COMP 204

Functions [l

Mathieu Blanchette
based on material from Yue Li and Carlos Oliver Gonzalez
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Example: Hydrophobic patches

» Protein sequences are made of amino acids.

» Some amino acids (G, A, V, L, I, P, F, M, W) are hydrophobic
(i.e. they don't like to interact with water molecules).

» Some proteins contain hydrophobic patches, which are
portions of the sequence that start and end with an
hydrophobic amino acid and where at least 80% of the amino
acid are hydrophobic.

» For example, in the sequence EDAYQIALEGAASTE, the
longest hydrophobic patch is IALEGAA.
Goal: Write a function that identifies the longest hydrophobic
patch in a given protein sequence.
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Find longest hydrophobic patch by divide-and-conquer

findLongestHydrophobicPatch

findLongestHydrophobicPatch(protein)
isHydrophobicPatch(sequence)?
1

EDAYQIALEGAASTE

L 3 .L______>
outer for loop: inner for loop
start position from end position from
start =0 end = start + 1
isHydrophobicPatch(sequence)?
. . isHydrophobic('E") isHydrophobic('L")
isHydrophobicPatch # (1) first a.a. # (2) last a.a.
for-loop Q
patchLen += isHydrophobic(s[aa])
# (3) length of hydrophobic amino acids (min 80%)
isHydrophobic(aa)?
isHydrophobic

aa in ["G","A","V",UL",UIN, P UE, UMY, W] ?

the most efficient way (discussed a bit later)
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Example: Hydrophobic patches

Divide-and-Conquer (bottom up approach): Break it down into
small, manageable tasks and start with the lowest tasks

1. Write a function that checks if a given amino acid is
hydrophobic

2. Write a function that checks if a given sequence is a
hydrophobic patch:

» Starts and ends with a hydrophobic amino acid
» Made at 80% or more of amino acids (i.e. count hydrophobic
amino acids; see if count is at least 0.8*length)

3. Use nested for or while loop to iterate over all possible start
and end points of a candidate patch. Use function above to
test if it is a patch. If it is, calculate length and update the
variable that keeps track of the longest patch found so far.

4. Report longest patch found
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isHydrophobic function

1 # This function returns True if aa is a hydrophobic amino

acid

2 def is_hydrophobic(aa):

3 hydrophobic = ["G" ,"A” ,"V" " _I" )" 17 ," p" ,"F" ,"M" ,"W' ]

4

5 # This checks if aa is equal to an object in the list
hydrophobic

6 if aa in hydrophobic:

7 return True

8 else:

9 return False

10

11 # This is a shorter way to do the same thing
12 def is_hydrophobic2(aa):
13 return (aa in ["G" A" V", 1L Cpt VTR LMW )
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isHydrophobicPatch function

# This function tests whether a given sequence
# contains at least 80% of hydrophobic amino acids
def is_hydrophobic_patch (sequence):

# test if sequence starts and ends with a hydrophobic aa
# If not, it is not a hydrophobic patch, so return False

if is_hydrophobic(sequence[0]) = False or
is_hydrophobic(sequence[—1]) = False:

return False
# Count the fraction of hydrophobic amino acids
hydrophobicCount = 0
for aa in sequence:

if is_hydrophobic(aa):

hydrophobicCount 4= 1

# See if we have enough hydrophobic amino acids
if hydrophobicCount >= 0.8 * len(sequence):

return True
else:

return False

# shorter way to do the same with one boolean expression
def is_hydrophobic_patch2(sequence):
return is_hydrophobic(sequence[0]) and \
is_hydrophobic(sequence[—1]) and \

len ([aa for aa in sequence if is_hydrophobic(aa)]) >

0.8xlen(sequence)
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findLongestHydrophobicPatch function

# This returns the longest hydrophobic patch found in a

sequence
def find_longest_hydrophobic_patch(protein):
longest_patch="" # the longest patch found so far

# for every possible starting point
for start in range(0,len(protein)):

# and every possible end point

for end in range(start+1,len(protein)+1):
# get the sequence
candidate = protein[start:end]

# test hydrophobicity
if is_hydrophobic_patch(candidate):

# if longer than longest seen so far, update

if len(candidate)>len(longest_patch):
longest_patch = candidate

return longest_patch

This is an exhaustive search and not the most efficient algorithm.
How do we improve it? How much can we improve?
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Positional arguments

The functions we have seen so far take as input positional
arguments.

Arguments are passed in the same order as the function definition
Example:

1 def inputlnRange(message, minVal, maxVal):

Notes:

» Every call to the function must provide exactly three objects
as arguments

» The order of the arguments matter:
inputInRange(” Enter age”, 0, 150)
is not the same thing as
inputInRange(” Enter age”, 150, 0)
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Optional arguments
Another way to pass arguments to functions is to use keyword
arguments. Example:

# The function takes two keyword arguments
def inputlnRange(message, minVal = 0, maxVal = 100):

while True: # loops until return statement is executed
n = int(input(message))
if n>= minVal and n <= maxVal:
return n
else:
print (" Number outside of range” ,minVal, maxVal)
age = inputlnRange (" Enter age:")
height = inputlnRange(” Enter heigth (in cm):” ,maxVal = 250)

weight= inputlnRange(” Enter weight:” ,maxVal=250, minVal=20)

Notes:

» Keyword arguments are optional when calling the function. If
the caller does not provide them, they are set to their default
value specified in the function header.

» Keyword arguments must come after positional arguments.
Keyword arguments can be specified in any order.

Useful when a function can take a large number of optional
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Returning multiple outputs
A function can only return one object. What if a function needs to
return multiple pieces of information? Idea: The object returned
can be a compound object (list, tuple).

1 # This returns a tuple made of the longest hydrophobic patch
2 # found in a sequence, along with its start and end

3
4
5
6
7
8
9

10
11
12
13
14
15

positions
def findLongestHydrophobicPatch(protein):
longestPatch=""
for start in range(0,len(protein)):
for end in range(start+1,len(protein)):
candidate = protein[start:end]
if isHydrophobicPatch(candidate):
if len(candidate)>len(longestPatch):
longestPatch = candidate
longestPatchStart = start
longestPatchEnd = end
# this returns a tuple
return (longestPatch ,longestPatchStart ,longestPatchEnd)

16 # code to test our function

17
18
19
20

protein = input(” Enter protein sequence: ")

patch, s, e = findLongestHydrophobicPatch(protein)
print(”"Longest hydrophobic patch is ", 6 patch)
print(”" It goes from position”,s,”to position” ,e)
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The scope of variables

When inside a function, the only variables that are available are:
» Local variables: The function's arguments, and all the
variables defined within that function.

» When we return from a function, all local variables are
discarded.

» It is possible for a function to have a local variable called x,
even if a global variable x already exists. Those are considered
two different variables, and only the local version is used.

» Global variables: Those defined outside any function. Their
value can be accessed within a function, but not changed.

Notes:

» Avoid referring to global variables within functions. It makes
code very confusing.

» It is actually possible for a function to change the value of
global variables, but this is rarely a good thing to do, so we
will not explain it here.
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def

def

def

x=17
prin
funl
prin
fun2
prin
fun3
prin

funl():
x=b3 # is local to funl

print (" Within funl, x =" ,x)
fun2(x):

x=2 # is local to fun2
print (" Within fun2, x =" ,x)

fun3(): # x is not defined within fun3,
# so we use the global variable

print (" Within fun3, x =" ,x)
t("To start, x =" ,x)

()

t (" After funl, x =", x)

(x)

t(” After fun2, x =" ,x)

()

t (" After fun3, x =" ,x)

Output:

To start, x = 17
Within funl, x = 53
After funl, x = 17
Within fun2, x = 2
After fun2, x = 17
Within fun3, x = 17
After fun3, x = 17

13/13





