
Long-Term Sensing in Aquatic Environments
using Autonomous Yachts

Ben Kirwin
ODCSSS Student

University College Dublin

Abstract

This paper presents a novel algorithm for
short-course sailboat navigation through a
complex environment. Many of the desired
applications for autonomous yachts, such as
water quality or sea depth monitoring,
require the yacht to operate in shallow
coastal waters. Navigation in these areas is
made difficult by both constantly changing
winds and by physical barriers like islands
and shoals. Our algorithm takes into account
both sensor and map data and quickly
calculates a near-optimal route. This
algorithm has been implemented in a Java
program and tested successfully on two
different robotic sailboats. This paper
provides both an explanation of the
algorithm as well as details of its
implementation.

1 Introduction

Collecting environmental data is more
important now than ever before, whether
one is tracking changes in climate, pollution
levels, or sea life. For this data to be most
useful, it must be collected over a wide area
and a significant length of time – and ideally
at a reasonable price. Unfortunately,
however, current sensing platforms do not
satisfy these requirements. Manned missions
are generally expensive and tedious. Fixed
sensors, while individually inexpensive,
require large numbers to cover a significant

area. For these reasons, unmanned aquatic
robots have become a more popular platform
for research. Since most of these operate
underwater they often suffer from problems
with slow speed and power starvation,
restricting the area and length of time for
which it can collect data.

One solution to these problems is to deploy
sensors on autonomous yachts. Since a yacht
can move around while expending relatively
little energy, it has the potential for a much
greater range than a fixed sensor or a motor-
powered vehicle; furthermore, since a
sailboat has access to both wind and solar
power, it can produce energy to power itself
and any onboard environmental sensors [1].

The robotic yacht is still a young
technology. While a few groups have
already demonstrated autonomous sailing
for short periods, these projects lack a few
of the characteristics required for a long-
term sensing platform. One element these
boats tend to lack is a robust navigation
system. While many of these craft are
capable of sailing to a waypoint based on the
wind, they do not generally try to avoid
obstacles in their path. Conversely, there
have been a number of obstacle-avoidance
algorithms developed for different fields, but
these do not account for wind information in
the way a sailboat must. This project, then,
is an attempt to take the best of these earlier

results and build on them to create a
complete navigational system.

The Mighty Poseidon encounters a swan.

2 The Mighty Poseidon

The Roboboat project at University College
Dublin has developed the hardware for two
different autonomous yachts. The first is the
Mighty Poseidon, a converted remote-
control model boat used primarily for testing
in relatively sheltered water. The second is a
modified Laerling, a boat originally
designed for teaching children to sail. While
the Laerling is the more likely candidate for
a long-term research platform, it was
determined to be an inconvenient for
development both because the hardware had

yet to be finalised and because it is much
more time-consuming to deploy. The
Mighty Poseidon was therefore chosen as
the primary testing platform for this project.

2.1 Hardware

The Mighty Poseidon is a customized Robbe
Estelle, a model yacht produced in
Germany. The Robbe Estelle is about 1.1m
long, with a 37 cm beam – unusually wide
for a model boat of its size. This both
increases the stability of the craft and offers
more interior space for new hardware. It is
possible to control this boat with a remote
from shore like a standard RC sailboat. A
switch on this remote transfers control to a
Handy Board microcontroller onboard the
yacht. The Handy Board receives input from
a GPS, compass, speed sensor and wind
vane; it also controls actuators that adjust
the sails and rudder. It is connected to the
shore by a serial radio link.

2.2 Software

At the beginning of the project, the software
on the Mighty Poseidon was already capable
of maintaining a constant compass course
send to it from ashore. However, it does not
have the processing power to run a
pathfinding algorithm on a complex map. It
was decided the boat would feed the sensor
data to the shore, where a notebook would
run the pathfinding and send the course
information back to the boat.

At first, due to concern about the reliability
of the radio link, it was planned to send the
course information as a series of waypoints.
In this way, if the connection was lost as the
Mighty Poseidon came to a waypoint it
would already have the next destination
stored and thus be able to sail on
uninterrupted. Not only was this precaution
unnecessary – the radio link had much better

signal strength and range than expected – it
actually decreased the software’s reliability.
In variable winds the software needs to
regularly recalculate, and each recalculation
can involve sending several waypoints over
the radio link. This overloaded the link,
which caused an unacceptably high level of
packet loss. A search for alternatives led to
the idea of tracking waypoints exclusively
ashore and simply updating the course over
the radio link when it needs to be changed.
Since this involved sending fewer and
shorter packets, reliability was improved
immensely.

Other improvements to the Mighty
Poseidon’s software were made over the
course of the project as well. Among the
most significant of these were splitting up
the program into several processes and
reimplementing the methods used to send
and receive packets. This sped up the
program by ~40%, reduced the code size by
~20%, and increased the reliability of the
radio link.

3 Shore Software

The shore-based software includes the
pathfinding algorithm, a GUI for displaying
program and sensor data and collecting user
input, and various mechanisms for
communicating with the radio module. This
program was developed from scratch over
the course of the project.

3.1 Mapping System

Early in the planning stages for this project,
it was realized that to test the pathfinder in a
meaningful way one would need both a map
to test on and a way to display the map and
the paths found. These were therefore the
first aspects of the program developed.

3.1.1 Map Representation

This software treats a map
as a series of polygons, or
'coasts', organized into a
tree structure. If one coast
is contained within a
second, it is considered a
child of that second coast
(note that since each
coastline defines the
perimeter of an entire
island or body of water,
no two will ever overlap).
This tree structure has
proved useful for various
tasks, from drawing the
map to checking if a
certain point is in a
particular body of water.

These maps are stored in human-readable
text files. Each text file contains the overall
dimensions of the map, followed by a list of
coasts (in the order that a pre-order traversal
of the tree would produce). For each coast,
the file records the number of children, the
type ('water' or 'land'), and the list of
waypoints making it up.

3.1.2 Map File Creation

In the current implementation, this map
must be created by a human user. In the
original design, the user had to find
waypoints along the coastline manually on a
chart and enter them in. However, this was
found to be too labourious a process. An
auxiliary script was written to take a set of
paths from a .kml file exported from Google
Earth and format them as a map file. While
the user must still create the original .kml
file, Google Earth’s path-creation process is
both quick and intuitive, so maps can now
be produced much more quickly and
accurately. While it may ultimately be

Map structure.

desirable to completely automate this
process, that was decided to be too large a
task to fit within the scope of the current
project. It should also be noted that using a
human-defined map does not reduce the
ultimate autonomy of the robot, since in
either case the map remains static for the
time the boat is on the water.

3.2 Pathfinding Algorithm

There are three discrete stages to the
pathfinding algorithm. The first is a
preprocessing stage. When the program is
informed a boat is sailing in a given body of
water, it creates and stores a pathfinding
graph for that body of water. The second
stage is called whenever a new leg is added
to the route. It adds the start and destination
points of the route to the graph, then runs the
A* algorithm on the result. This generates a
series of waypoints, which is again stored.
The third, called whenever the boat reaches
a destination or the wind changes, first
checks if it is possible to sail directly to the
next waypoint. If so, the program instructs
the boat to sail directly there; if not, the
program finds a new point outside the no-
sail zone and directs the boat towards that.
Given the knowledge it has at a given time,
this algorithm guarantees a shortest route.

Note that the following will use planar
geometry as an approximation of the ocean
surface. This is generally quite a good
approximation, given that most journeys
take place over a relatively small portion of
the earth's surface. Nevertheless, if more
accuracy is desirable, the following can be
reformulated in spherical geometry without
significantly different results.

Note that while the result of the algorithm is
the shortest path, this does not necessarily
imply it is the quickest path. A sailboat is a
complex system, and it is perhaps likely that

in some situations, a different route might
result in a quicker journey. However, in the
circumstances for which this algorithm was
designed (coastal areas with reasonably
homogenous currents and winds throughout)
straight-line paths have been shown to be
faster than alternative steering methods,
such as maximising the velocity towards the
destination [2].

The proofs of various mathematical or
geometrical assertions have been omitted
due to space constraints. The omitted proofs
can either be found in the references or are
trivial enough to be left to the reader.

3.2.1 Generating the Graph

To generate a
pathfinding graph,
one must first
choose which points
will become nodes
of the graph.
Fortunately, it can
be mathematically
demonstrated that
the shortest route
between two points
(ignoring wind) will
consist of straight
lines, the endpoints
of which must be
either the start point,
the destination point,
or a convex vertex
of one of an obstacle
(or a concave vertex
of the containing

polygon). Given the coast containing the
sailboat, the program iterates through the
vertices marking the coast and then through
those of each of its children, collecting the
ones that may form part of the shortest
route. It then connects every pair of points
with a direct line between them. While this

is a slow operation (taking time proportional
to the cube of the number of vertices, in the
naïve implementation) it needs to be
performed only once each time the program
is run. The graph could easily be stored in
the map file as well, but the preprocessing
time is still short enough (a small fraction of
a second) that this step seemed unnecessary.

3.2.2 A*

The second stage is responsible for
calculating a shortest path through a
weighted graph. For this, the program uses
the A* algorithm, first described in 1968 [3].
A* is one of the few most popular
pathfinding algorithms, and for good reason.
Not only does this algorithm have the
desirable property of always finding the
shortest path between two nodes; but it
(provably) checks the fewest number of
nodes of any algorithm that uses the same
heuristic (method of estimating the distance
between each node and the goal) [4].
Luckily, an effective heuristic is available:
Euclidean distance, which is easily
calculable and already defined to be the
shortest possible route between two points.
The remaining challenge is to convert A*’s
output, which doesn’t account for wind, into
something that the boat can actually sail.

3.2.3 Tacking Algorithm

The tacking algorithm first checks if it is
possible to sail directly from the current
position to the destination. If it is, it instructs
the boat to do so.

The rest of the tacking algorithm is based on
the following diagram:

In this diagram, A and B are waypoints
found in the second step, C is the current
position of the boat, H and O are the closest
sailable headings on either side of B (usually
the port and starboard tacks), D is the
intersection, and p and q are regions of the
plane.

The algorithm makes use of the fact that
since A and B are connected nodes in the
graph, the line AB must be clear of
obstacles. The boat can travel for as far as it
likes on one tack (H, for example) – as long
as it can return to the line segment AB by
travelling on the other tack, the overall route
will be an optimal one. For each heading,
the algorithm finds the maximum distance it
can travel without: a) crossing a land
boundary, b) having land block the route
back to AB, c) overshooting the goal or d)
travelling too far from AB (to avoid
attempting to cross an ocean in a single tack,
for example). c) and d) are relatively simple
math. To perform the more complex a) and
b), the algorithm first determines which
obstacles are in areas p and q, and then
decides how far it can go without colliding
with the land. The following diagram
illustrates the latter step.

The red points are the relevant points of obstacles in
the tacking region (p or q). Note how the boat avoids

getting trapped behind the land mass.

Once this step has been completed, the
program has to choose which heading to
take. There are several methods of
arbitration between the two, the simplest of
which is simply to alternate between them
on successive tacks. However, the current
implementation selects the tack that it can
sail on for the longest without changing
direction. This has proven to give the best
results in both simulation and testing.

3.3 GUI

The pathfinder running on a map of UCD lake.

There are three sections to the GUI. The
upper left section (an instance of a Map
class) displays the current map and any
mappable objects, such as the boat. In an

early implementation, the Map class
contained both drawing methods for every
type of drawable object and the logic to
determine when they should be drawn. This
proved to be cumbersome and prone to bugs.
Now, it simply maintains a list of objects it
wishes to draw, which are all required to
implement the ‘Mappable’ interface. When
the map redraws itself, it simply requests
each item in that list to draw itself, in order.

This area is also used for selecting
coordinates. Other sections of the program
can capture and use this coordinate
information for various things, such as
adding waypoints. If nothing else captures
this information, the click recenters the map.
The scroll wheel on the mouse can be used
to zoom in and out. This interface is similar
to those used by Google Maps or Google
Earth, and was found to be intuitive to most
users.

The bottom left section is a text input and
output area, much in the vein of standard in
and out on the command line. This style was
chosen partly because of its familiarity to
most programmers and engineers and partly
to reduce the number of menus displayed on
the sidebar and the use of pop-up menus
(which slow down the program dramatically
on older machines).

The control panel, on the right, offers
various map, boat, and pathfinding controls
and information. The Map Settings area
simply displays the coordinates of the map
center and offers a scrollbar to display and
change the zoom level to those without a
mouse wheel.

The Boat Settings menu first contains a list
of currently added boats, as well as a facility
for adding new boats to the list. This allows
the user to control several boats from the
same program, should he or she wish to do

so. This section can be used either to control
a physical boat or a simulated one for testing
purposes. Below these, there is a graphical
display of the current wind direction
(including the no-sail zone around it) and
the boat’s current heading. It also prints the
speed and direction of the wind in knots.
This control can be used for setting the wind
speed and direction while in simulation
mode.

The Pathfinding Menu allows the user to
add waypoints to the boat’s path. It also lets
the user display the pathfinding grid, which
is useful for both debugging and
demonstration purposes.

4 Future Work

This software is only one of the necessary
components for a fully autonomous yacht. It
has also been implemented in a fashion
more suitable for testing than for
deployment. While the pathfinding system
was written to be fairly agnostic about the
surrounding implementation, so that the
relevant code could be easily added to a
more complex system, this has not yet been
done.

One of the simplest and most useful
improvements would be to have the
pathfinder running onboard the boat. This
would remove most of the dependence on
the radio, so that the boat could sail for an
arbitrarily long time without requiring
instructions. While the Mighty Poseidon has
too simple of a processor to run the
pathfinder on a significant map, either the
controller could be upgraded or the program
could simply be converted to run on the
Laerling, which has a full PC already
available.

In the long term, it would also be desirable
to calculate long-term routes based on

tradewinds, weather forecasts, currents and
tides. This would enable it to perform longer
missions over wider areas, but seriously
increases the complexity of the algorithm.

Another obvious addition to the system
would be a method of recognising dynamic
obstacles on-the-fly (other ships, for
example). While the algorithm should be
able to be modified relatively easily to take
in this new information, gathering the
information is not a simple process. Radar
systems have high power demands, making
them impractical for a small, self-powered
craft, and optical recognition is challenging
even in well-controlled environments.
Nevertheless, if these obstacles were to be
overcome, this would be a very valuable
addition to any navigation system.

5 Conclusion

Obstacle avoidance is one of the key
challenges for autonomous yachts. This
project has demonstrated that it is possible,
given relatively simple and easily available
technology, to build a robot capable of
navigating through relatively complex
environments in a variety of wind
conditions. This brings robotic sailboats one
step closer to being a useful – or perhaps
even the best – platform for collecting
environmental data at sea.

6 Acknowledgements

Sincere thanks are extended Aaron Quigley,
Gabriel Muntean and all those involved in
organising and running the ODCSSS
program – it has been an excellent
experience. Thanks also to Simon Dobson,
Lorcan Coyle and Olga Murdoch for their
supervision and mentorship, and to the
Roboboat team, particularly Brian Mulkeen
and Caoimhín Ó Briain, for all their help in
moving my work forward.

References

1. Cruz, N. A.; Alvez J. C. (2008). “Ocean sampling and surveillance using autonomous
sailboats”. Journal of the Österreichische Gesellshaft für Artificial Intelligence. 2 (27): 25-31.

2. Stelzer, R.; Pröll, T. (2008) “Autonomous Sailboat Navigation for Short Course Racing”.
Robotics and Autonomous Systems 4 (7): 604-614.

3. Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. IEEE Transactions on Systems Science and
Cybernetics SSC4 4 (2): 100–107.

4. Dechter, Rina; Judea Pearl (1985). "Generalized best-first search strategies and the optimality
of A*". Journal of the ACM 32 (3): 505–536.

	Ben Kirwin
	Abstract
	1 Introduction

