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Abstract

This  paper  presents  a  novel  algorithm  for 
short-course  sailboat  navigation  through  a 
complex environment. Many of the desired 
applications for autonomous yachts, such as 
water  quality  or  sea  depth  monitoring, 
require  the  yacht  to  operate  in  shallow 
coastal waters. Navigation in these areas is 
made difficult  by both constantly changing 
winds and by physical  barriers  like islands 
and shoals. Our algorithm takes into account 
both  sensor  and  map  data  and  quickly 
calculates  a  near-optimal  route.  This 
algorithm has  been implemented  in  a Java 
program  and  tested  successfully  on  two 
different  robotic  sailboats.  This  paper 
provides  both  an  explanation  of  the 
algorithm  as  well  as  details  of  its 
implementation. 

1 Introduction

Collecting  environmental  data  is  more 
important  now  than  ever  before,  whether 
one is tracking changes in climate, pollution 
levels, or sea life. For this data to be most 
useful, it must be collected over a wide area 
and a significant length of time – and ideally 
at  a  reasonable  price.  Unfortunately, 
however,  current  sensing  platforms  do  not 
satisfy these requirements. Manned missions 
are  generally  expensive and tedious.  Fixed 
sensors,  while  individually  inexpensive, 
require large numbers to cover a significant 

area.  For  these  reasons,  unmanned  aquatic 
robots have become a more popular platform 
for  research.  Since  most  of  these  operate 
underwater they often suffer from problems 
with  slow  speed  and  power  starvation, 
restricting  the  area  and  length  of  time  for 
which it can collect data.

One solution to these problems is to deploy 
sensors on autonomous yachts. Since a yacht 
can move around while expending relatively 
little energy, it has the potential for a much 
greater range than a fixed sensor or a motor-
powered  vehicle;  furthermore,  since  a 
sailboat  has access  to  both wind and solar 
power, it can produce energy to power itself 
and any onboard environmental sensors [1].

The  robotic  yacht  is  still  a  young 
technology.  While  a  few  groups  have 
already  demonstrated  autonomous  sailing 
for short periods, these projects lack a few 
of  the  characteristics  required  for  a  long-
term  sensing  platform.  One  element  these 
boats  tend  to  lack  is  a  robust  navigation 
system.  While  many  of  these  craft  are 
capable of sailing to a waypoint based on the 
wind,  they  do  not  generally  try  to  avoid 
obstacles  in  their  path.  Conversely,  there 
have been a  number  of  obstacle-avoidance 
algorithms developed for different fields, but 
these do not account for wind information in 
the way a sailboat must. This project, then, 
is an attempt to take the best of these earlier 



results  and  build  on  them  to  create  a 
complete navigational system.

The Mighty Poseidon encounters a swan.

2 The Mighty Poseidon

The Roboboat project at University College 
Dublin has developed the hardware for two 
different autonomous yachts. The first is the 
Mighty  Poseidon,  a  converted  remote-
control model boat used primarily for testing 
in relatively sheltered water. The second is a 
modified  Laerling,  a  boat  originally 
designed for teaching children to sail. While 
the Laerling is the more likely candidate for 
a  long-term  research  platform,  it  was 
determined  to  be  an  inconvenient  for 
development both because the hardware had 

yet  to  be finalised  and because  it  is  much 
more  time-consuming  to  deploy.  The 
Mighty  Poseidon  was  therefore  chosen  as 
the primary testing platform for this project.

2.1 Hardware

The Mighty Poseidon is a customized Robbe 
Estelle,  a  model  yacht  produced  in 
Germany. The Robbe Estelle is about 1.1m 
long, with a 37 cm beam – unusually wide 
for  a  model  boat  of  its  size.  This  both 
increases the stability of the craft and offers 
more interior space for new hardware. It is 
possible to control this  boat with a remote 
from shore like a  standard RC sailboat.  A 
switch on this remote transfers control to a 
Handy  Board  microcontroller  onboard  the 
yacht. The Handy Board receives input from 
a  GPS,  compass,  speed  sensor  and  wind 
vane;  it  also  controls  actuators  that  adjust 
the sails  and rudder. It is connected to the 
shore by a serial radio link. 

2.2 Software

At the beginning of the project, the software 
on the Mighty Poseidon was already capable 
of  maintaining  a  constant  compass  course 
send to it from ashore. However, it does not 
have  the  processing  power  to  run  a 
pathfinding algorithm on a complex map. It 
was decided the boat would feed the sensor 
data to the shore, where a notebook would 
run  the  pathfinding  and  send  the  course 
information back to the boat. 

At first, due to concern about the reliability 
of the radio link, it was planned to send the 
course information as a series of waypoints. 
In this way, if the connection was lost as the 
Mighty  Poseidon came  to  a  waypoint  it 
would  already  have  the  next  destination 
stored  and  thus  be  able  to  sail  on 
uninterrupted. Not only was this precaution 
unnecessary – the radio link had much better 



signal strength and range than expected – it 
actually decreased the software’s reliability. 
In  variable  winds  the  software  needs  to 
regularly recalculate, and each recalculation 
can involve sending several waypoints over 
the  radio  link.  This  overloaded  the  link, 
which caused an unacceptably high level of 
packet loss. A search for alternatives led to 
the  idea  of  tracking  waypoints  exclusively 
ashore and simply updating the course over 
the radio link when it needs to be changed. 
Since  this  involved  sending  fewer  and 
shorter  packets,  reliability  was  improved 
immensely.

Other  improvements  to  the  Mighty  
Poseidon’s  software  were  made  over  the 
course  of  the  project  as  well.  Among  the 
most  significant  of  these were splitting  up 
the  program  into  several  processes  and 
reimplementing  the  methods  used  to  send 
and  receive  packets.  This  sped  up  the 
program by ~40%, reduced the code size by 
~20%,  and  increased  the  reliability  of  the 
radio link.  

3 Shore Software

The  shore-based  software  includes  the 
pathfinding algorithm, a GUI for displaying 
program and sensor data and collecting user 
input,  and  various  mechanisms  for 
communicating with the radio module. This 
program was  developed  from scratch  over 
the course of the project.

3.1 Mapping System

Early in the planning stages for this project, 
it was realized that to test the pathfinder in a 
meaningful way one would need both a map 
to test on and a way to display the map and 
the  paths  found.  These  were  therefore  the 
first aspects of the program developed.

3.1.1 Map Representation

This software treats a map 
as a series of polygons, or 
'coasts',  organized  into  a 
tree structure. If one coast 
is  contained  within  a 
second, it  is considered a 
child of that second coast 
(note  that  since  each 
coastline  defines  the 
perimeter  of  an  entire 
island  or  body  of  water, 
no two will ever overlap). 
This  tree  structure  has 
proved useful  for  various 
tasks,  from  drawing  the 
map  to  checking  if  a 
certain  point  is  in  a 
particular body of water.

These  maps  are  stored  in  human-readable 
text files. Each text file contains the overall 
dimensions of the map, followed by a list of 
coasts (in the order that a pre-order traversal 
of the tree would produce). For each coast, 
the file records the number of children, the 
type  ('water'  or  'land'),  and  the  list  of 
waypoints making it up.

3.1.2 Map File Creation

In  the  current  implementation,  this  map 
must  be  created  by  a  human  user.  In  the 
original  design,  the  user  had  to  find 
waypoints along the coastline manually on a 
chart and enter them in. However, this was 
found  to  be  too  labourious  a  process.  An 
auxiliary script was written to take a set of 
paths from a .kml file exported from Google 
Earth and format them as a map file. While 
the  user  must  still  create  the  original  .kml 
file, Google Earth’s path-creation process is 
both quick and intuitive,  so maps can now 
be  produced  much  more  quickly  and 
accurately.  While  it  may  ultimately  be 

Map structure.



desirable  to  completely  automate  this 
process, that was decided to be too large a 
task  to  fit  within  the  scope  of  the  current 
project. It should also be noted that using a 
human-defined  map  does  not  reduce  the 
ultimate  autonomy  of  the  robot,  since  in 
either  case  the  map  remains  static  for  the 
time the boat is on the water.

3.2 Pathfinding Algorithm

There  are  three  discrete  stages  to  the 
pathfinding  algorithm.  The  first  is  a 
preprocessing  stage.  When  the  program is 
informed a boat is sailing in a given body of 
water,  it  creates  and  stores  a  pathfinding 
graph  for  that  body  of  water.  The  second 
stage is called whenever a new leg is added 
to the route. It adds the start and destination 
points of the route to the graph, then runs the 
A* algorithm on the result. This generates a 
series of waypoints,  which is again stored. 
The third, called whenever the boat reaches 
a  destination  or  the  wind  changes,  first 
checks if it is possible to sail directly to the 
next waypoint.  If so, the program instructs 
the  boat  to  sail  directly  there;  if  not,  the 
program finds a new point outside the no-
sail zone and directs the boat towards that. 
Given the knowledge it has at a given time, 
this algorithm guarantees a shortest route.

Note  that  the  following  will  use  planar 
geometry as an approximation of the ocean 
surface.  This  is  generally  quite  a  good 
approximation,  given  that  most  journeys 
take place over a relatively small portion of 
the  earth's  surface.  Nevertheless,  if  more 
accuracy is desirable,  the following can be 
reformulated in spherical geometry without 
significantly different results.

Note that while the result of the algorithm is 
the  shortest  path,  this  does  not  necessarily 
imply it is the quickest path. A sailboat is a 
complex system, and it is perhaps likely that 

in  some situations,  a  different  route  might 
result in a quicker journey. However, in the 
circumstances for which this algorithm was 
designed  (coastal  areas  with  reasonably 
homogenous currents and winds throughout) 
straight-line  paths  have  been  shown to  be 
faster  than  alternative  steering  methods, 
such as maximising the velocity towards the 
destination [2].

The  proofs  of  various  mathematical  or 
geometrical  assertions  have  been  omitted 
due to space constraints. The omitted proofs 
can either be found in the references or are 
trivial enough to be left to the reader.

3.2.1 Generating the Graph

To  generate  a 
pathfinding  graph, 
one  must  first 
choose which points 
will  become  nodes 
of  the  graph. 
Fortunately,  it  can 
be  mathematically 
demonstrated  that 
the  shortest  route 
between  two  points 
(ignoring wind) will 
consist  of  straight 
lines,  the  endpoints 
of  which  must  be 
either the start point, 
the destination point, 
or  a  convex  vertex 
of one of an obstacle 
(or a concave vertex 
of  the  containing 

polygon).  Given  the  coast  containing  the 
sailboat,  the  program  iterates  through  the 
vertices marking the coast and then through 
those of each of its children, collecting the 
ones  that  may  form  part  of  the  shortest 
route. It then connects every pair of points 
with a direct line between them. While this 



is a slow operation (taking time proportional 
to the cube of the number of vertices, in the 
naïve  implementation)  it  needs  to  be 
performed only once each time the program 
is run. The graph could easily be stored in 
the map file as well,  but the preprocessing 
time is still short enough (a small fraction of 
a second) that this step seemed unnecessary. 

3.2.2 A*

The  second  stage  is  responsible  for 
calculating  a  shortest  path  through  a 
weighted graph. For this, the program uses 
the A* algorithm, first described in 1968 [3]. 
A*  is  one  of  the  few  most  popular 
pathfinding algorithms, and for good reason. 
Not  only  does  this  algorithm  have  the 
desirable  property  of  always  finding  the 
shortest  path  between  two  nodes;  but  it 
(provably)  checks  the  fewest  number  of 
nodes of any algorithm that uses the same 
heuristic (method of estimating the distance 
between  each  node  and  the  goal)  [4]. 
Luckily,  an effective  heuristic  is  available: 
Euclidean  distance,  which  is  easily 
calculable  and  already  defined  to  be  the 
shortest possible route between two points. 
The remaining challenge is to convert A*’s 
output, which doesn’t account for wind, into 
something that the boat can actually sail.

3.2.3 Tacking Algorithm

The  tacking  algorithm  first  checks  if  it  is 
possible  to  sail  directly  from  the  current 
position to the destination. If it is, it instructs 
the boat to do so.

The rest of the tacking algorithm is based on 
the following diagram: 

In  this  diagram,  A  and  B  are  waypoints 
found in  the second step,  C is  the  current 
position of the boat, H and O are the closest 
sailable headings on either side of B (usually 
the  port  and  starboard  tacks),  D  is  the 
intersection, and p and q are regions of the 
plane.

The  algorithm  makes  use  of  the  fact  that 
since A and B are connected nodes in the 
graph,  the  line  AB  must  be  clear  of 
obstacles. The boat can travel for as far as it 
likes on one tack (H, for example) – as long 
as it  can return to the line segment AB by 
travelling on the other tack, the overall route 
will  be an optimal  one.  For  each  heading, 
the algorithm finds the maximum distance it 
can  travel  without:  a)  crossing  a  land 
boundary,  b)  having  land  block  the  route 
back to AB, c) overshooting the goal or d) 
travelling  too  far  from  AB  (to  avoid 
attempting to cross an ocean in a single tack, 
for example). c) and d) are relatively simple 
math. To perform the more complex a) and 
b),  the  algorithm  first  determines  which 
obstacles  are  in  areas  p  and  q,  and  then 
decides how far it can go without colliding 
with  the  land.  The  following  diagram 
illustrates the latter step.



 
The red points are the relevant points of obstacles in 
the tacking region (p or q). Note how the boat avoids 

getting trapped behind the land mass.

Once  this  step  has  been  completed,  the 
program  has  to  choose  which  heading  to 
take.  There  are  several  methods  of 
arbitration between the two, the simplest of 
which is  simply to  alternate  between them 
on  successive  tacks.  However,  the  current 
implementation  selects  the  tack  that  it  can 
sail  on  for  the  longest  without  changing 
direction.  This has proven to give the best 
results in both simulation and testing.

3.3 GUI

The pathfinder running on a map of UCD lake.

There  are  three  sections  to  the  GUI.  The 
upper  left  section  (an  instance  of  a  Map 
class)  displays  the  current  map  and  any 
mappable  objects,  such  as  the  boat.  In  an 

early  implementation,  the  Map  class 
contained  both  drawing methods  for  every 
type  of  drawable  object  and  the  logic  to 
determine when they should be drawn. This 
proved to be cumbersome and prone to bugs. 
Now, it simply maintains a list of objects it 
wishes  to  draw,  which  are  all  required  to 
implement  the ‘Mappable’ interface.  When 
the  map  redraws  itself,  it  simply  requests 
each item in that list to draw itself, in order.

This  area  is  also  used  for  selecting 
coordinates.  Other sections of the program 
can  capture  and  use  this  coordinate 
information  for  various  things,  such  as 
adding  waypoints.  If  nothing  else  captures 
this information, the click recenters the map. 
The scroll wheel on the mouse can be used 
to zoom in and out. This interface is similar 
to  those  used  by  Google  Maps  or  Google 
Earth, and was found to be intuitive to most 
users.

The bottom left  section is a text input and 
output area, much in the vein of standard in 
and out on the command line. This style was 
chosen  partly  because  of  its  familiarity  to 
most programmers and engineers and partly 
to reduce the number of menus displayed on 
the  sidebar  and  the  use  of  pop-up  menus 
(which slow down the program dramatically 
on older machines).

The  control  panel,  on  the  right,  offers 
various map, boat, and pathfinding controls 
and  information.  The  Map  Settings  area 
simply displays the coordinates of the map 
center and offers a scrollbar to display and 
change  the  zoom level  to  those  without  a 
mouse wheel. 

The Boat Settings menu first contains a list 
of currently added boats, as well as a facility 
for adding new boats to the list. This allows 
the  user  to  control  several  boats  from the 
same program, should he or she wish to do 



so. This section can be used either to control 
a physical boat or a simulated one for testing 
purposes. Below these, there is a graphical 
display  of  the  current  wind  direction 
(including  the  no-sail  zone  around  it)  and 
the boat’s current heading. It also prints the 
speed  and  direction  of  the  wind  in  knots. 
This control can be used for setting the wind 
speed  and  direction  while  in  simulation 
mode.

The  Pathfinding  Menu  allows  the  user  to 
add waypoints to the boat’s path. It also lets 
the user display the pathfinding grid, which 
is  useful  for  both  debugging  and 
demonstration purposes.

4 Future Work

This software is only one of the necessary 
components for a fully autonomous yacht. It 
has  also  been  implemented  in  a  fashion 
more  suitable  for  testing  than  for 
deployment.  While  the  pathfinding  system 
was written to be fairly agnostic about the 
surrounding  implementation,  so  that  the 
relevant  code  could  be  easily  added  to  a 
more complex system, this has not yet been 
done.

One  of  the  simplest  and  most  useful 
improvements  would  be  to  have  the 
pathfinder  running  onboard  the  boat.  This 
would  remove  most  of  the  dependence  on 
the radio, so that the boat could sail for an 
arbitrarily  long  time  without  requiring 
instructions. While the Mighty Poseidon has 
too  simple  of  a  processor  to  run  the 
pathfinder  on  a  significant  map,  either  the 
controller could be upgraded or the program 
could  simply  be  converted  to  run  on  the 
Laerling,  which  has  a  full  PC  already 
available.

In the long term, it would also be desirable 
to  calculate  long-term  routes  based  on 

tradewinds,  weather  forecasts,  currents  and 
tides. This would enable it to perform longer 
missions  over  wider  areas,  but  seriously 
increases the complexity of the algorithm.

Another  obvious  addition  to  the  system 
would be a method of recognising dynamic 
obstacles  on-the-fly  (other  ships,  for 
example).  While  the  algorithm  should  be 
able to be modified relatively easily to take 
in  this  new  information,  gathering  the 
information is  not a simple process. Radar 
systems have high power demands, making 
them impractical  for  a  small,  self-powered 
craft, and optical recognition is challenging 
even  in  well-controlled  environments. 
Nevertheless,  if  these obstacles  were to be 
overcome,  this  would  be  a  very  valuable 
addition to any navigation system.  

5 Conclusion

Obstacle  avoidance  is  one  of  the  key 
challenges  for  autonomous  yachts.  This 
project has demonstrated that it is possible, 
given relatively simple and easily available 
technology,  to  build  a  robot  capable  of 
navigating  through  relatively  complex 
environments  in  a  variety  of  wind 
conditions. This brings robotic sailboats one 
step  closer  to  being  a  useful  –  or  perhaps 
even  the  best  –  platform  for  collecting 
environmental data at sea.
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