
COMP 204
Algorithm design: Linear and Binary Search

Mathieu Blanchette
based on material from Yue Li, Christopher J.F. Cameron and

Carlos G. Oliver

1 / 25

Algorithms

An algorithm is a predetermined series of instructions for carrying
out a task in a finite number of steps

I or a recipe

Input → algorithm → output

2 / 25

Example algorithm: baking a cake

What is the input?

algorithm?

output?

3 / 25

Pseudocode

Pseudocode is a universal and informal language to describe
algorithms from humans to humans

It is not a programming language (it can’t be executed by a
computer), but it can easily be translated by a programmer to any
programming language

It uses variables, control-flow operators (while, do, for, if, else, etc.)

4 / 25

Example Python statements

1 students = ["Kris", "David", "JC", "Emmanuel"]

2 grades = [75, 90, 45, 100]

3 for student, grade in zip(students, grades):

4 if grade >= 60:

5 print(student, "has passed")

6 else:

7 print(student, "has failed")

8 #output:

9 #Kris has passed

10 #David has passed

11 #JC has failed

12 #Emmanuel has passed

5 / 25

Example pseudocode

Algorithm 1 Student assessment

1: for each student do
2: if student’s grade ≥ 60 then
3: print ‘student has passed’
4: else
5: print ‘student has failed’
6: end if
7: end for

6 / 25

Search algorithms

Search algorithms locate an item in a data structure
Input: a list of (un)sorted items and value of item to be searched

Algorithms: linear and binary search algorithms will be covered

I images if search algorithms taken from:
http://www.tutorialspoint.com/data_structures_

algorithms/

Output: if value is found in the list, return index of item
Example:

I search (key = 5, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should
return 4.

I search (key = 1, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should
return nothing.

7 / 25

http://www.tutorialspoint.com/data_structures_algorithms/
http://www.tutorialspoint.com/data_structures_algorithms/

Linear search

Look at each item in the list, one by one, from first to last, until
the key is found.

I a sequential search is made over all items one by one

I every item is checked

I if a match is found, then index is returned

I otherwise the search continues until the end of the sequence

Example: search for the item with value 33

8 / 25

Linear search #2

Starting with the first item in the sequence:

Then the next:

9 / 25

Linear search #3

And so on and so on...

10 / 25

Linear search #4

Until an item with a matching value is found:

If no item has a matching value, the search continues until the end
of the sequence

11 / 25

Linear search: pseudocode

Algorithm 2 Linear search

1: procedure linear search(sequence, key)
2: for index = 0 to length(sequence) do
3: if sequence[index] == key then
4: return index
5: end if
6: end for
7: return None
8: end procedure

12 / 25

Linear search: Python implementation

1 def linear_search(sequence, key):

2 for index in range(0, len(sequence)):

3 if sequence[index] == key:

4 return index

5 return None

6

7 #import random

8 #L = random.sample(range(1,10**9),10**7)

9 #import time

10 #time_start = time.time()

11 #print(f"start: {time.asctime(time.localtime(time_start))}")

12 #index = linear_search(L, -1)

13 #print(index)

14 #time_finish = time.time()

15 #print(f"end: {time.asctime(time.localtime(time_finish))}")

16 #print("time taken (seconds):", time_finish-time_start)

13 / 25

Issues with linear search

Running time: If the sequence to be searched is very long, the
function will run for a long time.

Example: The list of all medical records in Quebec contains more
than 8 Million elements!

Much of computer science is about designing efficient algorithms,
that are able to yield a solution quickly even on large data sets.

See experimentation on Spyder (linear vs binary search.py)...

14 / 25

Binary search
A faster search algorithm (compared to linear)
I the sequence of items must be sorted
I works on the principle of ‘divide and conquer’

Analogy: Searching for a word (called the key) in an English
dictionary.
To look for a particular word:

I Compare the word in the middle of the dictionary to the key
I If they match, you’ve found the word! Stop.
I If the middle word is greater than the key, then the key is

searched for in the left half of the dictionary
I Otherwise, the key is searched for in the right half of the

dictionary
I This repeated halves the portion of the dictionary that needs

to be considered, until either the word is found, or we’ve
narrowed it down to a portion that contains zero word, and
we conclude that the key is not in the dictionary

15 / 25

Binary search #2

Example: let’s search for the value 31 in the following
sorted sequence

low high

First, we need to determine the middle item:

1 sequence = [10, 14, 19, 26, 27, 31, 33, 35, 42, 44]

2 low = 0

3 high = len(sequence) - 1

4 mid = low + (high-low)//2 # integer division

5 print (mid) # prints: 4

16 / 25

Binary search #3

Since index = 4 is the midpoint of the sequence

I we compare the value stored (27)

I against the value being searched (31)

The value at index 4 is 27, which is not a match

I the value being search is greater than 27

I since we have a sorted array, we know that the target value
can only be in the upper portion of the list

17 / 25

Binary search #4

low is changed to mid + 1

low high

Now, we find the new mid

1 low = mid + 1 # 5

2 mid = low + (high-low)//2 # integer division

3 print (mid) # prints: 7

18 / 25

Binary search #4

mid is 7 now

I compare the value stored at index 7 with our value being
searched (31)

low high

The value stored at location 7 is not a match

I 35 is greater than 31

I since it’s a sorted list, the value must be in the lower half

I set high to mid - 1

19 / 25

Binary search #5

Calculate the mid again

I mid is now equal to 5

low high

We compare the value stored at index 5 with our value being
searched (31)

I It is a match!

20 / 25

Binary search #6

Remember,

I binary search halves the searchable items

I improves upon linear search, but...

I requires a sorted collection

Useful links

bisect - Python module that implements binary search

I https://docs.python.org/2/library/bisect.html

Visualization of binary search

I http://interactivepython.org/runestone/static/

pythonds/SortSearch/TheBinarySearch.html

21 / 25

https://docs.python.org/2/library/bisect.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

Binary search: pseudocode

Algorithm 3 Binary search

1: procedure binary search(sequence, key)
2: low = 0, high =length(sequence)− 1
3: while low ≤ high do
4: mid = (low + high) / 2
5: if sequence[mid] > key then
6: high = mid - 1
7: else if sequence[mid] < key then
8: low = mid + 1
9: else

10: return mid
11: end if
12: end while
13: return ‘Not found’
14: end procedure

22 / 25

Binary search: Python implementation

1 def binary_search(sequence, key):

2 low = 0

3 high = len(sequence) - 1

4 while low <= high:

5 mid = (low + high)//2

6 if sequence[mid] > key:

7 high = mid - 1

8 elif sequence[mid] < key:

9 low = mid + 1

10 else:

11 return mid

12 return None

23 / 25

Linear vs Binary search efficiency

Try linear and binary search.py to see for yourself the difference in
running time for large lists!

For a list of 10 Million elements:

I linear search takes about 3 seconds

I binary search takes about 0.0002 seconds.

I binary search is more than 100,000 times faster than linear
search.

In general,

I the running time of linear search is proportional to the length
of the list being searched.

I the running time of linear search is proportional to the
logarithm of the length of the list being searched.

24 / 25

Binary search versus Linear search
1 import random

2 import time

3 from decimal import Decimal

4 from linear_search import linear_search

5 from binary_search import binary_search

6
7 # generate list of 10 Million elements,

8 # where each element is a random number between 0 and 1,000,000,000

9 print("Generating list...")

10 n = 10**7

11 L = random.sample(range(10**9), n)

12
13 L.append(111111111) # for testing purpose

14 L.append(555555555)

15 L.append(999999999)

16
17 print("Sorting list...")

18 L.sort()

19
20 while True:

21 key = int(input("Enter key for linear search: "))

22
23 # perform linear search

24 print("Starting linear search ...")

25 time_start = time.time()

26 index = linear_search(L, key)

27 time_finish = time.time()

28 linear_search_time = time_finish-time_start

29 print(f"Found at position: {index}; time taken:", \

30 "{:.2e}".format(linear_search_time), "seconds")

31
32 print("Starting binary search ...")

33 time_start = time.time()

34 index = binary_search(L, key)

35 time_finish = time.time()

36 binary_search_time = time_finish-time_start

37 print(f"Found at position: {index}; time taken:", \

38 "{:.2e}".format(binary_search_time), "seconds")

39
40 print(f"Binary_search is {linear_search_time/binary_search_time:.0f} times \

41 faster than linear_search")

25 / 25

