COMP 204

Functions [l

Mathieu Blanchette
based on material from Yue Li and Carlos Oliver Gonzalez

13

Quiz 11 password

2/13

Example: Hydrophobic patches

» Protein sequences are made of amino acids.

» Some amino acids (G, A, V, L, I, P, F, M, W) are hydrophobic
(i.e. they don't like to interact with water molecules).

» Some proteins contain hydrophobic patches, which are
portions of the sequence that start and end with an
hydrophobic amino acid and where at least 80% of the amino
acid are hydrophobic.

» For example, in the sequence EDAYQIALEGAASTE, the
longest hydrophobic patch is IALEGAA.
Goal: Write a function that identifies the longest hydrophobic
patch in a given protein sequence.

13

Find longest hydrophobic patch by divide-and-conquer

findLongestHydrophobicPatch

findLongestHydrophobicPatch(protein)
isHydrophobicPatch(sequence)?
1

EDAYQIALEGAASTE

L 3 .L______>
outer for loop: inner for loop
start position from end position from
start =0 end = start + 1
isHydrophobicPatch(sequence)?
. . isHydrophobic('E") isHydrophobic('L")
isHydrophobicPatch # (1) first a.a. # (2) last a.a.
for-loop Q
patchLen += isHydrophobic(s[aa])
(3) length of hydrophobic amino acids (min 80%)
isHydrophobic(aa)?
isHydrophobic

aa in ["G","A","V",UL",UIN, P UE, UMY, W] ?

the most efficient way (discussed a bit later)

Not

Example: Hydrophobic patches

Divide-and-Conquer (bottom up approach): Break it down into
small, manageable tasks and start with the lowest tasks

1. Write a function that checks if a given amino acid is
hydrophobic

2. Write a function that checks if a given sequence is a
hydrophobic patch:

» Starts and ends with a hydrophobic amino acid
» Made at 80% or more of amino acids (i.e. count hydrophobic
amino acids; see if count is at least 0.8*length)

3. Use nested for or while loop to iterate over all possible start
and end points of a candidate patch. Use function above to
test if it is a patch. If it is, calculate length and update the
variable that keeps track of the longest patch found so far.

4. Report longest patch found

5/13

isHydrophobic function

1 # This function returns True if aa is a hydrophobic amino

acid

2 def is_hydrophobic(aa):

3 hydrophobic = ["G" ,"A” ,"V" " _I")" 17 ," p" ,"F" ,"M" ,"W']

4

5 # This checks if aa is equal to an object in the list
hydrophobic

6 if aa in hydrophobic:

7 return True

8 else:

9 return False

10

11 # This is a shorter way to do the same thing
12 def is_hydrophobic2(aa):
13 return (aa in ["G" A" V", 1L Cpt VTR LMW)

1
2
3
4

5
6

~

10
11
12
13
14
15
16
17

aR W N =

isHydrophobicPatch function

This function tests whether a given sequence
contains at least 80% of hydrophobic amino acids
def is_hydrophobic_patch (sequence):

test if sequence starts and ends with a hydrophobic aa
If not, it is not a hydrophobic patch, so return False

if is_hydrophobic(sequence[0]) = False or
is_hydrophobic(sequence[—1]) = False:

return False
Count the fraction of hydrophobic amino acids
hydrophobicCount = 0
for aa in sequence:

if is_hydrophobic(aa):

hydrophobicCount 4= 1

See if we have enough hydrophobic amino acids
if hydrophobicCount >= 0.8 * len(sequence):

return True
else:

return False

shorter way to do the same with one boolean expression
def is_hydrophobic_patch2(sequence):
return is_hydrophobic(sequence[0]) and \
is_hydrophobic(sequence[—1]) and \

len ([aa for aa in sequence if is_hydrophobic(aa)]) >

0.8xlen(sequence)

/13

© N oG Rr W N

R e T
S ©® N o A WNRO

findLongestHydrophobicPatch function

This returns the longest hydrophobic patch found in a

sequence
def find_longest_hydrophobic_patch(protein):
longest_patch="" # the longest patch found so far

for every possible starting point
for start in range(0,len(protein)):

and every possible end point

for end in range(start+1,len(protein)+1):
get the sequence
candidate = protein[start:end]

test hydrophobicity
if is_hydrophobic_patch(candidate):

if longer than longest seen so far, update

if len(candidate)>len(longest_patch):
longest_patch = candidate

return longest_patch

This is an exhaustive search and not the most efficient algorithm.
How do we improve it? How much can we improve?

13

Positional arguments

The functions we have seen so far take as input positional
arguments.

Arguments are passed in the same order as the function definition
Example:

1 def inputlnRange(message, minVal, maxVal):

Notes:

» Every call to the function must provide exactly three objects
as arguments

» The order of the arguments matter:
inputInRange(” Enter age”, 0, 150)
is not the same thing as
inputInRange(” Enter age”, 150, 0)

13

© N oA W N

-

1

-
N

Optional arguments
Another way to pass arguments to functions is to use keyword
arguments. Example:

The function takes two keyword arguments
def inputlnRange(message, minVal = 0, maxVal = 100):

while True: # loops until return statement is executed
n = int(input(message))
if n>= minVal and n <= maxVal:
return n
else:
print (" Number outside of range” ,minVal, maxVal)
age = inputlnRange (" Enter age:")
height = inputlnRange(” Enter heigth (in cm):” ,maxVal = 250)

weight= inputlnRange(” Enter weight:” ,maxVal=250, minVal=20)

Notes:

» Keyword arguments are optional when calling the function. If
the caller does not provide them, they are set to their default
value specified in the function header.

» Keyword arguments must come after positional arguments.
Keyword arguments can be specified in any order.

Useful when a function can take a large number of optional

10/13

Returning multiple outputs
A function can only return one object. What if a function needs to
return multiple pieces of information? Idea: The object returned
can be a compound object (list, tuple).

1 # This returns a tuple made of the longest hydrophobic patch
2 # found in a sequence, along with its start and end

3
4
5
6
7
8
9

10
11
12
13
14
15

positions
def findLongestHydrophobicPatch(protein):
longestPatch=""
for start in range(0,len(protein)):
for end in range(start+1,len(protein)):
candidate = protein[start:end]
if isHydrophobicPatch(candidate):
if len(candidate)>len(longestPatch):
longestPatch = candidate
longestPatchStart = start
longestPatchEnd = end
this returns a tuple
return (longestPatch ,longestPatchStart ,longestPatchEnd)

16 # code to test our function

17
18
19
20

protein = input(” Enter protein sequence: ")

patch, s, e = findLongestHydrophobicPatch(protein)
print(”"Longest hydrophobic patch is ", 6 patch)
print(”" It goes from position”,s,”to position” ,e)

11/13

The scope of variables

When inside a function, the only variables that are available are:
» Local variables: The function's arguments, and all the
variables defined within that function.

» When we return from a function, all local variables are
discarded.

» It is possible for a function to have a local variable called x,
even if a global variable x already exists. Those are considered
two different variables, and only the local version is used.

» Global variables: Those defined outside any function. Their
value can be accessed within a function, but not changed.

Notes:

» Avoid referring to global variables within functions. It makes
code very confusing.

» It is actually possible for a function to change the value of
global variables, but this is rarely a good thing to do, so we
will not explain it here.

12 /13

© o N oA W N R

[T e S S R S o S
S ©®~N o G~ WN RO

def

def

def

x=17
prin
funl
prin
fun2
prin
fun3
prin

funl():
x=b3 # is local to funl

print (" Within funl, x =" ,x)
fun2(x):

x=2 # is local to fun2
print (" Within fun2, x =" ,x)

fun3(): # x is not defined within fun3,
so we use the global variable

print (" Within fun3, x =" ,x)
t("To start, x =" ,x)

()

t (" After funl, x =", x)

(x)

t(” After fun2, x =" ,x)

()

t (" After fun3, x =" ,x)

Output:

To start, x = 17
Within funl, x = 53
After funl, x = 17
Within fun2, x = 2
After fun2, x = 17
Within fun3, x = 17
After fun3, x = 17

13/13

