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Abstract— Unmanned vehicles are becoming an inevitability in
our society and with them comes the need for highly robust and
accurate algorithms to perform their critical functions, such as
localization and mapping. The proliferation of these robots into
wide spread use requires a generalized, robust SLAM solution. This
paper proposes an improved NDT algorithm, which is capable of
performing robust, accurate localization and mapping in an broad
spectrum of possible environments and with a multitude of different
sensors. The method uses a color greedy cluster approach to cluster
points and generate Gaussian distributions and then uses an ex-
haustive color weighted distribution to distribution cost function to
optimize the scan alignment. With the addition of these key features
to the NDT framework the method is capable of providing accurate
results with minimal computation time. Evaluation is performed on
both the Freiburg and Ford datasets to demonstrate a multitude of
environments and shows robust registration throughout a wide range
of environments and viewpoints.

I. INTRODUCTION

Simultaneous localization and Mapping (SLAM) is a vital
part of any functional unmanned system. Unmanned vehicles
are being deployed to perform a wide variety of missions in
a diverse range of settings. Many of these environments have
never been mapped before, whether it be the bottom of the
ocean [1] or a disaster zone [2], and require the vehicle to
localize and map in an unknown environment.

In recent years SLAM algorithms have progressed signif-
icantly, enabling faster more robust localization and more
refined mapping. Current state-of-the-art algorithms include
both dense camera-based methods, and sparse laser-based
methods, both of which have positive and negative aspects
which make them suited for different sets of applications.

Dense SLAM methods are ideal for inspection tasks in
close-quarters environments. Dense methods are capable of
creating high detail maps of small to medium sized areas
with great accuracy. Newcombe et al. proposed KinectFusion
[3], which uses a Kinect sensor to generate dense 3D maps
of small areas. The method was further extended by Whelan
et al. [4] to allow larger working volumes and include color.
These methods rely on GPU parallelization in order to be
able to perform in real time, and can be extremely memory
intensive as the mapped region grows. Another method,
known as RGBDSLAM [5], has been developed by Endres
et al. and uses RGBD images collected from a Kinect or
stereo camera to track image features in 3D space and
optimize them using a graph SLAM backend. This approach
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can produce accurate maps but can slow down significantly
as the graph grows and can struggle is non-feature-rich
environments. Unlike the previous methods, Dense Tracking
and Mapping (DTAM) [6], created by Newcombe et al., uses
a single monocular camera to generate 3D reconstructions of
environments. This method creates accurate reconstructions
but can not determine scale without an outside source and
is ideal for close up applications. All of these methods
require dense close quarters information in order to perform
effectively and struggle to handle larger, more homogeneous
environments. They generally have significant difficulty in
making large quick movements and using long range mea-
surements such as are expected in outdoor operations.

Methods used for sparse SLAM applications are typically
suited for medium to large scale environments with possibly
large movements between measurements, such as in outdoor
navigation. These methods often employ scan registration
techniques to solve for the movement between laser scans.
The most common scan registration technique is the Iterative
Closest Point (ICP) method first introduced by Chen and
Medioni [7]. ICP attempts to minimize the nearest neighbour
distance between points in two scans. ICP has been improved
and expanded upon in many different ways, most notably
by Segal et al. who create Generalized ICP (GICP) [8] also
know as Plane to Plane ICP. GICP can result in very accurate
registration results, however, as it must iterate through every
point and therefore can be slow for large scans.

A parallel school of scan registration techniques, intro-
duced by Biber and Strasser [9], is the Normal Distribution
Transform (NDT). The NDT method divides the base scan
into a grid and calculates a Gaussian distribution from
the points in each grid cell. Scans are then aligned by
minimizing the point to distribution cost of each point in
the input scan to the distribution in the target scan within
the corresponding cell. Further expansion by Stoyanov et al.
[10] demonstrated that using a distribution to distribution
cost function could improve scan registration results over
ICP and point to distribution NDT. The NDT method can be
tuned for accuracy or speed based on the size of the grid cells
used, but the grid representation can be none ideal for some
environments, and the cell size must be changed as the en-
vironment changes. To remove the need to tune the grid cell
size, Magnusson et al. suggest a multi-scale approach [11]
which runs multiple NDT optimizations at multiple scales.
This approach significantly improves the convergence of the
registrations but also significantly increases computation time
in the process.



In general, scan registration methods can be quite time
consuming as they require the cost function to be evaluated
at every point in a scan or at least a large subset of
points or derived distributions in order to obtain accurate
results. This can be a problem for vehicles traveling at
high speeds or in dynamic environments as the localization
and mapping results may be delayed. Also, these methods,
as well as many other SLAM methods, can fall victim to
geometric degeneracies in spaces with minimal structure in
the environment.

Recently, Das et al. [12] showed that by using a greedy
clustering approach to generate surface Gaussians, a smooth
and continuous NDT cost function could be created and
could be evaluated significantly faster than previous methods.
This approach however is not ideal in all environments as
it requires object to be disjoint in 3D space in order to
be accurately clustered. Conversely, Color NDT by Huhle
et al. [13], uses color information to generate multiple
distributions per cell and match distributions and points
based on color weightings. This method helps reduce the
effects of geometric degeneracies but can be slow if the grid
is made too small, or can be inaccurate if the grid is to large.

This paper proposes the use of a combination of greedy
clustering and color weightings to augment the NDT algo-
rithm in order to attain consistent, robust performance in all
environments and applications. The proposed method uses
color and 3D information in a greedy clustering approach
to cluster points and generate the requisite Gaussian dis-
tributions used for the optimization phase. The optimiza-
tion function uses the calculated Gaussians to perform a
weighted distribution to distribution cost between all pairs
of distributions. The weightings are determined based on a
normal distribution of the expected variance in color channels
for the given sensor configuration. This approach gives a
smooth, continuous cost function which can be optimized
efficiently, reduces local minima, and avoids issues with
geometric degeneracies when varied color information is
present. This method also performs well in both dense,
close range situations, as well as large scale sparse outdoor
environments.

The proposed method is evaluated using the Freiburg
RGBD Dataset [14] as well as the Ford Vision and Lidar
Dataset [15]. The Freiburg dataset includes RGBD informa-
tion collected from a Kinect Sensor in several indoor envi-
ronments as well as corresponding ground truth information.
The indoor environment demonstrates an example of dense
SLAM data of a small area with moderate sensor motions.
The Ford dataset is generated from a vehicle mounted
Velodyne laserscanner and Ladybug omnidirectional camera
and demonstrates outdoor, road speed traversal of a typical
unmanned vehicle. The Ford dataset evaluates the algorithm
in a relatively spares scenario where the sensors are moving
at high sped.

II. NORMAL DISTRIBUTIONS TRANSFORM

The Normal Distributions Transform is a common form
of scan registration used in modern robotics applications.

Many authors have proposed improvements to the algorithm
but the underlying principles have remained constant. The
NDT method attempts to model sets of points as Gaussian
distributions and match these distributions either to points or
corresponding distributions in the input scan.

The general scan registration problem can be defined as
finding the optimal transformation, T ∈ SE(3), which best
aligns a set of input points, X = {x1, . . . , xNX

} where
xi ∈ R3 for i ∈ {1, .., NX}, with a set of target points,
Y = {y1, . . . , yNY

} where yj ∈ R3 for j ∈ {1, .., NY }. The
solution is typically computed by optimizing a cost function
defined between the scans X and Y .

The original NDT method begins by first dividing the
point in the scan into a set of equally sized cells, ci. For
each cell a Gaussian distribution, Gci = N (µci ,Σci), is
calculated using the points from the scan which are within
the boundaries the cell. At the end of this process the entire
scan is converted into a set of Gaussian distributions, G =
{Gc1 , . . . , GcN }. In the case of distribution to distribution
NDT this step must be performed on both the target and input
scan to obtain sets of distributions for the input, GX , and
target, GY . The total number of distributions, N , is largely
dependent on the size of the grid cells used to divide up the
scan. Larger grid cells will result in fewer total Gaussians
but small details can be lost in the Gaussian model. Small
grid cells are capable of maintaining finer detail, however,
this will result in a significant increase in the number of
Gaussians and a corresponding increase in computation time.
The size of the grid cells often has to be set and reset given
different environmental conditions.

Next, the NDT cost function used to optimize the regis-
tration transform is calculated using the set(s) of Gaussians
computed in the previous step. Both point to distribution
(P2D) and distribution to distribution (D2D) have similar
cost functions. The point to distribution cost function con-
tribution, JP2D(x) : R3 → R, of an individual point, x, is
defined as:

JP2D(x) = exp(−(x− µci)
T Σci

−1(x− µci)) (1)

where x is the point being evaluated and µci and Σci

are the mean and covariance of the cell ci to which x is
corresponded. The sum of the individual point costs is then
minimized:

T ∗ = arg min
T

NX∑
i=1

JP2D(Txi) (2)

The resulting transform is the optimal relative movement
of the sensor frame between the target and input scans that
minimizes the cost function. Unfortunately, the overall cost
function will be discontinuous. The correspondence of a
point x to a specific distribution, ci, is dependent on the
transformation, T . As the transformation changes the points
of the input scan change cells relative to the target scan and
therefore correspond to a different distribution and cause a
discontinuity when this change occurs. These discontinuities



can be problematic for optimization as the derivative is not
well defined and convergence can not be guaranteed. The
cost function also demonstrates that in the case of geometric
degeneracy the solution will not converge as there will be no
sensitivity of the cost function to changes in the degenerate
transform direction.

III. COLOR GREEDY CLUSTER

The clustering method used in this paper is based on the
Color-Based Segmentation of Point Clouds method proposed
by Zhan et al. [16]. The algorithm proceeds in two main
stages. First a greedy region growing process is performed
to make rough color consistent regions. Second a region
merging and refinement stage is performed in order to refine
the rough regions into the final segmentation result.

The greedy region growing stage follows a standard greedy
clustering approach and uses color information to determine
region inclusion. The set of clusters, ζ = {c1, . . . , cNc

},
where each cluster is a set of points, ci = {p1, . . . , pNci

},
is calculated by adding all points to the unlabeled set, U ,
and incrementally removing a point from U to begin a new
cluster and adding the point to the open set K. The function
K(p, k) uses the kd-tree nearest neighbour algorithm defined
in [17] to find the k nearest neighbours of a point p. The
algorithm then checks the nearest neighbours of each point
in K to determine inclusion in the current cluster, ci, based
on color difference to the initial cluster point. The function,
δ(x, y) : R3×R3 → R, defines the color difference between
point x and y as the Euclidean norm of the difference of the
color vectors. If the nearest neighbour point is sufficiently
similar, δ(x, y) < κc where κc is a threshold parameter, then
the point is added to K. Once K is empty, the current cluster
is added to the cluster set ζ, and a new cluster is started by
selecting a new point from U . The process is repeated until
all points are labeled. The flow of the algorithms can be seen
in Algorithm 1.

The second stage, region merging and refinement, uses the
set of clusters, ζ, found in the previous stage and attempts
to merge each cluster to its nearest neighbour clusters based
on the adjacent cluster being of the same color. If two
nearest neighbour clusters are of similar color, they are
merged. Unlike the original method proposed in [16], for
this work we do not explicitly merge regions below a certain
threshold of points with its nearest neighbour. These regions
are assumed to be outliers and are simply discarded from
the set of clusters. It is important to note that since the
computational complexity of calculating the cost function in
Equation 5 scales quadratically with the number of Gaussians
generated, Nc, it is helpful to limit the maximum number of
distributions considered. A simple trimming of the smallest
and largest clusters can be performed to stay within a defined
maximum. It can be assumed that very large clusters provide
minimal information in terms of overall alignment that the
smaller clusters don’t already capture and that the smallest
clusters are most likely noise or areas that will be hard to
match between scans.

Algorithm 1 Color Region Growing
i← 0
ζ ← ∅
K ← ∅
U ← P
while U != ∅ do
K ← p ∈ U
while K != ∅ do
i← i+ 1
p ∈ K
for q ∈ K(p, k) do

if δ(p, q) < α and q /∈ K then
K ← K ∪ {q}
ci ← ci ∪ {q}
U ← U\q

end if
end for
K ← K\p

end while
ζ ← ζ ∪ {ci}

end while

The final stage is to convert the clustered points into a
corresponding set of Gaussians, G = {g1, . . . , gNG

}, where
each Gaussian maintains the geometric mean, µg , as well
as a color mean, µc, along with the geometric covariance,
Σ. Figure 1 shows the clustering results on an indoor office
scene. Note that the Gaussians are of various sizes and shapes
and accurately represent the underlying structure of the scene
with a minimal set of distributions.

IV. COLOR CLUSTERED NDT

Using the sets of Gaussian distributions calculated in
Section III, for both the input scan, Gi, and the target
scan, Gj , the transformation optimization proceeds using
a modified cost function. The cost function uses a fully
connected approach, where each distribution is evaluated
against all other distributions, and incorporates a weighting
based on the color difference between the two Gaussians,
gi and gj , being evaluated. The color weights, λij , are
calculated given the covariance of the color channels, Λ,
defined by the accuracy of the sensor used, and is defined
as:

λij = exp(−1

2
(µc

i − µc
j)

T Λ−1(µc
i − µc

j)) (3)

where µc
i ∈ R3 is the mean color of Gaussian gi. The

Gaussians are therefore weighted such that distribution pairs
with significant differences in color have a minimal impact
on the cost. The final cost evaluation is simply the original
distribution to distribution NDT cost weighted by λij and
calculated between all combinations of distributions. The
cost for a single distribution to distribution registration, with
a transformed difference of means, dxy = Tµg

x − µg
y would

be:



(a) Pointcloud of example scene before clustering

(b) Clustering results of the example scene

Fig. 1. Clustering results of an example scene using the Color-Based
Segmentation of Point Clouds method and converting point clusters to
Gaussians

JD2D(gx, gy) = λxy exp(−1

2
dTxy

[
TT ΣxT + Σy

]−1
dxy)

(4)
The minimization of this cost,

T ∗ = arg min
T

NGi∑
i=0

NGj∑
j=0

J(gi, gj) (5)

optimizes the alignment of the scans such that distributions
of similar color should converge together and result in a more
accurate, more robust registration result.

V. EXPERIMENTAL RESULTS

The method proposed in this paper was evaluated based
on two datasets, the Freiburg RGBD Dataset and the Ford
Vision and Lidar Dataset. Both of these dataset contain
color and 3D information as well as ground truth position
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Fig. 2. Freiburg dataset registration transformation accuracy for frame to
frame matching for GICP, NDT, and CCNDT, compared to ground truth
data.

information. For both datasets the method is evaluated based
on the accuracy of the transform compared to the ground
truth data as well as qualitatively based on the aggregation of
the scans into a consistent final map. The method is evaluated
against standard NDT and GICP for both datasets. Finally
a comparison of computation time for registering a set of
scans is performed.

The evaluation of the method accuracy is performed in a
frame to frame arrangement and the computed transformation
is compared to the relative motion of the sensor in the
ground truth data. The translational and rotational errors
are calculated as the Euclidean norms of the respective
translational and rotational parameters. The NDT and GICP
evaluations are performed with default parameters unless
otherwise specified.

A. Freiburg RGBD Dataset Evaluation

The Freiburg Dataset was collected using a Kinect RGBD
sensor to capture both depth and color images. For this
work the depth and color images are combined to create
colorized pointclouds which are used with the proposed
method. Ground truth information is collected using a Mo-
tionAnalysis motion capture system. The Freiburg Dataset
consists of dozens of different scenes of indoor environments
in a wide range of conditions. For this work the Long Office
Household Scene scene is used as the benchmark. This scene
was selected because it moves through a range of motions
and consists of a typical close-quarters indoor scene. This
dataset consists of 162 scans from the sensor traversing an
approximately 21m path.

Figure 2 shows a box plot of the translational and rota-
tional errors for each frame to frame match. In this case the
grid size for NDT was set to 0.1m. This plot shows that
Color Clustered NDT has very high accuracy results. The
median error in translation for CCNDT is 1.7cm compared
to 2.9cm for GICP and 2.7cm for NDT. The rotational errors
are only marginally different with CCNDT having 0.019rad
and GICP and NDT both with 0.021rad median error. The
error plot also shows that the CCNDT has a tighter bounds on



Fig. 3. Aggregate pointcloud map of Freiburg dataset using Color Clustered
NDT

its error distribution compared to the other methods leading
to more consistent results. Of particular note is that although
GICP and NDT are able to perform admirably on this dataset
due to a high degree of geometric diversity, in situations of
geometric degeneracy, such as a flat wall, both GICP and
NDT can fail catastrophically. Overall Color Clustered NDT
in the dense indoor environment has highly accurate, robust
registration results.

The aggregate map generated using Color Clustered NDT
can be seen in Figure 3. The map is seen to be very consistent
over the entire dataset.

Since the method proposed in this work is a SLAM front
end all of the results represent relative error in frame-to-
frame matching. This makes comparison to methods with
backend implementations, such as RGBDSLAM, challenging
as they will have a clear advantage by using a global
optimization. Implementation of this method with a back-
end graph optimizer and comparison to a more extensive set
of RGBD algorithms is left to future work.

B. Ford Vision and Lidar Dataset Evaluation

The Ford dataset was collected using a Velodyne laser
scanner combined with a Ladybug omnidirectional camera.
With the accurate extrinsic calibration, the Ladybug camera
is used to color the Velodyne point cloud by projecting each
3D point into the camera image. Ground truth information is
collected using an Applanix Position and Orientation System.
The sensors are mounted to a Ford F-150 truck and data
was collected as the truck traversed a stretch of road around
the Ford Research Campus. A 200m section of the dataset
is used for evaluation purposes. This dataset demonstrates
typical conditions of an unmanned vehicle on a roadway.

The box plot shown in Figure 4 shows the overall accuracy
of each method in the outdoor environment. For this dataset
the grid size for NDT is set to 2m. From this plot it can
be seen that GICP and CCNDT have very similar error
distributions with CCNDT having only a marginally smaller
median value, while both have much lower errors than NDT.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CCNDT GICP NDT CCNDT GICP NDT
Translation                                   Rotation

T
ra

ns
la

tio
n 

E
rr

or
 N

or
m

 [m
]

0

0.005

0.01

0.015

0.02

0.025

R
ot

at
io

n 
E

rr
or

 N
or

m
 [r

ad
ia

ns
]

Fig. 4. Ford dataset registration transformation accuracy for frame to frame
matching for GICP, NDT, and CCNDT, compared to ground truth data.

Fig. 5. Aggregate pointcloud map of Ford dataset segment using Color
Clustered NDT

The rotational errors in these cases are disproportionately
small due to the lack of rotation in the data used. Figure 5
displays a map of aggregate point clouds created using Color
Clustered NDT on the Ford dataset. This map shows that
in challenging outdoor, sparse environments Color Clustered
NDT is still able to generate relatively accurate maps. This
is particularly noticeable by the accurate alignment of the
road markings visible in the scene.

C. Computation Time

The computation time comparison is performed using the
Freiburg dataset, where each scan consists of on average
200,000 points, and using default parameters for each al-
gorithm. The scans are not pre-filtered and are left at full
point density for all algorithms. The comparison is performed
on a computer with an Intel i7 Quadcore processor and
16GB of ram with each algorithm run in a single thread
with no parallelization. Overall computation time for each
registration is computed and the results are plotted in Figure
6.

Figure 6 clearly shows that Color Clustered NDT has sig-
nificantly faster computation times than both standard NDT
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Fig. 6. Computation time comparison between GICP, NDT, and CCNDT,
for a single scan registration

and GICP. This is expected because Color Clustered NDT
uses significantly fewer clusters to perform the registrations
and requires only a single optimization iteration, where as
NDT must iterate though each filled cell and GICP through
every point.

The boost in computational efficiency of the Color Clus-
tered NDT algorithm would allow it to run on a robot with
only a moderately powerful computing platform. This makes
it very useful for systems with limited payloads, such as
aerial vehicles, or limited power available, such as rovers.

VI. CONCLUSION

This work presents the Color Clustered NDT method. The
presented method incorporates the use of color based greedy
clustering to generate the Gaussian distributions and uses
color weighted continuous cost function for optimization.
This method is shown to have good accuracy in both in-
door and outdoor environments and is highly robust to a
wide spectrum of environments and conditions. The method
proposed is highly versatile and maintains minimal com-
putational complexity. Future work includes evaluation of
state-of-the-art clustering approaches to increase clustering
performance, implementing the method with a graph-SLAM
backend framework, and further evaluation of the method in
a range of environments and from wildly varying viewpoints.
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