COMP 204

Algorithm design: Selection and Insertion Sort

Mathieu Blanchette

based on material from Yue Li, Christopher J.F. Cameron and
Carlos G. Oliver

1/23

Sorting algorithms

A sorting algorithm is an algorithm that takes
» a list/array as input
» performs specified operations on the list/array

» outputs a sorted list/array

For example:
» [a,c,d, b] could be sorted alphabetically to [a, b, c, d]
> [1,3,2,0] could be sorted:

> increasing order: [0,1,2,3]
» or decreasing order: [3,2,1,0]

2/23

Why is it useful to sort data?

Sorted data searching can be optimized to a very high level

» also used to represent data in more readable formats

Contacts

» your mobile phone stores the telephone numbers of contacts
by names

P> names can easily be searched to find a desired number
Dictionary

P dictionaries store words in alphabetical order to allow for easy
searching of any word

Remember binary search?

3/23

Adding more algorithms to your toolbox

In the last lecture, we covered searching algorithms, specifically:
> linear search

» binary search

Today, we will cover the following sorting algorithms:
P selection sort

» insertion sort

Images for selection sort are taken from an online tutorial: https:
//www.tutorialspoint.com/data_structures_algorithms/

4/23

https://www.tutorialspoint.com/data_structures_algorithms/
https://www.tutorialspoint.com/data_structures_algorithms/

Selection sort

Conceptually the most simple of all the sorting algorithms

Start be selecting the smallest item in a list

» then place this item at the start of the list
P repeat for the remaining items in the list

> move next smallest/largest item to the second position
» then the next

» and so on and so on...

» until the list is sorted

Let's consider the following unsorted list:

ez Lo o o) 2) ¢

5/23

Selection sort - Iteration #1

Scan the whole list to find the smallest number (10)

|14 a2 |10 a5 |1 | 42\[44\‘

Swap 14 (first element) and 10 (smallest element).

o[so Jl2 [[14| 8 10 L2] |

6/23

Selection sort - Iteration #2

Search for smallest element starting from second element: Find 14.

o]0] 7 |[1a]{ s |10 L2 [=]

Swap 33 (second element) with 14 (smallest).

o JLre)z J[ss J 5o)10 L 2 #¢]

.

7/23

Selection sort - Iterations #3, 4, 5...
14

The same process is applied to the rest of the items in the list
10 27

33 || 35

19 || 42
10

44
14

19

42
10

19

42 || 44
10 || 14 || 19

42 || 44
10 || 14 || 19

42

D¢

8/23

Selection sort #6
Until the list is sorted

10

14 || 19

42
10 19

42
10 19

42
10 19

42

Do
9/23

Selection sort algorithm

Selection sort (sequence)

Step 1 -
Step 2 -
Step 3 -
Step 4 -
Step 5 -
Step 6 -
Step 7 -
Step 8 -

find the item with the smallest value in sequence

swap it with the first item in sequence

find the item with the second smallest value in sequence
swap it with the second item in sequence

find the item with the third smallest value in sequence
swap it with the third item in sequence

repeat finding the item with the next smallest value

then swap it with the correct item until sequence is sorted

10/23

Selection sort: pseudocode

Algorithm 1 Selection sort
1. procedure SELECTION_SORT(sequence)
2: N <« length of sequence
for i< 0to N—1do
min_index <+ i
for j«— i+1to N—1do
if sequence[j] < sequence[min_index] then
min_index < j
end if
end for
10: SWAP (sequenceli],sequence[min_index])
11: end for
12: end procedure

© o Na s ®

11/23

Selection sort: Python implementation

def selection_sort(sequence):
N = len(sequence)
for i in range(O,N):
min_index = i
for j in range(i+1,N):

if sequence[j] <= sequence[min_index]:

min_index = j
sequence[i] ,sequence[min_index] = \
sequence [min_index] ,sequence[i]
return sequence

12/23

Insertion sort

Insertion sort works by repeatedly

> inserting the next element of the unsorted portion of the list
into the sorted portion of the list

> resulting in progressively larger sequences of a sorted list

Start with a sorted list of 1 element on the left and N-1 unsorted
items on the right

» take the first unsorted item
P insert it into the sorted list, moving elements as necessary
» now have a sorted list of size 2, and N -2 unsorted elements

> repeat for all items

13/23

Insertion sort - lteration 1
Let's reuse our unsorted list from before and sort it in ascending
order:

(1433 (27 |[10)35 |19 |[42) 44 |

Iteration 1:
Start by finding out where to insert element at index 1 (33) into
sorted portion of list (index 0 to 0):

33

14 > 337 no

[14]0 2 S0)35)19 J42 |44
(143327][10 (35][19 (42][44

put 33 back

List[0...1] is now sorted! 14/23

Insertion sort - lteration 2

Insert element at index 2 (27) into
sorted portion of list (index 0 to 1):

27

33 > 277 yes

(1)) Jto o5)10 Ja2) 4]

14 > 277? no

) Jea Jro)en e)42)42

o 39 1035 0 [s

List[0...2] is now sorted!

15/23

Insertion sort - Iteration 3
Insert element at index 3 (10) into
sorted portion of list (index 0 to 2):

33> 10‘7 yes
(1)(z7)fss -_Jfos 1o Jfoz e
27 > 107 yes
DE300000
14 > 107 yes

D3Ga0600n

insert 10 at position 0

(10)(1e))(sa)(os)) 42 4]

List[0...3] is now sorted!

16/23

Insertion sort - lteration 4

Insert element at index 4 (35) into
sorted portion of list (index 0 to 3):

o) o o s o 2

Nothing to do! List[0...4] is now sorted!

17/23

Insertion sort - lteration 5

Insert element at index 5 (19) into
sorted portion of list (index 0 to 4):

35> 19’7

(1)) s o)

33 >197? yves

(ro)(re ar)(sa Yoo ez o)

27 >19? yes

(ro)(reJzrk J(aa)oez oo

14>19?7 no

oneneean

insert 19 at position 2

(r0)(ve)10 Y)(oo (o= ez e

List[0...5] is now sorted!

18/23

Insertion sort - lteration 6
Insert element at index 6 (42) into
sorted portion of list (index 0 to 5):

OEEEEHEE) 2
42
35> 427 no
©EEEEE I«

put back 42
(1014)10 (27 (20 5 a2 4
Nothing to do!

List[0...6] is now sorted!

19/23

Insertion sort - Iteration 7 (last one!)
Insert element at index 7 (44) into
sorted portion of list (index 0 to 6)

Sorted so far

E 42 > 44’7 no
put back 42
Completely

Nothing to do!

List[0...7] is now sorted!
We're done!

Do
20/23

Insertion sort: pseudocode

Algorithm 2 Insertion sort
1. procedure INSERTION_SORT(sequence)
for i < 1to N do
key « sequenceli]
// inset key into the sorted sub-list
J— i
while j > 0 and sequence[j — 1] > key do
sequencelj] + sequence[j — 1]
J—J-1
end while
sequence[j] « key
end for
: end procedure

© e Na R WD

e
N Qo

21/23

Insertion sort: Python implementation

def insertion_sort(sequence):

N = len(sequence)
for i in range(1,N):
key = sequencel[il

J=1

while(j > 0 and sequence[j-1] > key):
sequence[j] = sequence[j-1]
j =1

sequence[j] = key
return sequence

22/23

Notes

SelectionSort and InsertionSort can sort lists of any types of
objects (numbers, strings, lists, images...), provided that we
can define the comparison operator ”

>
SelectionSort and InsertionSort work well on relatively small
lists, but...

The amount of work done by these algorithms is proportional
to the square of the length of the list.

» Sorting very large lists can take a very long time.

Many other sorting algorithms exist: MergeSort, QuickSort,
etc.

» They are a bit more complicated, but
» Work much faster on large lists

23/23

