COMP 204

Exceptions

Mathieu Blanchette
based on material from Yue Li, Carlos Oliver Gonzalez and
Christopher Cameron
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Bugs: when things break

» You will probably have noticed by now that things don't
always go as expected when you try to run your code.
» \We call this kind of occurrence a “bug”

» One of the first uses of the term was in 1946 when Grace

Hopper's software wasn’'t working due to an actual moth
being stuck in her computer.
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Types of bugs

There are three major ways your code can go wrong.
1. Syntax errors
2. Exceptions (runtime)

3. Logical (semantic) errors
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Syntax Errors: “Furiously sleep ideas green colorless.” ?

» When you get a syntax error it means you violated a writing
rule and the interpreter doesn’'t know how to run your code.

» Your program will crash without running any other commands
and produce the message SyntaxError with the offending
line and a ~ pointing to the part in the line with the error.

» Game: spot the syntax errors!

print ("hello)
x =0
while True
x =x +1
mylist = ["bob" 2, False]
if x < 1:
print("x less than 1")

*Noam Chomsky (1955)
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Exceptions: “Colorless green ideas sleep furiously”>

» If you follow all the syntax rules, the interpreter will try to
execute your code.

» However, the interpreter may encounter into code it is unable
to execute, so it raises an Exception

» The program has to deal with this Exception if it is not
handled, execution aborts.

» Note: unlike with syntax errors, all the instructions before the
interpreter reaches an exception do execute.

» Here is a list of all the built-in exceptions and some info on
them.

*Noam Chomsky (1955)
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Exceptions: ZeroDivisionError

» There are many types of exceptions, and eventually you will
also be able to define your own exceptions.

» |'ll show you some examples of common Exceptions.

» ZeroDivisionError

X =6
y=x [/ (x - 6) #syntax s OK, executing fails

File "test.py", line 2, in <module>
y=x/ (x - 6)

ZeroDivisionError: integer division or modulo by
< Z€ero
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Exceptions: NameError

» Raised when the interpreter cannot find a name-binding you
are requesting.

» Usually happens when you forget to bind a name, or you are
trying to access a name outside your namespace.

def foo():
x = "hello"
foo()
print (x)
Traceback (most recent call last):
File "exceptions.py", line 4, in <module>
print (x)
NameError: name 'x' 1s not defined
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Exceptions: IndexError

» Raised when the interpreter tries to access a list index that
does not exist

mylist = ["bob", "alice", "nick"]
print (mylist[len(mylist)])

Traceback (most recent call last):
File "exceptions.py", line 2, in <module>
print (mylist[len(mylist)])
IndexError: list index out of range
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Exceptions: TypeError

» Raised when the interpreter tries to do an operation on a
non-compatible type.

>>> mylist = ["bob", "alice", "nick"]
>>> mylist + "mary"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to
— list

# this is okay
>>> mylist * 2
["bOb”, "alice", ”IliCk”, "bOb”, "alice", "IliCk"]
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Traceback

What happens when an Exception is raised? The program’s normal
control flow is altered.

» The execution of the block of code stops

» Python looks for code to handle the Exception (try/except
block; see later)

» If it doesn't find that code, it stops the program and produces
a traceback message that tells you where the error was raised,
which function it sits in, what code called that function, etc.

» See example on next slide...
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Traceback

» When an exception is raised, you get a traceback message
which tells you where the error was raised.

def foo():
return 5 / O

def fee():
return foo()

fee ()

Traceback (most recent call last):

File "exception.py", line 5, in <module>
fee()

File "exception.py", line 4, in fee
return foo()

File "exception.py", line 2, in foo
return 5 / O

ZeroDivisionError: division by zero
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Traceback (exceptions can be caused by user input)

1 def BMI(weight, height):

2 print (" Computing BMI")

3 bmi = weight / (height x* height)

4 print ("Done computing BMI")

5 return bmi

6

7 def get_BMI_from_user():

8 w = int(input(” Please enter weight "))

9 h = int(input(” Please enter height "))

10 bmi = BMI(w, h)

11 return bmi

12

13 myBMI = get_BMI_from_user ()

14 # Output:

15 # Please enter weight 4

16 ## Please enter height O

17 # Computing BMI

18 # Traceback (most recent call last):

19 # File "excTraceBack.py”, line 13, in <module>
20 # myBMI = get _BMI_from _user ()

21 # File "excTraceBack.py”, line 10, in <module>
22 # bmi = BMI(w, h)

23 # File "excTraceBack.py”, line 3, in <module>
24 F# return weight / (height % height)

25 # builtins . ZeroDivisionError: division by zero
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When Exceptions is not handled

» |f a function generates an Exception but does not handle it,
the Exception is send back to the calling block.

» If the calling block does not handle the exception, the
Exception is sent back to its calling block... etc.

» If no-one handles the Exception, the program terminates and
reports the Exception.

get_ BMI_from_user()

A

function function
cal ol emiwh) €@ 5 pmi = weight/(height*height)
| A

ZeroDivisionError exception

ZeroDivisionError exception
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Handling Exceptions: try and except

A program can provide code to handle an Exception, so that it doesn't
crash when one happens.

» To be able to handle an exception generated by a piece of code,
that code needs to be within a try block.

» If the code inside the try block raises an exception, its execution
stops and the interpreter looks for code to handle the Exception.

» Code for handling Exception is in the except block.

try:
# do something that may cause an Exception
# some more code

except <SomeExceptionType>:
# do something to handle the Exception

# rest of code

If L2 raises an Exception of type SomExceptionType, we jump to L4, without
executing L3

If L2 doesn’t cause an exception, L3 is executed, and L4 and 5 are not executed. 1431
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def BMI(weight, height):

def

print (" Computing BMI")
try:

bmi = weight / (height % height)

print (" Done computing BMI")
except ZeroDivisionError:
print (" There was a division

bmi = —1 # a special code to

return bmi

get_BMI_from_user():

try:
w = int(input(” Please enter weight
h = int(input(” Please enter height
except:

print(”"invalid inputs”)
return 0O

bmi = BMI(w, h)

print (" Thank you!")

return bmi

22 myBMI = get_BMI_from_user ()

23

24 # Qutput:

25 # Please enter weight 4

26 # Please enter height 0

27 # Computing BMI

28 ## There was a division by zero

by zero")
indicate an error

))
))
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Where do exceptions come from? We raise them

» Exceptions come from raise statements.

» Syntax: raise [exception object]

» You can choose to raise any exception object. Obviously a
descriptive exception is preferred.

» You can even define your own exceptions (out of scope).

def my_divide(a, b):
if b == O:
raise ZeroDivisionError
else:
return a / b
def my_divide(a, b):
if b == 0:
raise TypeError # we can raise any exception
— we want
else:
return a / b
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We can raise an informative exception

1 # This BMI function raises a ValueError Exception

2 # if the weight or height are <=0

3 def BMI(weight, height):

4 if weight <=0 or height <=0

5 raise ValueError("BMI handles only positive values”)
6 print (" Computing BMI")

7 return weight / (height * height)

8
9

def get_BMI_from_user():

10 w = int(input(” Please enter weight "))

11 h = int(input(”Please enter height "))

12 bmi = BMI(w, h)

13 print (" Thank you!")

14 return bmi

15

16 myBMI = get_BMI_from_user ()

17 .

18 # Traceback (most recent call last):

19 # File "excTraceBack.py”, line 16, in <module>
20 # myFunction ()

21 # File "excTraceBack.py”, line 12, in <module>
22 # r = ratio(5,0)

23 # File "excTraceBack.py”, line 5, in <module>
24 F raise ValueError("BMI handles only positive values™)

25 # builtins . ValueError: BMI handles only positive values 17 /31



Handling exceptions raised from one function in another

1 # This BMI function raises a ValueError Exception
2 # if the weight or height are <= 0
3 def BMI(weight, height):

© 00 N O o1 b

10
11
12
13
14
15
16
17
18
19
20
21

def

if weight <=0 or height <= 0 :

raise ValueError("BMI handles only
print (" Computing BMI")
return weight / (height % height)

get_BMI_from_user () :
while True: # keep asking until valid

w = int(input(” Please enter weight
h = int(input(” Please enter height
try:

bmi = BMI(w, h)
print (" Thank you!")

positive values”)

entry is obtained

"))
"))

break # stop asking, break out of the loop

except ValueError:
print (" Error calculating BMI")

return bmi

22 myBMI = get_BMI_from_user ()
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How to handle invalid user inputs by try ... except

» \What if user enters a string that cannot be converted to an
integer? (e.g. " Twelve")

» This would cause a ValueError Exception within the int()
function.

» To be more robust, our program should catch that Exception
and deal with it properly.

19 /31



© 0 N & 61 b W N =

N NN R R e e e e e e
N B O O 00 N O 010 B W N R O

23

Catch exceptions from int() and continue

def BMI(weight, height):

def

if weight <=0 or height <= 0

raise ValueError("BMI handles only positive values”)
print (" Computing BMI")
return weight / (height * height)

get_BMI_from_user () :
while True: # keep asking until valid entry is obtained
try:
w = int(input(”Please enter weight "))
h = int(input(”Please enter height "))
except ValueError: # exception raised from int()
print (" Please only enter integers”)
continue # don't calculate BMI, re—iterate
try:
bmi = BMI(w, h)
print (" Thank you!")
break # stop asking, break out of the loop
except ValueError: # excepion raised from BMI()
print (" Error calculating BMI")

return bmi

24 myBMI = get_BMI_from_user ()
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try, except, else

1 def BMI(weight, height):

2 if weight <=0 or height <= 0

3 raise ValueError("BMI handles only positive values”)
4 print (" Computing BMI")

5 return weight / (height % height)

6

7 def get_BMI_from_user():

8 while True: # keep asking until valid entry is obtained
9 try:

10 w = int(input(”Please enter weight "))

11 h = int(input(” Please enter height "))

12 except ValueError: # exception raised from int()

13 print (" Please only enter integers”)

14 else:

15 try:

16 bmi = BMI(w, h)

17 print (" Thank you!")

18 break # stop asking, break out of the loop
19 except ValueError: # excepion raised from BMI()
20 print (" Error calculating BMI")

21 return bmi

22

23 myBMI = get_BMI_from_user ()
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Chained except

» Use except to catch different exceptions

» Use else block after a try/catch executes only if the try
does not cause an exception.

def my_divide(a,b):
if b = 0:
raise ZeroDivisionError
else:
return a / b
while True:
try:
a=int(input(” Give me a numerator: "))
b=int(input(” Give me a denomenator: "))
result=my_divide(a,b)
except ValueError:
print (" Not a number”)
except ZeroDivisionError:
print("Can't divide by zero”
else:
print(f"{a} divided by {b} is {result}")
break
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Side-track: a convenient way to format print (Misc.)

There exist many ways to format strings for printing (Section 7.1).
Formatted String Literals are very useful:

1 import math
2 # standard printing
3 print('pi is',math.pi)

print(f'pi is {math.pi}")
print(f'pi is approx. {math.pi:.3f}') # to round to 3
decimals

4
5 # printing using formatted strings
6
7

8

9 grades = {'Sjoerd': 8, 'Jack': 74, 'Annie': 100}

10 for name, grade in grades.items():

11 # prints name over 10 characters, and grade over 5
12 print (f'{name:10} ==> {grade:5d}")

13

14 #output:

15 # pi is 3.141592653589793
16 # pi is 3.141592653589793
17 # pi is approx. 3.142

18 # Sjoerd —> 8
19 # Jack — 74
20 # Annie — 100
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And finally, the finally statement

» The finally block always executes after the

try-except-else blocks.
» Useful when:

1. The except or else block itself throws an exception.

2. The try trows an unexpected exception.

3. A control flow statement in the except skips the rest.
» Why is it useful? Often there are statements you need to

perform before your program closes. If there is an exception
you forgot to handle, the finally will still execute.
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finally example

while True:
try:

a

b

int (input ("Give me a numerator: "))

int (input ("Give me a denominator:
"))

result=my_divide(a,b)
except ValueError:

print ("Not a number! Try again.")
except ZeroDivisionError:

print("Can't divide by zero")
else:

print(f£"{a} divided by {b} is {result}")
finally:

print("hello from finally!")
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Okay one last thing: assert

The assert statement is a shortcut to raising exceptions.

Sometimes you don't want to execute the rest of your code
unless some condition is true.

def divide(a, b):
assert b '= 0
return a / b

If the assert evaluates to False then an AssertionError
exception is raised.

Pro: quick and easy to write
Con: exception error may not be so informative.

Used mostly for debugging and internal checks than for user
friendliness.
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Misc: zip function

Often, we need to iterate over the elements of two lists in parallel

#unhandled exception
def list_divide(numerators, denominators):
ratio = []
for a, b in zip(numerators, denominators):
ratio.append(my_divide(a, b))
return ratio
list_divide([1, 2, 1, 0], [1, 1, 0, 2])

Life Hack 1

The zip(*args) function lets you iterate over lists simul-

taneously. Yields tuple at each iteration with (a[/], b[i]).
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zip example with try, except, continue

def my_divide(a, b):

def

if b == 0:
raise ZeroDivisionError
else:
return a/b
list_divide (numerators, denomenators):
ratio=[]
for a,b in zip(numerators, denomenators):
print (f"dividing {a} by {b}")
try:
ratio.append(my_divide(a,b))
except ZeroDivisionError:
print("division by zero, skipping")
continue
return ratio

list_divide([1,2,1,0], [1,1,0,2])
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More examples on zip function (misc)
Example: Assemble list of full names from list of first names and
list of last names

1 firstNames = [ 'Amol', 'Ahmed', 'Ayana']
> lastNames = ['Prakash', 'EIKhoury', '"Jones']

3 # without the zip function, assembling full names

4 # is a bit complicated

5 fullNames = []

6 for index in range(0,len(firstNames)):

7 fullNames.append(firstNames|[index]+" "+lastNames[index])
g print(fullNames)

9 # or

10 fullNames = []

11 for index, first in enumerate(firstNames):

12 fullNames.append(first + " " + lastNames[index])

13 print(fullNames)
14 # This is easier to do with the zip function

15 fullNames = []

16 for first ,last in zip(firstNames, lastNames):

17 fullNames.append(first + " " 4+ last)

18 print(fullNames)

19 #output:

20 # ['"Amol Prakash', 'Ahmed ElIKhoury', 'Ayana Jones']

29 /31



Types of bugs

1. Syntax errors
2. Exceptions (runtime)

3. Logical errors
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Last type of bug: logical errors

» When according to Python your code is fine and runs without
errors but it does not do what you intended.

» Example: spot the logical error

[t

def my_max(mylist):

2 for bla in mylist:

3 my_max = 0O

4 if bla > my_max:
5 my_max = bla
6 return my_max

» There's nothing to do to avoid logical errors other than
testing your code thoroughly and having a good algorithm.

» Logical errors are often silent but deadly.
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