COMP 204

Exceptions

Mathieu Blanchette
based on material from Yue Li, Carlos Oliver Gonzalez and
Christopher Cameron

1/31

Bugs: when things break

» You will probably have noticed by now that things don't
always go as expected when you try to run your code.
» \We call this kind of occurrence a “bug”

» One of the first uses of the term was in 1946 when Grace

Hopper's software wasn’'t working due to an actual moth
being stuck in her computer.

4/q

o st O Atnn M ; {.’-}_7 9052 g7 ors
J Voo < sh}}«i = aqodan b L 9.087 §YL 095 <ovarh
e (0390 Me ~ma | EIESERYC d) 4.4)5 $ 7250550

833 PRO.> 2. 13p §20915.
Cons od 2.03007655

(Rl sel gty ey '/“MW“JST"JM l ‘

1ex

= i G_ 3 t‘)"‘"
1/a0)Iﬂl’+‘ C'Ds tne :ﬁxpj (Slhe r_"\cxl;)
1525 _‘:—,_'.‘- || +

1Say

rg"-’:}o

1Jue

'Wikipedia

2 /31

Types of bugs

There are three major ways your code can go wrong.
1. Syntax errors
2. Exceptions (runtime)

3. Logical (semantic) errors

3/31

Syntax Errors: “Furiously sleep ideas green colorless.” ?

» When you get a syntax error it means you violated a writing
rule and the interpreter doesn’'t know how to run your code.

» Your program will crash without running any other commands
and produce the message SyntaxError with the offending
line and a ~ pointing to the part in the line with the error.

» Game: spot the syntax errors!

print ("hello)
x =0
while True
x =x +1
mylist = ["bob" 2, False]
if x < 1:
print("x less than 1")

*Noam Chomsky (1955)
4/31

Exceptions: “Colorless green ideas sleep furiously”>

» If you follow all the syntax rules, the interpreter will try to
execute your code.

» However, the interpreter may encounter into code it is unable
to execute, so it raises an Exception

» The program has to deal with this Exception if it is not
handled, execution aborts.

» Note: unlike with syntax errors, all the instructions before the
interpreter reaches an exception do execute.

» Here is a list of all the built-in exceptions and some info on
them.

*Noam Chomsky (1955)
5 /31

4

ot

(o)

Exceptions: ZeroDivisionError

» There are many types of exceptions, and eventually you will
also be able to define your own exceptions.

» |'ll show you some examples of common Exceptions.

» ZeroDivisionError

X =6
y=x [/ (x - 6) #syntax s OK, executing fails

File "test.py", line 2, in <module>
y=x/ (x - 6)

ZeroDivisionError: integer division or modulo by
< Z€ero

6/ 31

Exceptions: NameError

» Raised when the interpreter cannot find a name-binding you
are requesting.

» Usually happens when you forget to bind a name, or you are
trying to access a name outside your namespace.

def foo():
x = "hello"
foo()
print (x)
Traceback (most recent call last):
File "exceptions.py", line 4, in <module>
print (x)
NameError: name 'x' 1s not defined

7/31

Exceptions: IndexError

» Raised when the interpreter tries to access a list index that
does not exist

mylist = ["bob", "alice", "nick"]
print (mylist[len(mylist)])

Traceback (most recent call last):
File "exceptions.py", line 2, in <module>
print (mylist[len(mylist)])
IndexError: list index out of range

8 /31

10

Exceptions: TypeError

» Raised when the interpreter tries to do an operation on a
non-compatible type.

>>> mylist = ["bob", "alice", "nick"]
>>> mylist + "mary"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to
— list

this is okay
>>> mylist * 2
["bOb”, "alice", ”IliCk”, "bOb”, "alice", "IliCk"]

9/31

Traceback

What happens when an Exception is raised? The program’s normal
control flow is altered.

» The execution of the block of code stops

» Python looks for code to handle the Exception (try/except
block; see later)

» If it doesn't find that code, it stops the program and produces
a traceback message that tells you where the error was raised,
which function it sits in, what code called that function, etc.

» See example on next slide...

10/31

10

11

12

13

14

Traceback

» When an exception is raised, you get a traceback message
which tells you where the error was raised.

def foo():
return 5 / O

def fee():
return foo()

fee ()

Traceback (most recent call last):

File "exception.py", line 5, in <module>
fee()

File "exception.py", line 4, in fee
return foo()

File "exception.py", line 2, in foo
return 5 / O

ZeroDivisionError: division by zero

11 /31

Traceback (exceptions can be caused by user input)

1 def BMI(weight, height):

2 print (" Computing BMI")

3 bmi = weight / (height x* height)

4 print ("Done computing BMI")

5 return bmi

6

7 def get_BMI_from_user():

8 w = int(input(” Please enter weight "))

9 h = int(input(” Please enter height "))

10 bmi = BMI(w, h)

11 return bmi

12

13 myBMI = get_BMI_from_user ()

14 # Output:

15 # Please enter weight 4

16 ## Please enter height O

17 # Computing BMI

18 # Traceback (most recent call last):

19 # File "excTraceBack.py”, line 13, in <module>
20 # myBMI = get _BMI_from _user ()

21 # File "excTraceBack.py”, line 10, in <module>
22 # bmi = BMI(w, h)

23 # File "excTraceBack.py”, line 3, in <module>
24 F# return weight / (height % height)

25 # builtins . ZeroDivisionError: division by zero

12/31

When Exceptions is not handled

» |f a function generates an Exception but does not handle it,
the Exception is send back to the calling block.

» If the calling block does not handle the exception, the
Exception is sent back to its calling block... etc.

» If no-one handles the Exception, the program terminates and
reports the Exception.

get_ BMI_from_user()

A

function function
cal ol emiwh) €@ 5 pmi = weight/(height*height)
| A

ZeroDivisionError exception

ZeroDivisionError exception

13 /31

S Ot W

Handling Exceptions: try and except

A program can provide code to handle an Exception, so that it doesn't
crash when one happens.

» To be able to handle an exception generated by a piece of code,
that code needs to be within a try block.

» If the code inside the try block raises an exception, its execution
stops and the interpreter looks for code to handle the Exception.

» Code for handling Exception is in the except block.

try:
do something that may cause an Exception
some more code

except <SomeExceptionType>:
do something to handle the Exception

rest of code

If L2 raises an Exception of type SomExceptionType, we jump to L4, without
executing L3

If L2 doesn’t cause an exception, L3 is executed, and L4 and 5 are not executed. 1431

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

def BMI(weight, height):

def

print (" Computing BMI")
try:

bmi = weight / (height % height)

print (" Done computing BMI")
except ZeroDivisionError:
print (" There was a division

bmi = —1 # a special code to

return bmi

get_BMI_from_user():

try:
w = int(input(” Please enter weight
h = int(input(” Please enter height
except:

print(”"invalid inputs”)
return 0O

bmi = BMI(w, h)

print (" Thank you!")

return bmi

22 myBMI = get_BMI_from_user ()

23

24 # Qutput:

25 # Please enter weight 4

26 # Please enter height 0

27 # Computing BMI

28 ## There was a division by zero

by zero")
indicate an error

))
))

15/31

10

Where do exceptions come from? We raise them

» Exceptions come from raise statements.

» Syntax: raise [exception object]

» You can choose to raise any exception object. Obviously a
descriptive exception is preferred.

» You can even define your own exceptions (out of scope).

def my_divide(a, b):
if b == O:
raise ZeroDivisionError
else:
return a / b
def my_divide(a, b):
if b == 0:
raise TypeError # we can raise any exception
— we want
else:
return a / b

16 /31

We can raise an informative exception

1 # This BMI function raises a ValueError Exception

2 # if the weight or height are <=0

3 def BMI(weight, height):

4 if weight <=0 or height <=0

5 raise ValueError("BMI handles only positive values”)
6 print (" Computing BMI")

7 return weight / (height * height)

8
9

def get_BMI_from_user():

10 w = int(input(” Please enter weight "))

11 h = int(input(”Please enter height "))

12 bmi = BMI(w, h)

13 print (" Thank you!")

14 return bmi

15

16 myBMI = get_BMI_from_user ()

17 .

18 # Traceback (most recent call last):

19 # File "excTraceBack.py”, line 16, in <module>
20 # myFunction ()

21 # File "excTraceBack.py”, line 12, in <module>
22 # r = ratio(5,0)

23 # File "excTraceBack.py”, line 5, in <module>
24 F raise ValueError("BMI handles only positive values™)

25 # builtins . ValueError: BMI handles only positive values 17 /31

Handling exceptions raised from one function in another

1 # This BMI function raises a ValueError Exception
2 # if the weight or height are <= 0
3 def BMI(weight, height):

© 00 N O o1 b

10
11
12
13
14
15
16
17
18
19
20
21

def

if weight <=0 or height <= 0 :

raise ValueError("BMI handles only
print (" Computing BMI")
return weight / (height % height)

get_BMI_from_user () :
while True: # keep asking until valid

w = int(input(” Please enter weight
h = int(input(” Please enter height
try:

bmi = BMI(w, h)
print (" Thank you!")

positive values”)

entry is obtained

"))
"))

break # stop asking, break out of the loop

except ValueError:
print (" Error calculating BMI")

return bmi

22 myBMI = get_BMI_from_user ()

18 /31

How to handle invalid user inputs by try ... except

» \What if user enters a string that cannot be converted to an
integer? (e.g. " Twelve")

» This would cause a ValueError Exception within the int()
function.

» To be more robust, our program should catch that Exception
and deal with it properly.

19 /31

© 0 N & 61 b W N =

N NN R R e e e e e e
N B O O 00 N O 010 B W N R O

23

Catch exceptions from int() and continue

def BMI(weight, height):

def

if weight <=0 or height <= 0

raise ValueError("BMI handles only positive values”)
print (" Computing BMI")
return weight / (height * height)

get_BMI_from_user () :
while True: # keep asking until valid entry is obtained
try:
w = int(input(”Please enter weight "))
h = int(input(”Please enter height "))
except ValueError: # exception raised from int()
print (" Please only enter integers”)
continue # don't calculate BMI, re—iterate
try:
bmi = BMI(w, h)
print (" Thank you!")
break # stop asking, break out of the loop
except ValueError: # excepion raised from BMI()
print (" Error calculating BMI")

return bmi

24 myBMI = get_BMI_from_user ()

20 /31

try, except, else

1 def BMI(weight, height):

2 if weight <=0 or height <= 0

3 raise ValueError("BMI handles only positive values”)
4 print (" Computing BMI")

5 return weight / (height % height)

6

7 def get_BMI_from_user():

8 while True: # keep asking until valid entry is obtained
9 try:

10 w = int(input(”Please enter weight "))

11 h = int(input(” Please enter height "))

12 except ValueError: # exception raised from int()

13 print (" Please only enter integers”)

14 else:

15 try:

16 bmi = BMI(w, h)

17 print (" Thank you!")

18 break # stop asking, break out of the loop
19 except ValueError: # excepion raised from BMI()
20 print (" Error calculating BMI")

21 return bmi

22

23 myBMI = get_BMI_from_user ()

21/31

© 0O ~N O 61 b W N R

L S o e O
~N OO o0 A WN = O

Chained except

» Use except to catch different exceptions

» Use else block after a try/catch executes only if the try
does not cause an exception.

def my_divide(a,b):
if b = 0:
raise ZeroDivisionError
else:
return a / b
while True:
try:
a=int(input(” Give me a numerator: "))
b=int(input(” Give me a denomenator: "))
result=my_divide(a,b)
except ValueError:
print (" Not a number”)
except ZeroDivisionError:
print("Can't divide by zero”
else:
print(f"{a} divided by {b} is {result}")
break

22 /31

Side-track: a convenient way to format print (Misc.)

There exist many ways to format strings for printing (Section 7.1).
Formatted String Literals are very useful:

1 import math
2 # standard printing
3 print('pi is',math.pi)

print(f'pi is {math.pi}")
print(f'pi is approx. {math.pi:.3f}') # to round to 3
decimals

4
5 # printing using formatted strings
6
7

8

9 grades = {'Sjoerd': 8, 'Jack': 74, 'Annie': 100}

10 for name, grade in grades.items():

11 # prints name over 10 characters, and grade over 5
12 print (f'{name:10} ==> {grade:5d}")

13

14 #output:

15 # pi is 3.141592653589793
16 # pi is 3.141592653589793
17 # pi is approx. 3.142

18 # Sjoerd —> 8
19 # Jack — 74
20 # Annie — 100

23/31

And finally, the finally statement

» The finally block always executes after the

try-except-else blocks.
» Useful when:

1. The except or else block itself throws an exception.

2. The try trows an unexpected exception.

3. A control flow statement in the except skips the rest.
» Why is it useful? Often there are statements you need to

perform before your program closes. If there is an exception
you forgot to handle, the finally will still execute.

24 /31

10

11

12

13

14

finally example

while True:
try:

a

b

int (input ("Give me a numerator: "))

int (input ("Give me a denominator:
"))

result=my_divide(a,b)
except ValueError:

print ("Not a number! Try again.")
except ZeroDivisionError:

print("Can't divide by zero")
else:

print(f£"{a} divided by {b} is {result}")
finally:

print("hello from finally!")

25 /31

\ 4

Okay one last thing: assert

The assert statement is a shortcut to raising exceptions.

Sometimes you don't want to execute the rest of your code
unless some condition is true.

def divide(a, b):
assert b '= 0
return a / b

If the assert evaluates to False then an AssertionError
exception is raised.

Pro: quick and easy to write
Con: exception error may not be so informative.

Used mostly for debugging and internal checks than for user
friendliness.

26 /31

Misc: zip function

Often, we need to iterate over the elements of two lists in parallel

#unhandled exception
def list_divide(numerators, denominators):
ratio = []
for a, b in zip(numerators, denominators):
ratio.append(my_divide(a, b))
return ratio
list_divide([1, 2, 1, 0], [1, 1, 0, 2])

Life Hack 1

The zip(*args) function lets you iterate over lists simul-

taneously. Yields tuple at each iteration with (a[/], b[i]).

27 /31

10

11

12

13

14

15

16

17

zip example with try, except, continue

def my_divide(a, b):

def

if b == 0:
raise ZeroDivisionError
else:
return a/b
list_divide (numerators, denomenators):
ratio=[]
for a,b in zip(numerators, denomenators):
print (f"dividing {a} by {b}")
try:
ratio.append(my_divide(a,b))
except ZeroDivisionError:
print("division by zero, skipping")
continue
return ratio

list_divide([1,2,1,0], [1,1,0,2])

28 /31

More examples on zip function (misc)
Example: Assemble list of full names from list of first names and
list of last names

1 firstNames = ['Amol', 'Ahmed', 'Ayana']
> lastNames = ['Prakash', 'EIKhoury', '"Jones']

3 # without the zip function, assembling full names

4 # is a bit complicated

5 fullNames = []

6 for index in range(0,len(firstNames)):

7 fullNames.append(firstNames|[index]+" "+lastNames[index])
g print(fullNames)

9 # or

10 fullNames = []

11 for index, first in enumerate(firstNames):

12 fullNames.append(first + " " + lastNames[index])

13 print(fullNames)
14 # This is easier to do with the zip function

15 fullNames = []

16 for first ,last in zip(firstNames, lastNames):

17 fullNames.append(first + " " 4+ last)

18 print(fullNames)

19 #output:

20 # ['"Amol Prakash', 'Ahmed ElIKhoury', 'Ayana Jones']

29 /31

Types of bugs

1. Syntax errors
2. Exceptions (runtime)

3. Logical errors

30/31

Last type of bug: logical errors

» When according to Python your code is fine and runs without
errors but it does not do what you intended.

» Example: spot the logical error

[t

def my_max(mylist):

2 for bla in mylist:

3 my_max = 0O

4 if bla > my_max:
5 my_max = bla
6 return my_max

» There's nothing to do to avoid logical errors other than
testing your code thoroughly and having a good algorithm.

» Logical errors are often silent but deadly.

31/31

