COMP 204

Operations on containers: enumerate, zip, comprehension

Mathieu Blanchette
based on material from Yue Li, Carlos Oliver Gonzalez and
Christopher Cameron

1/21

Quiz password

2/21

Side-track: a convenient way to format print (Misc.)
There exist many ways to format strings for printing (Section 7.1).
Formatted String Literals are very useful:

pi = 3.1415927

standard printing

print('pi is',pi)

printing using formatted strings

print(f'pi is {pi}")
print(f'pi is approx. {pi:.3f}') # to round to 3 decimals

10 grades = {'Sjoerd': 8, 'Jack': 74, 'Annie': 100}
11 for name, grade in grades.items():

12 # prints name over 10 characters, and grade over 5
13 print(f'{name:10} ==> {grade:5d}")

14

15 #output:

16 # pi is 3.1415927
17 # pi is 3.1415927
18 # pi is approx. 3.142

19 # Sjoerd = 8
20 # Jack - 74
21 # Annie - 100

3/21

https://docs.python.org/3/tutorial/inputoutput.html

Today: Convenient functions

Today, we introduce convenient Python techniques that simplify
our code and (sometimes) make it more efficient.

» enumerate: Loop through lists keeping track of index of items
» zip: Loop through multiple lists in parallel

» Comprehension: Construct new lists, sets, or dictionaries from
existing ones.

Important: What we can do with enumerate, zip, and
comprehensions can always be done with standard for loops. These
techniques just make it easier.

4/21

AW N =

w N =

Enumerate

A very common thing when dealing with lists is to iterate over
each index and doing some computation with each element.

L = some_list
for index in range(len(L)):
item = L[index]

do something with item and index

The enumerate function allows to do this more simply:

L = some_list
for index ,item in enumerate(L)
do something with item and index

Note: You can always use a loop over indices (as above) instead of
a loop with enumerate (as below). The second is just simpler and
more efficient.

5/21

Enumerate - examples

Goal: lterate through a list of names and print each name and the
index at which it is located.

1 names = ["Hillary” ,”Yang” ,”Bernard” ,” Drina”]

2

3 # Goal: Print each name and its index in the list
4

5 # using for loop over indices

6 for index in range(len(names)):

7 name = names[index]

8 print(name,” is at index” ,index)
9

10 # using enumerate
11 for index, name in enumerate(names):
12 print(name,”is at index” ,index)

6/21

Enumerate - examples

Goal: lterate through a list of names and print those whose age is
below 18.

names = [" Hillary” ,”Yang” ,” Bernard” ,” Drina”]
ages = [42,15,23,17] # the age of each person

Goal: Print the name of all people below 18 years old

using for loop over indices
for index in range(len(names)):
name = names[index]
if ages[index]<18:
print(name,” is a minor”)

using enumerate
for index, name in enumerate(names):
if ages[index]<18:
print(name,” is a minor”)

7/21

oG RE W N

AW N =

Zip

Often, we need to iterate over the elements of two lists in parallel
(as in our previous example).

A = some_list
B = some_other_list
for index in range(len(A)):
item_A = Alindex]
item_B = B[index]
do something with item_A and item_B

The zip function allows to do this more simply:

A = some_list
B = some_other_list
for item_A, item_B in zip(A,B):
do something with item_A and item_B

Notes:

> If list B is shorter than list A, we get an error.

» Zip also works with more than two lists.

8/21

© N oA W N

N R R e T e <
W N RO W©W®NO U AWN~R O

Zip - example
Example: Assemble list of full names from list of names and list of
surnames

names = ['John', 'Daenery','Jamie','Tyrion', 'Robert']
surnames = ['Snow', 'Targaryen','Lannister','Lannister',\
'"Baratheon ']

without the zip function, assembling full names
is a bit complicated
full_names = []
for index in range(0,len(names)):
full_names .append(names[index]+" "+surnames[index])

print(full_names)

or
full_names = []
for index, first in enumerate(names):
full_names .append(first + " ” 4 surnames[index])
print(full_names)

This is easier to do with the zip function

full_names = []
for first ,last in zip(names, surnames):
full_names .append(first + " 7 + last)

print(full _names)

9/21

N o oA W N e

Zip - example

Zip can operate on more than two lists.

Example: Print the season where each character dies

names = ['John', 'Daenery','Jamie','Tyrion', 'Robert']

surnames = ['Snow', 'Targaryen','Lannister','Lannister',\
'"Baratheon ']

deaths = [5, 8, 8, None, 1]

for first ,last ,death in zip(names, surnames, deaths):
print(first4+” "+last+” dies in season "+str(death))

10/21

2w N =

o o

w N =

List comprehension

Very often, we need to assemble a list of objects based on iterating
through and processing another list of objects.

L = some_list
result = []

for item in L:
new_object = some_expr(item)
result.append(new_object)
List comprehension allows doing this in a simple and efficient
manner.

L = some_list

result = [some_expr(item) for item in L]

11/21

List comprehension - example 1

1 # Given a list of length of genes (nucleotides),
2 # Produce list of length of proteins (amino acids)
3 length_of_genes=[160,393,3012,192,27]

with standard for loop

length_of_proteins =[]

for n in length_of_genes:
length_of_proteins.append(n/3)

®w ~N o g &

9
10 # using list comprehension
11 length_of_proteins=[n/3 for n in length_of_genes]

12/21

List comprehension - example 2

1 # Produce the list of the squares of integers from 0 to 100

2

3 # with a standard for loop

4 squares =[]

5 for n in range(101):

6 squares .append(nxn)

7

8 # with list comprehension

9 squares=[nxn for n in range(101)]

13/21

List comprehension - example 3

1 # Given a gene sequence (starting with a start codon),

2 # Produce the list of amino acids it corresponds to

3 # Assume that you have a function aminoacid() that returns
4 # the amino acids encoded by a certain codon

5 s="ATGCAGCATGAAGATGAA"

with a for loop:

aa_list =[]

for i in range(0,len(s),3):

10 aa_list.append(aminoacid(s[i:i+3]))

11

12 # with list comprehension:

13 aa_list= [aminoacid(s[i:i+3]) for i in range(0,len(s),3)]
14

15 # Note: to join all the aa in aa_list into a single string:
16 aa_string= "".join(aa_list)

6
7
8
9

14 /21

N oA W N =

w N =

List comprehension with conditional

Often, we want to make the inclusion in the result list conditional
on some property of the item.

L = some_list
result = []

for item in L:
if some_test(item):
new_object = some_expr(item)
result.append(new_object)
List comprehension allows doing this in a simple and efficient
manner.

L = some_list

result=[some_expr(item) for item in L if some_test(item) |

15/21

List comprehension with conditionals - example 1

1 # Goal: Produce a list of the squares of all odd numbers
between 0 and 100

2
3 # with for loop

4 squares_odd =[]

5 for n in range(101):

6 if n%2 — 1:

7 squares_odd .append(n*n)
8
9

with list comprehension
10 squares_of_odd = [ixi for i in range(101) if i%2==1]

16 /21

List comprehension with conditionals - example 2

1 # Goal: Produce a list of character names that contain
2 # the letter "N”

3

4 names = ['John','Daenery','Jamie','Tyrion', 'Robert']
5

6 # with for loop

7 names_with_N =[]

8 for name in names:

9 if "n” in name or "N” in name:

10 names_with_N.append (name)

11

12 # with list comprehension

13 names_with_.N = [name for name in names \

14 if "n” in name or "N" in name]

17/21

List comprehension with conditionals and zip

1 # Goal: Produce a list of the full names of all members
2 F# of the Lannister family

3

4 names = ['John', 'Daenery','Jamie','Tyrion', 'Robert']

5 surnames = ['Snow','Targaryen','Lannister','Lannister',\
6 '"Baratheon ']

7

8 # with for loop

9 lannisters =[]

10 for name,surname in zip(names,surnames):

11 if surname = 'Lannister':

12 lannisters .append(name)

13

14 # with list comprehension

15 lanisters = [namet” "+4surname for name,surname \

16 in zip(names,surnames) if name='Lannister']

18/21

© N oA W N R

e e N e <
N oA~ W N~ O

Set comprehension

We can use comprehension to build a set, in a manner similar to

list comprehension, but using {} instead of []

for which at
alive at the

Goal: Produce a Set of family surnames

least one family member is still

end of season 7

names = ['John', 'Daenery','Jamie','Tyrion', 'Robert']

','Lannister

surnames = ['Snow', 'Targaryen
'Baratheon ']

deaths = [5, 8, 8, None, 1]

with for loop
alive=set ([]) # empty set

for surname,death in zip(surnames,b deaths):

if death=—=None or death>=8:
alive .add(surname)

with list comprehension

alive = {surname for surname, death in zip(surnames, deaths) \
if death=—=None or death>=8 }

,'Lannister',\

0w N oA W N

Dictionary comprehension

We can use comprehension to build dictionaries.
With a standard for loop:

D = some_dictionnary
result = []

for k,v in D.items():
if some_test(k, v):
new_key = some_key_expr(k, v)
new_value = some_value_expr(k, v)
result[new,key]—new,value

With dictionnary comprehension:

D = some_dictionnary
result = {some_key_expr(k,v):some_value_expr(k,v) \
for k, v in D if some_test(k,v)}

20/21

1
2

© 0w N o oW

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Dictionary comprehension - Example 1

Goal: Given a dict. of keys=names,values=(height , weight)
Produce: a dict. of keys=names, values=BMI, which
includes only patients whose BMI is above 30

def BMI(h,w):
return w/(hx*h)

patient_dict={"John” :(1.6,70) ,” Daenerys” :(1.5,55) ,\
"Jamie” :(1.8,85) ," Tyrion” :(1.0,40) ,\
" Robert”:(1.8,140)}

with a for loop
high_.BMI={}
for name,(h,w) in patient_dict.items():
bmi=BMI (h ,w)
if bmi>30:
high_BMI [name]=bmi
print (high_.BMI)

with a dictionnary comprehension

high.BMI = {name:BMI(h, ,w) \
for name,(h,w) in patient_dict.items() \
if BMI(h,w)>30}

print (high.BMI)

21/21

