COMP 204

Exceptions (continued) and Sets

Mathieu Blanchette
based on material from Yue Li, Carlos Oliver Gonzalez and
Christopher Cameron

1/19

Traceback (exceptions can be caused by user input)

1 def BMI(weight, height):

2 print (" Computing BMI")

3 bmi = weight / (height % height)

4 print (" Done computing BMI")

5 return bmi

6

7 def get_-BMI_from_user():

8 w = int(input(” Please enter weight "))

9 h = int(input(”Please enter height "))

10 bmi = BMI(w,h)

11 return bmi

12

13 myBMI = get_BMI_from_user ()

14 # Output:

15 # Please enter weight 4

16 # Please enter height 0

17 # Computing BMI

18 # Traceback (most recent call last):

19 # File "excTraceBack.py”, line 13, in <module>
20 # myBMI = get_BMI_from_user ()

21 # File "excTraceBack.py”, line 10, in <module>
2 # bmi = BMI(w, h)

23 # File "excTraceBack.py”, line 3, in <module>
24 # return weight / (height * height)

25 # builtins.ZeroDivisionError: division by zero

2/19

When Exceptions is not handled

» If a function generates an Exception but does not handle it,
the Exception is send back to the calling block.

> If the calling block does not handle the exception, the
Exception is sent back to its calling block... etc.

» If no-one handles the Exception, the program terminates and
reports the Exception.

function function
get BMI_from_user) |[2—»| BMiwh) |€8l 5 bmi = weight/(height*height)
| 4

ZeroDivisionError exception

ZeroDivisionError exception

3/19

o

D ot W N

Handling Exceptions: try and except

A program can provide code to handle an Exception, so that it doesn't
crash when one happens.

» To be able to handle an exception generated by a piece of code,
that code needs to be within a try block.

» If the code inside the try block raises an exception, its execution
stops and the interpreter looks for code to handle the Exception.

» Code for handling Exception is in the except block.

try:
do something that may cause an Exzcepiion
some more code

except <SomeExceptionType>:
do something to handle the Exzception

rest of code

If L2 raises an Exception of type SomExceptionType, we jump to L4, without
executing L3

If L2 doesn’t cause an exception, L3 is executed, and L4 and 5 are'not executed.

4/19

BMI function handles the Exceptions it caused.
1 def BMI(weight, height):

2 print (" Computing BMI")

3 try:

4 bmi = weight / (height * height)

5 print (" Done computing BMI")

6 except ZeroDivisionError:

7 print (" There was a division by zero”)
8 bmi = —1 # a special code to indicate an error
9 return bmi

10

11 def get_BMI_from_user():

12 w = int(input(” Please enter weight "))

13 h = int(input(”Please enter height "))

14 bmi = BMI(w, h)

15 print (" Thank you!")

16 return bmi

17

18 myBMI = get_BMI_from_user ()

19 # Please enter weight 4

20 # Please enter height 0O

21 # Computing BMI

22 # There was a division by zero
23 # Thank you!

5/19

BMI function does not handle the Exceptions is causes.
get_BMI_from_user handles the Exception raised in BMI function.

1 def BMI(weight, height):

2 print (" Computing BMI")

3 bmi = weight / (height % height)

4 print (" Done computing BMI")

5 return bmi

6

7 def get_BMI_from_user():

8 w = int(input(” Please enter weight "))
9 h = int(input(”Please enter height "))
10 try:

1 bmi = BMI(w, h)

12 print (" Thank you!")

13 except:

14 print(” There was a problem computing BMI")
15 bmi=—1

16 return bmi

17

18 myBMI = get_BMI_from_user ()

19 # Please enter weight 4

20 # Please enter height 0

21 # Computing BMI

22 # There was a problem computing BMI

6/19

Raising our own Exceptions

> Exceptions come from raise statements.
» Syntax: raise [exception object]

» You can choose to raise any exception object. Obviously a
descriptive exception is preferred.

def my_divide(a, b):
if b == 0:
raise ZeroDivisionError
else:
return a / b

7/19

We can raise an informative exception

1 # This BMI function raises a ValueError Exception

2 # if the weight or height are <=0

3 def BMI(weight, height):

4 if weight <=0 or height <=0

5 raise ValueError(”"BMI handles only positive values”)
6 print (" Computing BMI")

7 return weight / (height * height)

8

o def get_BMI_from_user():

10 w = int(input(” Please enter weight "))

11 h = int(input(”Please enter height "))

12 bmi = BMI(w, h)

13 print (" Thank you!")

14 return bmi

15

16 myBMI = get_BMI_from_user ()

17

18 # Traceback (most recent call last):

19 # File "excTraceBack.py”, line 16, in <module>
20 # myFunction ()

21 # File "excTraceBack.py”, line 12, in <module>
2 # r = ratio(5,0)

23 # File "excTraceBack.py”, line 5, in <module>
24 # raise ValueError("BMI handles only positive values”)

25 # builtins.ValueError: BMI handles only positive values 6/19

Handling exceptions raised from one function in another

1 # This BMI function raises a ValueError Exception
2 # if the weight or height are <=0
3 def BMI(weight, height):

4 if weight <=0 or height <=0

5 raise ValueError(”"BMI handles only positive values”)
6 print (" Computing BMI")

7 return weight / (height * height)

8

9 def get_-BMI_from_user():

10 while True: # keep asking until valid entry is obtained
11 w = int(input(”Please enter weight "))

12 h = int(input(”Please enter height "))

13 try:

14 bmi = BMI(w, h)

15 print (" Thank you!")

16 break # stop asking, break out of the loop

17 except ValueError:

18 print(”" Error calculating BMI")

19

20 return bmi

21

22 myBMI = get_BMI_from_user ()

9/19

How to handle invalid user inputs by try ... except

> What if user enters a string that cannot be converted to an
integer? (e.g. " Twelve")

» This would cause a ValueError Exception within the int()
function.

» To be more robust, our program should catch that Exception
and deal with it properly.

10/19

© o N oA W N R

11
12
13
14
15
16
17
18
19
20
21
22

def BMI(weight, height):

if weight <=0 or height <=0

raise ValueError(”"BMI handles only positive values”)
print (" Computing BMI")
return weight / (height % height)

def get_BMI_from_user():

while True: # keep asking until valid entry is obtained
try:
w = int(input(” Please enter weight "))
h = int(input(” Please enter height "))
except ValueError: # exception raised from int()
print (" Please only enter integers”)
else:
try:
bmi = BMI(w, h)
print (" Thank you!")
break +# stop asking, break out of the loop
except ValueError: # excepion raised from BMI()
print (" Error calculating BMI")
return bmi

myBMI = get_BMI_from_user ()

Note: Use else block after a try/catch executes only if the try

does not cause an exception.
11/19

v

Okay one last thing: assert

The assert statement is a shortcut to raising exceptions.

Sometimes you don't want to execute the rest of your code
unless some condition is true.

def divide(a, b):
assert b !'= 0
return a / b

If the assert evaluates to False then an AssertionError
exception is raised.

Pro: quick and easy to write
Con: exception error may not be so informative.

Used mostly for debugging and internal checks than for user
friendliness.

12/19

Sets

October 18, 2019

13/19

Sets: the unordered container for unique things

A set is a compound type (like Lists, Tuples, Strings, Dictionaries)
» Stores an unordered set of objects (no indexing possible)
» No duplicates

» Can contain only immutable objects

A Set offers a limited version of the functionality of a List, which
enables it to perform its operations faster.

14/19

Sets: the unordered container for unique things

» Syntax: myset = {1, 2, 3} (careful, myset = {} isan
empty dictionary)

> \We can create a set from a list: myset = set([1, 2, 3])
or myset = set([])

» \We can create a set from a string:

myset = set("ACGAA") ## myset <s {4, C, GF

» Sets never contain duplicates. Python checks this using the
== operator.

» To add an element to a set, use the add function:

>>> myset = set([1, 1, 2, 3])

set([1, 2 , 3]) #only keep unique values
>>> myset.add(4)

set([1, 2, 3, 4])

>>> myset.add (1)

set([1, 2, 3, 4])

15/19

Useful set methods and operations

Click here for a full list of set functionality.

» Number of elements: len(myset) ## 4

» Membership testing: if 5 in myset: ## False
P [terating through set: for element in myset:
>

Set intersection (elements common to A and B)

>>> A = {nau’ "b", "C"}

2 >>> B = {"all, l|b", IldH}

3 >>> A & B # equivalent to: A.intersection(B)
4 set(["a", “b”])

[

16/19

https://docs.python.org/3/library/stdtypes.html#set

Useful set methods and operations

Set union (Elements found in A or B)

>>> A | B # equivalent to: A.union(B)
Set([”a”, IIbll, "C“’ lldll])

Set difference (elements in A that are not in B)

>>> A - B
set(["c"]) #same as: A.difference(B)

These can be applied to multiple sets

>>> C — {nan’ "C", "d", neu}
>>> A & B & C

set(["a"]) #elements common to A and all others

17/19

Practice problems

. Write a program that counts the number of unique letters in a
given string. E.g. "bob" should give 2.

. Write a program that checks whether a list of strings contains
any duplicates. ['att', 'gga', 'att'] should return

True

18/19

10

11

12

13

14

15

16

17

18

19

1. long way
uniques = []
for ¢ in "bob":
if ¢ not in uniques:
uniques.append(c)
len(uniques)
#1. short way
len(set("bob"))
#2. long way
uniques = []
mylist = ['att', 'gga', 'att'l]
for item in mylist:
if item not in uniques:
uniques.append('att')
if len(uniques) != len(mylist):
print ("found duplicates")
#3. short way
if len(set(mylist)) != len(mylist):
print ("found duplicates") 19/19

