step 5 - find the item with the third smallest value in sequence

Step 6 - swap it with the third item in sequence

Step 7 - repeat finding the item with the next smallest value

Step 8 - then swap it with the correct item until sequence is sorted

10 / 23



Selection sort: pseudocode

Algorithm 1 Selection sort

1: procedure selection sort(sequence)
2: N ← length of sequence
3: for i ← 0 to N − 1 do
4: min index ← i
5: for j ← i + 1 to N − 1 do
6: if sequence[j ] ≤ sequence[min index ] then
7: min index ← j
8: end if
9: end for

10: SWAP(sequence[i ],sequence[min index ])
11: end for
12: end procedure

11 / 23



Selection sort: Python implementation

1 def selection_sort(sequence):

2 N = len(sequence)

3 for i in range(0,N):

4 min_index = i

5 for j in range(i+1,N):

6 if sequence[j] <= sequence[min_index]:

7 min_index = j

8 sequence[i],sequence[min_index] = \

9 sequence[min_index],sequence[i]

10 return sequence

12 / 23



Insertion sort

Insertion sort works by repeatedly

I inserting the next element of the unsorted portion of the list
into the sorted portion of the list

I resulting in progressively larger sequences of a sorted list

Start with a sorted list of 1 element on the left and N-1 unsorted
items on the right

I take the first unsorted item

I insert it into the sorted list, moving elements as necessary

I now have a sorted list of size 2, and N -2 unsorted elements

I repeat for all items

13 / 23



Insertion sort - Iteration 1
Let’s reuse our unsorted list from before and sort it in ascending
order:

42193510273314 44

Iteration 1:
Start by finding out where to insert element at index 1 (33) into
sorted portion of list (index 0 to 0):

4219351027

33

14 44

421935102714 44

14 > 33? no

33

put 33 back

List[0...1] is now sorted! 14 / 23



Insertion sort - Iteration 2
Insert element at index 2 (27) into
sorted portion of list (index 0 to 1):

42193510

27

3314 44

421935103314 44

421935103314 44

33 > 27? yes

14 > 27? no

27

421935103314 4427

insert 27 at index 1

Sorted so far

List[0...2] is now sorted!
15 / 23



Insertion sort - Iteration 3
Insert element at index 3 (10) into
sorted portion of list (index 0 to 2):

10

4219353314 4427

33 > 10? yes

4219353314 4427

27 > 10? yes

4219353314 4427

14 > 10? yes

4219353314 442710

insert 10 at position 0

List[0...3] is now sorted!
16 / 23



Insertion sort - Iteration 4

Insert element at index 4 (35) into
sorted portion of list (index 0 to 3):

10

4219353314 4427

33 > 10? yes

4219353314 4427

27 > 10? yes

4219353314 4427

14 > 10? yes

4219353314 442710

insert 10 at position 0

Nothing to do! List[0...4] is now sorted!

17 / 23



Insertion sort - Iteration 5

Insert element at index 5 (19) into
sorted portion of list (index 0 to 4):

19

42353314 442710

35 > 19? yes

42353314 442710

33 > 19? yes

42353314 442710

27 > 19? yes

42353314 442710

14 > 19? no

42353314 19 442710

insert 19 at position 2

List[0...5] is now sorted!

18 / 23



Insertion sort - Iteration 6

Insert element at index 6 (42) into
sorted portion of list (index 0 to 5):

42353314 19 442710

353314 19 442710

353314 19 442710

Sorted so far

Completely

35 > 42? no

42 > 44? no

42

353314 19

44

2710 42

42

put back 42

353314 19 442710 42

put back 42

Nothing to do!

List[0...6] is now sorted!

19 / 23



Insertion sort - Iteration 7 (last one!)

Insert element at index 7 (44) into
sorted portion of list (index 0 to 6):

42353314 19 442710

353314 19 442710

353314 19 442710

Sorted so far

Completely

35 > 42? no

42 > 44? no

42

353314 19

44

2710 42

42

put back 42

353314 19 442710 42

put back 42

Nothing to do!

List[0...7] is now sorted!
We’re done!

20 / 23



Insertion sort: pseudocode

Algorithm 2 Insertion sort

1: procedure insertion sort(sequence)
2: for i ← 1 to N do
3: key ← sequence[i ]
4: // inset key into the sorted sub-list
5: j ← i
6: while j > 0 and sequence[j − 1] > key do
7: sequence[j ] ← sequence[j − 1]
8: j ← j − 1
9: end while

10: sequence[j ] ← key
11: end for
12: end procedure

21 / 23



Insertion sort: Python implementation

1 def insertion_sort(sequence):

2 N = len(sequence)

3 for i in range(1,N):

4 key = sequence[i]

5 j = i

6 while(j > 0 and sequence[j-1] > key):

7 sequence[j] = sequence[j-1]

8 j -= 1

9 sequence[j] = key

10 return sequence

22 / 23



Notes

I SelectionSort and InsertionSort can sort lists of any types of
objects (numbers, strings, lists, images...), provided that we
can define the comparison operator ”>”.

I SelectionSort and InsertionSort work well on relatively small
lists, but...

I The amount of work done by these algorithms is proportional
to the square of the length of the list.
I Sorting very large lists can take a very long time.

I Many other sorting algorithms exist: MergeSort, QuickSort,
etc.
I They are a bit more complicated, but
I Work much faster on large lists

23 / 23


