COMP 204
Functions

Mathieu Blanchette, based on material from Carlos Oliver Gonzalez
Midterm exam: October 17, 6:30 - 8:00pm. Room TBA.
 - Conflict with ANAT 321 or BIOC 454: Talk to your ANAT/BIOC prof.
 - Conflict with PHYS 101: Email me.

Final exam: Date will be announced shortly.

This is wrong:
if blood == "A+" or "A-" or "AB+":

This is right:
if blood == "A+" or blood == "A-" or blood == "AB+":
Functions: Why we need them

In large programs, we often need to perform several times the same type of computation. Examples:

- Ask the user for some input and check its validity
- Calculate the distance between two points in the plane
- Find the largest element in a list

Until now, the only way we have to do this is to duplicate and adapt code. This is bad because:

- It is very error-prone, hard to debug and maintain
- It makes the program unnecessarily large
- It makes the program hard to read

Functions: Allow re-using a piece of code without duplicating it. We’ve used many functions already: `print()`, `sqrt()`, `isdecimal()`...

Today, we learn how to define *our own* functions.
Functions: A first example

```python
# This is the printWelcome function
def printWelcome():
    print("********************************************************************************")
    print("* Welcome to COMP 204! *")
    print("********************************************************************************")

# This is now outside the printWelcome function
printWelcome()
print("My name is Mathieu")
# Some more code

#print again
printWelcome()
print("etc...")
#and again
printWelcome()
```

Notes:

- Use the keyword def to define our own functions.
- Once the function is defined, just call it using its name and its code will execute.
- **Note:** without a call, the function’s code will not be executed.
The anatomy of a function

```python
# function header
def function_name( function_arguments ):
    # body of function
    # ...
    # ...

# rest of program
```

- **Function header**
 1. `def` tells Python you are defining a function
 2. `function_name`. Functions are objects so we give them names
 3. `(function_arguments)` Objects you would like the function to work on (optional)

- **Function body**
 - Any code that is tabbed at least once and follows the `header` is stored in the function.
Functions with arguments

Without arguments, a function always executes the same thing. For more flexibility, we pass arguments to the function.

```python
# This function welcomes a student to COMP 204
def printWelcome204(studentName):
    print("Dear", studentName)
    print("Welcome to COMP 204")

# This function welcomes a student to any course
def printWelcome(studentName, courseName):
    print("Dear", studentName)
    print("Welcome to", courseName)

# This is now outside the printWelcome function
printWelcome204("Yang")
printWelcome204("Alessandro")
printWelcome("Veronica", "COMP 364")
```
What happens when a function is called?

When a function is called:

▶ A new *local* variable is created for each argument (if any)
▶ The value of each argument variable is initialized to that provided with the function call
▶ The body of the function is executed. This may include defining/using other local variables.
▶ When the body is finished executing,
 ▶ We discard local variables
 ▶ We go back to the line where the function was called, and continue execution from there.

Note: A function can call another function. For example: the printWelcome() function calls the print() function.
The return statement

Until now, our functions print text, but the result of their computation cannot be communicated to the rest of the program.

- The return statement is a special word that lets the function “spit out” an object i.e. output.
- This is useful because it lets the person who called the function store the output in memory and perform operations with it later on.
- **return** is NOT the same as print()
- When Python reaches a return statement it automatically **exits** the function.
import math

this function calculates the distance between
two points (x1, y1) and (x2, y2) in Euclidean space

def distance(x1, y1, x2, y2):
 d = math.sqrt((x1-x2)**2 + (y1-y2)**2)
 return d

print("Hellooo") # this is never reached

myDistance = distance(3,1, 5,7)
print("The distance is ", myDistance)

myDistance = distance(3,1, 3,1)
print("The distance is ", myDistance)

print(d) # error: d is not accessible
outside the distance function
Functions: Why we need them

Functions are useful because they enable:

► **Code re-use:**
 ► Once you’ve written a function *and made sure it works*, you can re-use it as many times as needed, from any program you want.
 ► You can also re-use code written by others
 ► Other can re-use you code

► **Encapsulation:**
 ► As the user of a function, all you need to know is its name, arguments, and what it outputs. No need to worry about it works.
 ► Allows breaking down complex tasks into small, easy to understand subtasks
 ► Allows thinking about a problem at a high-level, focussing on the aspects that matter to your project.
Example: Checking prime number

- A function body can have multiple return statements. The first one encountered during execution will end the function's execution.
- Exercise: write a function that returns True if it is given a prime number and False otherwise.

```python
# This function return True if the integer 
# provided as argument is a prime number 
def isPrime( n ):

    # look at all candidate factors of n
    for f in range(2, n):
        # see if f is a factor of n
        # by computing the remainder of the division
        if n % f == 0:
            return False
    return True

num = int(input("Enter a number: "))
if isPrime(num):
    print("The number is prime")
else:
    print("The number is not prime")
```
Example: Safe input for integers

Goal: Write a function that repeatedly asks a user to enter an integer, until the number entered is within a desired range. Once a valid input has been entered, return that value.

```python
# Asks user to enter a value by printing message
# Repeats until value is between minVal and maxVal

def inputInRange(message, minVal, maxVal):
    while True:
        n = int(input(message))
        if n >= minVal and n <= maxVal:
            return n
        else:
            print(f"Number outside of range {minVal} {maxVal}")

age = inputInRange("Enter age:", 0, 150)
height = inputInRange("Enter height (in cm):", 0, 250)
```
Example: Safe input for strings

Goal: Write a function that repeatedly asks a user to enter a string, until the number entered is within a desired list of acceptable values. Once a valid input has been entered, return that value.

```python
# Asks user to enter a string value by printing message
# Repeats until value is within list acceptable values
def inputInList(message, acceptableList):
    while True:  # loops until return statement is executed
        s = input(message)
        if s in acceptableList:  # tests if s is in list
            return s
        else:
            print("Please respond by ", acceptableList)

history = inputInList("History of diabetes? ", ["yes","no"])
gender = inputInList("Gender? ", ["female","male"])
```
Example: Hydrophobic patches

- Protein sequences are made of amino acids.
- Some amino acids (G, A, V, L, I, P, F, M, W) are hydrophobic (i.e. they don’t like to interact with water molecules).
- Some proteins contain hydrophobic patches, which are portions of the sequence that start and end with an hydrophobic amino acid and where at least 80% of the amino acid are hydrophobic.
- For example, in the sequence EDAYQIALEGAASTE, the longest hydrophobic patch is IALEGAA.

Goal: Write a function that identifies the longest hydrophobic patch in a given protein sequence.

Solution: See hydrophobicPatch.py