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7 Singular value decomposition 14

General remarks.

(a) This document is for personal use. Of course I wouldn’t mind if someone else uses
it as well, but use at your own risk ;-) Found errors? Kindly email me: first name
followed by last name at gmail dot com.

(b) The references given for each result is NOT necessarily the first place where the
result has been proven. But rather, I try to provide a reference which (i) has a
proof, and (ii) is easy to access, e.g. is available on-line, and is published.

(c) Another set of useful results can be found in [11, Part Four].
(d) All log’s are in base e.
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1 Function Approximations
(a)

exp(x) ≥ 1 + x ∀x,
exp(x) ≤ 1 + x+ x2 ∀x ∈ [0, 1.7932],

exp(−x− x2) ≤ 1− x ∀x ∈ [0, 0.6838].
(b)

log(1 + x) = x− x2

2 + x3

3 −
x4

4 + x5

5 − . . . ∀|x| < 1,

log(x) = (x− 1)− (x− 1)2

2 + (x− 1)3

3 − (x− 1)4

4 + . . . ∀|x− 1| < 1.

(c) Stirling’s formula ([9, equation 9.15 in Chapter II]):
√

2πn(n/e)n exp(1/(12n+ 1)) < n! <
√

2πn(n/e)n exp(1/12n) ∀n ∈ Z+ ,

which gives
logn! = n logn− n+ (log 2πn)/2 +O(1/n) .

For real n, [12, equation 8.327] or [1, equation 6.1.37] gives

Γ(x) = xx−1/2e−x
(

1 + 1
12x +O(x−2)

)√
2π ∀x > 0.

(d) Inequalities for the Gamma function: ([19, equation (2.2)])
Γ(x+ λ)
Γ(x+ 1) < (x+ λ/2)λ−1 ∀x ≥ 0, λ ∈ (0, 1) ∪ (2,∞) ,

and ([19, equation (2.3)])
Γ(x+ λ)
Γ(x+ 1) > (x+ λ/2)λ−1 ∀x ≥ 0, λ ∈ (1, 2) ,

(e) Harmonic numbers: For every positive integer n we have ([33])
1

2n+ 2 <
n∑
i=1

1
i
− logn− γ < 1

2n ,

where γ ≈ 0.57721 is Euler’s constant.
(f) If G is a connected n-vertex graph with maximum degree ∆ > 0 and diameter

D > 0, then the bound n < 2∆D follows e.g. from Moore bound, see https:
//en.wikipedia.org/wiki/Degree_diameter_problem

(g) This bound for binomial coefficient comes in handy:
∑k
i=0

(n
i

)
≤ (en/k)k holds for

all positive integers 1 ≤ k ≤ n, see [4, Exercise 2.14].
(h) [1, 7.1.13] Bounds for the standard Gaussian CDF: Let Z be Gaussian with mean

0 and variance 1. Then, for any t > 0 we have

e−t
2/2

t+
√
t2 + 4

≤
√
π/2 Pr(Z > t) ≤ e−t

2/2

t+
√
t2 + 8/π

.

See https://arxiv.org/pdf/1012.2063.pdf for more such bounds.
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2 Concentration Inequalities
(a) (Markov Inequality) If X is a nonnegative random variable then

Pr[X > t] < E[X]/t.

(b) (Chebyshev Inequality) If X is a nonnegative random variable then

Pr[|X − E[X]| > t] < Var[X]/t2.

(c) (Cramér’s Theorem [6, Theorem I.4 and Comments (1), (4), and (5) in Sec-
tion I.4]) Let X1, X2, . . . be i.i.d. real-valued random variables, and define

I(z) = sup{zt− logE
[
etX1

]
: t ∈ R}.

For any a > E[X1], as n grows we have

Pr(X1 + · · ·+Xn ≥ an) = exp((−I(a)± o(1))n),

and for any a < E[X1], as n grows we have

Pr(X1 + · · ·+Xn ≤ an) = exp((−I(a)± o(1))n),

2.1 Chernoff-Type Inequalities (sums of bounded variables)
Let X = X1 +X2 + · · ·+Xn with Xi be independent and bounded in [0, 1] and let µ =
E[X]. The following Chernoff-driven inequalities are true even if X = X1+X2+· · ·+Xn,
where X1, X2, . . . , Xn are bounded in [0, 1], and for all subsets S we have

Pr
[⋂
i∈S
{Xi = 1}

]
≤
∏
i∈S

Pr[Xi = 1].

(a) (Basic Chernoff Bound) Let p = µ/n.

Pr[X > (p+ t)n] <
[(

p

p+ t

)p+t( q

q − t

)q−t]n
,

and

Pr[X < (p− t)n] <
[(

q

q + t

)q+t( p

p− t

)p−t]n
.

Another, perhaps nicer way to write the above inequalities follows. Define

J(x, p) = x ln
(x
p

)
+ (1− x) ln

(1− x
1− p

)
, for (x, p) ∈ (0, 1)2.

Then for all x ∈ (0, p) we have

Pr(Zn < nx) < e−nJ(x,p),

and for all x ∈ (p, 1) we have

Pr(Zn > nx) < e−nJ(x,p).
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(b) ([8] Theorem 1.1)

Pr[X > µ+ t],Pr[X < µ− t] < exp(−2t2/n) ∀t > 0,

and
Pr[X < (1− ε)µ] < exp(−ε2µ/2) ∀ε > 0,

and
Pr[X > t] < 2−t ∀0 < t < 2eµ.

(c) ([24] Theorem 2.3(b)) For all ε > 0,

Pr[X ≥ (1+ε)µ] ≤ exp(µ(ε−(1+ε) log(1+ε))) ≤ exp
(
− ε2µ

2 + 2ε/3

)
≤ exp(−ε2(1−ε)µ/2),

and the leftmost inequality gives

Pr[X ≥ (1 + ε)µ] < exp(−µε2/3) ∀ 0 < ε ≤ 1.81,

and (see [28, Exercise 4.1])

Pr[X > (1 + ε)µ] < 2−(1+ε)µ ∀ ε > 2e− 1 .

Moreover, (see [5, Theorem 2.17])

Pr[X < εµ] < exp(−µ+ 2µε(1− log ε)) ∀ 0 ≤ ε ≤ 1/e .

(d) ([29] Lemma 1.1) Define H : [0,∞) → [0,∞) as H(0) := 0 and H(a) := 1 − a +
a log a. Let p ∈ (0, 1) and 0 < k < n. If k ≥ µ then

Pr[X ≥ k] ≤ exp(−µH(k/µ)),

and if k ≤ µ then
Pr[X ≤ k] ≤ exp(−µH(k/µ)).

Finally, if k ≥ e2µ then

Pr[X ≥ k] ≤ exp
(
−k2 log(k/µ)

)
.

(e) ([8] Theorem 1.2, Bernstein’s inequality) Let X1, . . . , Xn be independent with Xi−
E[Xi] ≤ b for all i. Let X =

∑
Xi and let σ2 be the variance of X. For any t > 0,

Pr[X > E[X] + t] ≤ exp
(
− t2

2σ2(1 + bt/3σ2)

)
.
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(f) ([30] Theorem 5) If X is the sum of k-wise independent random variables taking
values in [0, 1], and µ = E[X], then

Pr(|X − µ| > εµ) < exp(−bk/2c) ∀ε ≤ 1, k ≤ bε2µe−1/3c
Pr(|X − µ| > εµ) < exp(−bε2µ/3c) ∀ε ≤ 1, k ≥ bε2µe−1/3c
Pr(|X − µ| > εµ) < exp(−bk/2c) ∀ε ≥ 1, k ≤ bεµe−1/3c
Pr(|X − µ| > εµ) < exp(−bεµ/3c) ∀ε ≥ 1, k ≥ bεµe−1/3c
Pr(|X − µ| > εµ) < exp(−ε ln(1 + ε)µ/2) < exp(−εµ/3) ∀ε ≥ 1, k ≥ dεµe

(g) ([3] Lemmas 2.2 and 2.3) Let k be an even integer, and let X be the sum of n
k-wise independent random variables taking values in [0, 1]. Let µ = E[X] and
a > 0. Then we have

Pr[|X − µ| > a] < 1.0004
(
nk

a2

)k/2

Pr[|X − µ| > a] < 8
(
kµ+ k2

a2

)k/2

.

2.2 Martingale-Based Inequalities

(a) ([24] Theorem 3.1) Let −→X = (X1, X2, . . . , Xn), where Xi’s are independent
random variables, with Xi ∈ Ai. Suppose that the real-valued function f defined
on
∏
Ai satisfies

|f(−→x )− f(−→y )| ≤ ci,

whenever the vectors −→x and −→y differ only in the i-th coordinate. Then for any
t ≥ 0,

Pr
(
f
(−→
X
)
− E

[
f
(−→
X
)]
< −t

)
,Pr

(
f
(−→
X
)
− E

[
f
(−→
X
)]
> t
)
< exp

(
−2t2/

∑
c2
i

)
.

(b) ([24] Theorem 3.7) Let −→X = (X1, X2, . . . , Xn), where Xi’s are random variables,
with Xi ∈ Ai. Suppose that the real-valued function f defined on

∏
Ai satisfies

|E[f |X1 = a1, . . . , Xi−1 = ai−1, Xi = xi]− E[f |X1 = a1, . . . , Xi−1 = ai−1, Xi = yi]| ≤ ci,

for all a1, a2, . . . , ai−1, xi, yi for which the LHS is well-defined. Then for any t ≥ 0,

Pr
(
f
(−→
X
)
− E

[
f
(−→
X
)]
< −t

)
,Pr

(
f
(−→
X
)
− E

[
f
(−→
X
)]
> t
)
< exp

(
−2t2/

∑
c2
i

)
.

(c) ([8] Theorem 5.2, Azuma-Hoeffding inequality for supermartingales) Let
X0, . . . , Xn be random variables, and

Yi = gi(X0, X1, . . . , Xi) i = 0, 1, . . . , n

be such that
E[Yi|X0, . . . , Xi] ≤ Yi−1 ∀1 ≤ i ≤ n.
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Suppose further that

ai ≤ Yi − Yi−1 ≤ bi ∀1 ≤ i ≤ n.

Then for any t ≥ 0,

Pr(Yn > Y0 + t] < exp
(
−2t2/

∑
(bi − ai)2

)
.

(d) ([25] Azuma-Hoeffding inequality for centering sequences) Let 0 = X0, X1,
X2, . . . , Xn be a sequence and let Yk = Xk − Xk−1 for 1 ≤ k ≤ n. Assume that
E[Yk|Xk−1 = x] is a non-increasing function of x. (If this condition is satisfied
then (Xi) is called a centering sequence.)
(a) (Theorem 2.2 in [25]) If 0 ≤ Yk ≤ 1 for each k, then

Pr[Xn −E[Xn] > t] < exp(−2t2/n) ∀t > 0,
Pr[Xn −E[Xn] < −t] < exp(−2t2/n) ∀t > 0,

Pr[Xn > (1 + ε)E[Xn]] < exp(−ε2E[Xn]/3) ∀0 < ε ≤ 1,
Pr[Xn < (1− ε)E[Xn]] < exp(−ε2E[Xn]/2) ∀0 < ε ≤ 1.

(b) (Theorem 2.3 in [25]) If ak ≤ Yk ≤ bk for all k, then for any t > 0,

Pr[Xn −E[Xn] > t] < exp
(
−2t2/

∑
(bk − ak)2

)
,

Pr[Xn −E[Xn] < −t] < exp
(
−2t2/

∑
(bk − ak)2

)
.

(c) (Concluding remarks of [25]) If ak ≤ Yk ≤ bk for all k, then for any t > 0,

Pr[|Xn −E[Xn]| > t] <
(∑

(bk − ak)2

2t

)2

.

(This may be better than (b) only for very small t > 0.)

More inequalities of the type given in Sections 2.1 and 2.2 can be found in [5, Chap-
ter 2].

2.3 Sums of Poisson variables
Let X ∼ Po(λ).

(a) ([2] Theorem A.1.15)

Pr[X < (1− ε)λ] < exp(ε2λ/2),
Pr[X > (1 + ε)λ] < exp(λ(ε− (1 + ε) log(1 + ε))).
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(b) ([29] Lemma 1.2) Let H(a) := 1− a+ a log a, k, λ > 0. If k ≥ λ then

Pr[X ≥ k] ≤ exp(λH(k/λ)),

and if k ≤ k then
Pr[X ≤ k] ≤ exp(λH(k/λ)),

and if k ≥ e2λ then
Pr[X ≥ k] ≤ exp

(
−k2 log(k/λ)

)
.

(c) ([32, Exercise 2.7]) Let X1, X2, . . . be independent Poisson variables with mean
λ, and let I(a) = a log(a/λ)− a+ λ. If a > λ then

Pr(X1 + · · ·+Xn ≥ na) ≤ e−nI(a),

and if a < λ then
Pr(X1 + · · ·+Xn ≤ na) ≤ e−nI(a).

Moreover, I(a) > 0 for all a 6= λ.

2.4 Sums of exponential variables
Note: for some clean lower and upper bounds for sums of exponentials and sums of geo-
metrics, see Janson’s paper, TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EX-
PONENTIAL VARIABLES, available at http://www2.math.uu.se/~svante/papers/
sjN14.pdf

(a) ([27, Lemma 6]) Let Υ(x) = x−1−log(x) and let E1, E2, . . . , Em be independent
exponential random variables with mean 1. For any fixed 0 < x < 1, as m → ∞
we have

exp(−Υ(x)m− o(m)) ≤ Pr(E1 + E2 + · · ·+ Em ≤ xm) ≤ exp(−Υ(x)m)

(this is what Cramér’s Theorem gives, so is almost tight).

2.5 Sums of geometric variables
Let p ∈ (0, 1) and let Z1, Z2, . . . , Zm be independent geometric random variables with
parameter p and mean 1/p, namely for every positive integer s, Pr(Z1 = s) = (1−p)s−1p.

(a) ([27, Lemma 7]) If r ≥ 1/p, then Pr(Z1 + Z2 + · · ·+ Zm ≥ rm) ≤
(
rrp(1− p)r−1(r − 1)1−r)m

(this is what Cramér’s Theorem gives, so is almost tight).
(b) ([10, Lemma 21]) For any ε > 0,

Pr
(
Z1 + · · ·+ Zm ≥ (1 + ε)m

p

)
≤ exp

(
− ε2

2(1 + ε)m
)
.
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3 Correlation Inequalities
The treatment here is from [15, Section 5], which is essentially the same as that in [14,
Section 4] and [13, Section 2]. Let E be a finite non-empty set, and let Ω = ΩE = {0, 1}E .
A probability distribution µ on ΩE is called positive if µ(ω) > 0 for all ω ∈ ΩE . For
a, b ∈ ΩE , max{a, b} and min{a, b} denote the component-wise maximum and minimum
(i.e. bit-wise OR and bit-wise AND). A random variable X : ΩE → R is increasing
if flipping a bit from 0 to 1 does not decrease the value of X. An event A ⊆ ΩE is
increasing if its indicator function is increasing.

(a) (FKG inequality, Theorem 5.1 in [15]) Let µ be a positive probability distri-
bution on ΩE such that for all a, b ∈ ΩE ,

µ(max{a, b})µ(min{a, b}) ≥ µ(a)µ(b) . (1)

(For example, the product measure is positive and satisfies this condition.) Then
for any increasing random variables X and Y ,

E[[]µ]XY ≥ E[[]µ]XE[[]µ]Y .

For example, if A and B are increasing events, FKG inequality gives µ(A ∩ B) ≥
µ(A)µ(B).

(b) (Holley’s inequality, Theorem 5.5 in [15]) Let µ1 and µ2 be positive proba-
bility distributions on ΩE such that for all a, b ∈ ΩE ,

µ1(max{a, b})µ2(min{a, b}) ≥ µ1(a)µ2(b) .

Then for any increasing random variable X,

E[[]µ1]X ≥ E[[]µ2]X .

For the following two inequalities, we consider the product measure on ΩE : suppose
{pe}e∈E are given, and define

P[ω] :=
∏

e:ω(e)=1
pe

∏
e:ω(e)=0

(1− pe) .

(c) (BK inequality, [15, Theorem 5.11]) For F ⊆ E and ω ∈ ΩE define ωF ∈ ΩE

as

ωF (e) =
{
ω(e) if e ∈ F
0 if e /∈ F ,

and for increasing events A and B define

A ◦B :=
{
ω : there exists F ⊆ E such that ωF ∈ A and ωE\F ∈ B

}
.

(The canonical example in percolation theory is the existence of edge-disjoint
paths.)
Then, for increasing events A and B we have

Pr(A ◦B) ≤ Pr(A) Pr(B) .
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(d) (Reimer’s inequality, [15, Theorem 5.12]) For ω ∈ ΩE and F ⊆ E define the
cylinder event

C(ω, F ) = {ω′ : ω′(e) = ω(e) for e ∈ F} ,

and for events A and B define

A�B = {ω : there exists F ⊆ E such that C(ω, F ) ⊆ A and C(ω,E \ F ) ⊆ B} .

In words, this is the set of ω for which there exists F ⊆ E such that agreeing with
ω on F guarantees A happens, and agreeing on E \F guarantees B happens. Then
for any two events A and B we have

Pr(A�B) ≤ Pr(A) Pr(B) .

4 Other Probability Bounds
(a) ([2] Theorems 8.1.1 and 8.1.2, The (Extended) Janson Inequality) Let Ω

be a finite universal set, and let R be a random subset of Ω given by Pr[r ∈ R] = pr,
these events mutually independent. Let A1, . . . , An be subsets of Ω, and Bi be the
event Ai ⊆ R. Write i ∼ j if i 6= j and Ai ∩Aj 6= ∅. Let

∆ =
∑
i<j

Pr[Bi AND Bj ],M =
∏

(1−Pr[Bi]), µ =
∑

Pr[Bi],

and assume that Pr[Bi] ≤ ε for all i. Then

M ≤ Pr[no Bi occurs] ≤M exp
( ∆

1− ε

)
,

and
Pr[no Bi occurs] ≤ exp(∆− µ).

If also ∆ ≥ µ then

Pr[no Bi occurs] ≤ exp
(
− µ

2

4∆

)
.

5 Eigenvalues of graphs, random walks and graph expansion
It is known that for a given graph, there are connections between combinatorial expan-
sion, mixing rate of random walks, and eigenvalues. Here are some relevant results. For
other results and references, see [22, Section 3] (a 1995 survey, perhaps not up to date!).
Let P denote the transition probability matrix of an irreducible reversible Markov

chain with finite state space X, and suppose the spectrum of P is

1 = λ1 > λ2 ≥ · · · ≥ λ|X| ≥ −1.

The facts that all eigenvalues are real and lie in [−1, 1] are well known (see, e.g., [7,
first page]). (Also, λ|X| > −1 if and only if the chain is aperiodic.) Let π denote
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the stationary distribution, and for S ⊆ X define π(S) :=
∑
x∈S π(x), and let πmin :=

min{π(x) : x ∈ X}. The total variation distance between two distributions µ and π is

‖µ− π‖ = max{|µ(A)− π(A)| : A ⊆ X} = 1
2
∑
x∈X
|µ(x)− π(x)| .

We define the conductance of the chain as

Φ := min
{∑

(x,y)∈S×Sc π(x)P (x, y)
π(S) : S ⊆ X, 0 < π(S) ≤ 1/2

}
(2)

A reversible Markov chain is equivalent to a random walk on a weighted undirected
graph (with all weights positive, and with possible self-loops, but no parallel edges). The
chain is irreducible/aperiodic if and only if the graph is connected/non-bipartite. The
transition probability matrix is also called the random walk matrix of the underlying,
possibly weighted, graph.
Now consider a simple random walk on an unweighted graph. This corresponds to

choosing all weights to be 1. The stationary distribution is π(x) = deg(x)/(2|E(G)|).
The difference 1−λ2 is called the spectral gap of the graph. Graphs with larger spectral
gaps expand better. The formula for Φ simplifies into

Φ := min
{

e(S, Sc)∑
x∈S deg(x) : S ⊆ X, 0 <

∑
x∈S

deg(x) ≤ |E(G)|
}
, (3)

where e(S, Sc) denotes the number of edges between S and Sc.
If G is also d-regular, everything simplifies further. The stationary distribution is

simply π(x) = 1/n. The random walk matrix is simply 1
dA, where A is the adjacency

matrix. The formula for Φ simplifies into

Φ := min
{
e(S, Sc)
d|S|

: S ⊆ X, 0 < |S| ≤ n/2
}
. (4)

5.1 Eigenvalues and mixing of random walks
(a) [7, Proposition 3] For all x ∈ X and all positive integer m,

‖Pm(x, ·)− π‖ ≤
√

1− π(x)
4π(x) max{|λ2|, |λ|X||}m ≤

√
1

4πmin
max{|λ2|, |λ|X||}m

[21, Theorem 2.12] For all x ∈ X, A ⊆ X and positive integer m,

|Pr(Pm(x,A))− π(A)| ≤
√
π(A)
π(x) max{|λ2|, |λ|X||}m

In applications, the appearance of the smallest eigenvalue λ|X| is usually not im-
portant, and what we need to work on is bounding the eigenvalue gap 1−λ2. The
trick is the following: If the smallest eigenvalue is too small, then we can modify
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the walk as follows. At each step, we flip a coin and move with probability 1/2
and stay where we are with probability 1/2. The stationary distribution of this
modified walk is the same, and the transition matrix is replaced with 1

2(P + I).
For this modified walk, all eigenvalues are nonnegative, and the eigenvalue gap is
half of the original. So applying the theorem to this, we only lose a factor of 2.

(b) For α > 0, a continuous-time Markov chain with rate α is a Markov chain combined
with an exponential clock with parameter α: whenever the clock rings, the walk
moves to a random location using the transition matrix. Formally, for a starting
vertex x and t > 0, the probability that the walk is at vertex y at time t equals

Pt(x, y) = e−αt
∞∑
n=0

(αt)n

n! Pn(x, y).

[7, Proposition 3] For all x ∈ X and all positive t,

‖Pt(x, ·)− π‖ ≤
√

1− π(x)
4π(x) e−(1−λ2)αt ≤

√
1

4πmin
e−(1−λ2)αt

(c) ([16] Theorems 3.6, 3.9, and 3.10) Let G be a d-regular graph on n vertices,
and suppose |λ2|, |λn| ≤ α, and let B ⊆ V with |B| = βn. Let X0, X1, . . . , Xt be a
random walk on G, where X0 is chosen uniformly at random. Then we have

P[∀0 ≤ i ≤ t Xi ∈ B] ≤ (α+ β)t ,

and for every subset K ⊆ {0, . . . , t},

P[∀i ∈ K Xi ∈ B] ≤ (α+ β)|K|−1 ,

and if β > 6α then

β(β − 2α)t ≤ P[∀0 ≤ i ≤ t Xi ∈ B] ≤ β(β + 2α)t .

5.2 Eigenvalues and expansion
(a) [7, Proposition 6] If the Markov chain is aperiodic then

1− 2Φ ≤ λ2 ≤ 1− Φ2 .

If Markov chain is not aperiodic, one can consider its lazy version, hence [31,
Theorem 2]

1− 2Φ ≤ λ2 ≤ 1− Φ2/2 .

(b) Let G be a d-regular graph on n vertices (many of the results below can be extended
to general weighted graphs, but assuming regularity makes the formulae cleaner)
For S ⊆ V (G) define

φ(S) = e(S, Sc)
d|S|

.

12



For k ≥ 2 let

φk(G) = min{max{φ(Si) : i = 1, 2, . . . , k} : S1, S2, . . . , Sk partition V (G)} .

Then, [20, Theorem 3.8] gives

(1− λk)/2 ≤ φk(G) = O
(
k4√1− λk

)
.

Also, [18, Theorem 1] gives

φ2(G) = O
(
k(1− λ2)/

√
λk
)
.

Results in this item are algorithmic: i.e., the authors also give an algorithm for
finding partitions with “small” conductance.

6 Urn theory
6.1 Pólya-Eggenberger urns
Start with W0 white and B0 blue balls in an urn. In every step a ball is picked from the
urn uniformly at random, the ball is returned to the urn, and s balls of the same colour
are added to the urn. Let Wn denote the number of white balls after n draws, and let
τ0 = W0 +B0.

(a) ([26, Proposition 1]) For c ≥ (W0 +B0)/s we have

P[Wn = W0] ≤
(

c

c+ n

)W0/s

.

(b) ([23, Corollary 3.1])

E[Wn] = W0 + W0
τ0

sn ,

Var[Wn] = W0B0s
2n(sn+ τ0)

τ2
0 (τ0 + s)

.

(c) ([23, Theorem 3.2]) For any fixed x ∈ [0, 1] we have

lim
n→∞

P
[
Wn −W0

sn
≤ x

]
= P[β(W0/s,B0/s) ≤ x]

= Γ((W0 +B0)/s)
Γ(W0/s)Γ(B0/s)

∫ x

0
u−1+W0/s(1− u)−1+B0/sdu .

(d) ([17, page 181]) Let Z be a beta random variable with parameters W0/s and
B0/s. Then (Wn−W0)/s, the number of white draws, is distributed as a binomial
with parameters n and Z (so it has a mixture distribution). This follows from
above result and de Finetti’s theorem, since the draws are exchangeable.

13



7 Singular value decomposition
Let A be an n× d real matrix of rank r.

(a) There exist u1, . . . , ur ∈ Rn, called the left-singular vectors, and v1, . . . , vr ∈ Rd,
called the right-singular vectors, and σ1, . . . , σr > 0 such that

A =
∑

σiuiv
T
i = UDV T ,

where U = [u1 . . . ur], V = [v1 . . . vr], and D = diag(σ1, . . . , σr). Moreover, U and
V are orthogonal: UTU = I = V TV , and hence A−1 = V D−1UT .
For each i, vi is an eigenvector of ATA with an eigenvalue of σ2

i , and ui is an
eigenvector of AAT with an eigenvalue of σ2

i . The matrices AAT and ATA have
eigenvalues σ2

1, . . . , σ
2
r , plus possibly some zero eigenvalues. Finally, we have

‖A‖2F =
∑

A2
i,j =

∑
σ2
i .

(b) Suppose we arrange the σi such that

σ1 ≥ · · · ≥ σr .

Then, vi maximizes ‖Av‖2 subject to v having norm 1 and being orthogonal to
v1, . . . , vi−1. Similarly, ui maximizes ‖ATu‖2 subject to u having norm 1 and being
orthogonal to u1, . . . , ui−1. Also, we have Avi = σiui and ATui = σivi.
Let Ak =

∑k
i=1 σiuiv

T
i for some k ≤ r. Then, for any n × d matrix B of rank k,

we have √√√√ r∑
i=k+1

σ2
i = ‖A−Ak‖F ≤ ‖A−B‖F ,

σk+1 = ‖A−Ak‖2 ≤ ‖A−B‖2,

where ‖X‖2 denotes the operator norm (or spectral norm) of X, e.g. ‖A‖2 = σ1.

References
[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of mathematical func-

tions with formulas, graphs, and mathematical tables. A Wiley-Interscience Publi-
cation. John Wiley & Sons, Inc., New York; National Bureau of Standards, Wash-
ington, DC, 1984. Reprint of the 1972 edition, Selected Government Publica-
tions,available at http://people.math.sfu.ca/~cbm/aands/.

[2] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ,
third edition, 2008. With an appendix on the life and work of Paul Erdős.

14

http://people.math.sfu.ca/~cbm/aands/


[3] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings
of the 35th Annual Symposium on Foundations of Computer Science, pages 276–287,
Washington, DC, USA, 1994. IEEE Computer Society.

[4] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequal-
ities: A nonasymptotic theory of independence. Oxford University Press, Oxford,
2013.

[5] Fan Chung and Linyuan Lu. Complex graphs and networks, volume 107 of CBMS
Regional Conference Series in Mathematics. Published for the Conference Board of
the Mathematical Sciences, Washington, DC, 2006. first 3 chapters are available at
http://www.math.ucsd.edu/~fan/complex/.

[6] Frank den Hollander. Large deviations, volume 14 of Fields Institute Monographs.
American Mathematical Society, Providence, RI, 2000.

[7] Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of Markov
chains. Ann. Appl. Probab., 1(1):36–61, 1991.

[8] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, Cambridge, 2009.

[9] William Feller. An introduction to probability theory and its applications. Vol. I.
Third edition. John Wiley & Sons, Inc., New York-London-Sydney, 1968.

[10] Tobias Friedrich, Thomas Sauerwald, and Alexandre Stauffer. Diameter and broad-
cast time of random geometric graphs in arbitrary dimensions. Algorithmica,
67(1):65–88, 2013.

[11] Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge
University Press, 2015. Book in preparation, available at http://www.math.cmu.
edu/~af1p/Book.html.

[12] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Academic
Press, Inc., San Diego, CA, sixth edition, 2000. Translated from the Russian,
Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.

[13] Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, second edition, 1999.

[14] Geoffrey Grimmett. Probability on graphs, volume 1 of Institute of Mathemati-
cal Statistics Textbooks. Cambridge University Press, Cambridge, 2010. Random
processes on graphs and lattices, available at http://www.statslab.cam.ac.uk/
~grg/books/pgs.html.

[15] Geoffrey Grimmett. Percolation and disordered systems. In Percolation theory at
Saint-Flour, Probab. St.-Flour, pages 141–303. Springer, Heidelberg, 2012.

15

http://www.math.cmu.edu/~af1p/Book.html
http://www.statslab.cam.ac.uk/~grg/books/pgs.html
http://www.math.cmu.edu/~af1p/Book.html
http://www.statslab.cam.ac.uk/~grg/books/pgs.html
http://www.math.ucsd.edu/~fan/complex/


[16] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their appli-
cations. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561 (electronic), 2006. available
at http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf.

[17] Norman L. Johnson and Samuel Kotz. Urn models and their application. John
Wiley & Sons, New York-London-Sydney, 1977. An approach to modern discrete
probability theory, Wiley Series in Probability and Mathematical Statistics.

[18] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Tre-
visan. Improved cheeger’s inequality: analysis of spectral partitioning algorithms
through higher order spectral gap. In Proceedings of the 45th annual ACM sympo-
sium on Symposium on theory of computing, STOC ’13, pages 11–20, New York,
NY, USA, 2013. ACM.

[19] A. Laforgia. Further inequalities for the gamma function. Mathematics of Compu-
tation, 42(166):597–600, 1984.

[20] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-way spectral parti-
tioning and higher-order cheeger inequalities. In Proceedings of the 44th symposium
on Theory of Computing, STOC ’12, pages 1117–1130, New York, NY, USA, 2012.
ACM.

[21] László Lovász. Eigenvalues of graphs. available in www.cs.elte.hu/~lovasz/
eigenvals-x.pdf, November 2007.

[22] László Lovász and Peter Winkler. Mixing of random walks and other diffusions
on a graph. In Peter Rowlinson, editor, Surveys in Combinatorics, 1995, pages
119–154. Cambridge University Press, New York, NY, USA, 1995. available in
http://www.cs.elte.hu/~lovasz/morepapers/stirl.pdf.

[23] Hosam M. Mahmoud. Pólya urn models. Texts in Statistical Science Series. CRC
Press, Boca Raton, FL, 2009.

[24] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete
mathematics, volume 16 of Algorithms Combin., pages 195–248. Springer, Berlin,
1998. available at http://www.stats.ox.ac.uk/people/academic_staff/colin_
mcdiarmid/?a=4139.

[25] Colin McDiarmid. Centering sequences with bounded differences. Comb. Probab.
Comput., 6:79–86, March 1997.

[26] A. Mehrabian and A. Pourmiri. Randomized rumor spreading in poorly connected
small-world networks. In F. Kuhn, editor, Distributed Computing (DISC ’14), vol-
ume 8784 of Lecture Notes in Computer Science, pages 346–360. Springer Berlin
Heidelberg, 2014.

[27] Abbas Mehrabian and Nick Wormald. It’s a small world for random surfers. arXiv,
1404.7189v1 [cs.DM], 2014.

16

http://www.stats.ox.ac.uk/people/academic_staff/colin_mcdiarmid/?a=4139
http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf
http://www.stats.ox.ac.uk/people/academic_staff/colin_mcdiarmid/?a=4139
www.cs.elte.hu/~lovasz/eigenvals-x.pdf
www.cs.elte.hu/~lovasz/eigenvals-x.pdf
http://www.cs.elte.hu/~lovasz/morepapers/stirl.pdf


[28] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
University Press, New York, NY, USA, 1995.

[29] Mathew Penrose. Random geometric graphs, volume 5 of Oxford Studies in Proba-
bility. Oxford University Press, Oxford, 2003.

[30] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding
bounds for applications with limited independence. SIAM J. Discrete Math.,
8(2):223–250, 1995.

[31] Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multi-
commodity flow. Combin. Probab. Comput., 1(4):351–370, 1992.

[32] Remco van der Hofstad. Random graphs and complex networks. Lecture notes in
preparation, available at http://www.win.tue.nl/~rhofstad/, June 2014.

[33] Robert M. Young. 75.9 euler’s constant. The Mathematical Gazette, 75(472):pp.
187–190, 1991.

17

http://www.win.tue.nl/~rhofstad/


Pages below are taken from the homepage of László Kozma.

18



Useful Inequalities {x2
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Cauchy-Schwarz

(

n
∑

i=1
xiyi

)2

≤
(

n
∑

i=1
x2
i

)(

n
∑

i=1
y2i

)

Minkowski

(

n
∑

i=1
|xi + yi|p

) 1
p

≤
(

n
∑

i=1
|xi|p

) 1
p

+

(

n
∑

i=1
|yi|p

) 1
p

for p ≥ 1.

Hölder
n
∑

i=1
|xiyi| ≤

(

n
∑

i=1
|xi|p

)1/p (

n
∑

i=1
|yi|q

)1/q

for p, q > 1, 1
p
+ 1

q
= 1.

Bernoulli (1 + x)r ≥ 1 + rx for x ≥ −1, r ∈ R \ (0, 1). Reverse for r ∈ [0, 1].

(1 + x)r ≤ 1 + (2r − 1)x for x ∈ [0, 1], r ∈ R \ (0, 1).

(1 + x)n ≤ 1
1−nx

for x ∈ [−1, 0], n ∈ N.

(1 + x)r ≤ 1 + rx
1−(r−1)x

for x ∈ [−1, 1
r−1

), r > 1.

(1 + nx)n+1 ≥ (1 + (n+ 1)x)n for x ∈ R, n ∈ N.

(a+ b)n ≤ an + nb(a+ b)n−1 for a, b ≥ 0, n ∈ N.
(

1 + x
p

)p ≥
(

1 + x
q

)q
for (i) x > 0, p > q > 0,

(ii) − p < −q < x < 0, (iii) − q > −p > x > 0. Reverse for:

(iv) q < 0 < p , −q > x > 0, (v) q < 0 < p , −p < x < 0.

exponential ex ≥
(

1 + x
n

)n ≥ 1 + x,
(

1 + x
n

)n ≥ ex
(

1− x2

n

)

for n > 1, |x| ≤ n.

ex ≥ xe for x ∈ R, and xn

n!
+ 1 ≤ ex ≤

(

1 + x
n

)n+x/2
for x, n > 0.

ex ≥ 1 + x+ x2

2
for x ≥ 0, reverse for x ≤ 0.

e−x ≤ 1− x
2

for x ∈ [0,∼ 1.59] and 2−x ≤ 1− x
2

for x ∈ [0, 1].

1
2−x

< xx < x2 − x+ 1 for x ∈ (0, 1).

x1/r(x− 1) ≤ rx(x1/r − 1) for x, r ≥ 1.

xy + yx > 1 and ex >
(

1 + x
y

)y
> e

xy
x+y for x, y > 0.

2− y − e−x−y ≤ 1 + x ≤ y + ex−y , and ex ≤ x+ ex
2

for x, y ∈ R.

logarithm x−1
x

≤ ln(x) ≤ x2−1
2x

≤ x− 1, ln(x) ≤ n(x
1
n − 1) for x, n > 0.

2x
2+x

≤ ln(1 + x) ≤ x√
x+1

for x ≥ 0, reverse for x ∈ (−1, 0].

ln(n+ 1) < ln(n) + 1
n

≤
∑n

i=1
1
i
≤ ln(n) + 1

ln(1 + x) ≥ x
2

for x ∈ [0,∼ 2.51], reverse elsewhere.

ln(1 + x) ≥ x− x2

2
+ x3

4
for x ∈ [0,∼ 0.45], reverse elsewhere.

ln(1− x) ≥ −x− x2

2
− x3

2
for x ∈ [0,∼ 0.43], reverse elsewhere.

trigonometric x− x3

2
≤ x cosx ≤ x cos x

1−x2/3
≤ x 3

√
cosx ≤ x− x3/6 ≤ x cos x√

3
≤ sinx,

hyperbolic x cosx ≤ x3

sinh2 x
≤ x cos2 (x/2) ≤ sinx ≤ (x cosx+ 2x)/3 ≤ x2

sinh x
,

2
π
x ≤ sinx ≤ x cos(x/2) ≤ x ≤ x+ x3

3
≤ tanx all for x ∈

[

0, π
2

]

.

cosh(x) + α sinh(x) ≤ ex(α+x/2) for x ∈ R, α ∈ [−1, 1].

binomial max {nk

kk ,
(n−k+1)k

k!
} ≤

(n
k

)

≤ nk

k!
≤ (en)k

kk and
(n
k

)

≤ nn

kk(n−k)n−k ≤ 2n.

nk

4k!
≤

(n
k

)

for
√
n ≥ k ≥ 0 and 4n√

πn
(1− 1

8n
) ≤

(2n
n

)

≤ 4n√
πn

(1− 1
9n

).

(n1
k1

)(n2
k2

)

≤
(n1+n2
k1+k2

)

for n1 ≥ k1 ≥ 0, n2 ≥ k2 ≥ 0.
√
π
2

G ≤
( n
αn

)

≤ G for G = 2nH(α)√
2πnα(1−α)

, H(x) = − log2(x
x(1−x)1−x).

∑d
i=0

(n
i

)

≤ nd + 1 and
∑d

i=0

(n
i

)

≤ 2n for n ≥ d ≥ 0.
∑d

i=0

(n
i

)

≤
(

en
d

)d
for n ≥ d ≥ 1.

∑d
i=0

(n
i

)

≤
(n
d

)(

1 + d
n−2d+1

)

for n
2
≥ d ≥ 0.

( n
αn

)

≤
∑αn

i=0

(n
i

)

≤ 1−α
1−2α

( n
αn

)

for α ∈ (0, 1
2
).

square root 2
√
x+ 1− 2

√
x < 1√

x
<

√
x+ 1−

√
x− 1 < 2

√
x− 2

√
x− 1 for x ≥ 1.

Stirling e
(

n
e

)n ≤
√
2πn

(

n
e

)n
e1/(12n+1) ≤ n! ≤

√
2πn

(

n
e

)n
e1/12n ≤ en

(

n
e

)n

means min{xi} ≤ n
∑

i x−1
i

≤
(
∏

i xi

)1/n ≤ 1
n

∑

i xi ≤
√

1
n

∑

i xi
2 ≤ max{xi}

power means Mp ≤ Mq for p ≤ q, where Mp =
(
∑

i wi|xi|p
)1/p

, wi ≥ 0,
∑

i wi = 1.

In the limit M0 =
∏

i |xi|wi , M−∞ = mini{xi}, M∞ = maxi{xi}.

Lehmer

∑

i wi|xi|p
∑

i wi|xi|p−1
≤

∑

i wi|xi|q
∑

i wi|xi|q−1
for p ≤ q, wi ≥ 0.

log mean
√
xy ≤

(√
x+

√
y

2

)

(xy)
1
4 ≤ x−y

ln(x)−ln(y)
≤

(√
x+

√
y

2

)2
≤ x+y

2
for x, y > 0.

Heinz
√
xy ≤ x1−αyα+xαy1−α

2
≤ x+y

2
for x, y > 0, α ∈ [0, 1].

Maclaurin- Sk
2 ≥ Sk−1Sk+1 and k

√

Sk ≥ (k+1)
√

Sk+1 for 1 ≤ k < n,

Newton Sk = 1
(

n
k

)

∑

1≤i1<···<ik≤n

ai1ai2 · · · aik , and ai ≥ 0.

Jensen ϕ
(
∑

i pixi

)

≤
∑

i piϕ (xi) where pi ≥ 0,
∑

pi = 1, and ϕ convex.

Alternatively: ϕ (E [X]) ≤ E [ϕ(X)]. For concave ϕ the reverse holds.

Chebyshev
n
∑

i=1
f(ai)g(bi)pi ≥

(

n
∑

i=1
f(ai)pi

)(

n
∑

i=1
g(bi)pi

)

≥
n
∑

i=1
f(ai)g(bn−i+1)pi

for a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn and f, g nondecreasing, pi ≥ 0,
∑

pi = 1.

Alternatively: E
[

f(X)g(X)
]

≥ E
[

f(X)
]

E
[

g(X)
]

.

rearrangement
n
∑

i=1
aibi ≥

n
∑

i=1
aibπ(i) ≥

n
∑

i=1
aibn−i+1 for a1 ≤ · · · ≤ an,

b1 ≤ · · · ≤ bn and π a permutation of [n]. More generally:

n
∑

i=1
fi(bi) ≥

n
∑

i=1
fi(bπ(i)) ≥

n
∑

i=1
fi(bn−i+1)

with
(

fi+1(x)− fi(x)
)

nondecreasing for all 1 ≤ i < n.



Weierstrass
∏

i

(

1− xi

)wi ≥ 1−∑

i wixi where xi ≤ 1, and

either wi ≥ 1 (for all i) or wi ≤ 0 (for all i).

If wi ∈ [0, 1],
∑

wi ≤ 1 and xi ≤ 1, the reverse holds.

Young ( 1
pxp + 1

qxq )
−1 ≤ xy ≤ xp

p
+ yq

q
for x, y ≥ 0, p, q > 0, 1

p
+ 1

q
= 1.

Kantorovich
(
∑

i xi
2
) (

∑

i yi
2
)

≤
(

A
G

)2 (
∑

i xiyi
)2

for xi, yi > 0,

0 < m ≤ xi

yi
≤ M < ∞, A = (m+M)/2, G =

√
mM .

sum-integral
∫ U
L−1 f(x) dx ≤

∑U
i=L f(i) ≤

∫ U+1
L f(x) dx for f nondecreasing.

Cauchy ϕ′(a) ≤ f(b)−f(a)
b−a

≤ ϕ′(b) where a < b, and ϕ convex.

Hermite ϕ
(

a+b
2

)

≤ 1
b−a

∫ b
a ϕ(x) dx ≤ ϕ(a)+ϕ(b)

2
for ϕ convex.

Chong
n
∑

i=1

ai

aπ(i)
≥ n and

n
∏

i=1
ai

ai ≥
n
∏

i=1
ai

aπ(i) for ai > 0.

Gibbs
∑

i ai log
ai

bi
≥ a log a

b
for ai, bi ≥ 0, or more generally:

∑

i aiϕ
( bi
ai

)

≤ a ϕ
(

b
a

)

for ϕ concave, and a :=
∑

ai, b :=
∑

bi.

Shapiro
n
∑

i=1

xi

xi+1+xi+2
≥ n

2
where xi > 0, (xn+1, xn+2) := (x1, x2),

and n ≤ 12 if even, n ≤ 23 if odd.

Schur xt(x− y)(x− z) + yt(y − z)(y − x) + zt(z − x)(z − y) ≥ 0

where x, y, z ≥ 0, t > 0

Hadamard (detA)2 ≤
n
∏

i=1

n
∑

j=1
A2

ij where A is an n× n matrix.

Schur
∑n

i=1 λ
2
i ≤

∑n
i,j=1 A

2
ij and

∑k
i=1 di ≤

∑k
i=1 λi for 1 ≤ k ≤ n.

A is an n× n matrix. For the second inequality A is symmetric.

λ1 ≥ · · · ≥ λn the eigenvalues, d1 ≥ · · · ≥ dn the diagonal elements.

Ky Fan

∏n
i=1 x

ai
i

∏n
i=1(1− xi)ai

≤
∑n

i=1 aixi
∑n

i=1 ai(1− xi)
for xi ∈ [0, 1

2
], ai ∈ [0, 1],

∑

ai = 1.

Aczél
(

a1b1 −∑n
i=2 aibi

)2 ≥
(

a21 −∑n
i=2 a

2
i

)(

b21 −∑n
i=2 b

2
i

)

given that a21 >
∑n

i=2 a
2
i or b21 >

∑n
i=2 b

2
i .

Mahler
n
∏

i=1

(

xi + yi
)1/n ≥

n
∏

i=1
x
1/n
i +

n
∏

i=1
y
1/n
i where xi, yi > 0.

Abel b1 min
k

k
∑

i=1
ai ≤

n
∑

i=1
aibi ≤ b1 max

k

k
∑

i=1
ai for b1 ≥ · · · ≥ bn ≥ 0.

Milne
(
∑n

i=1(ai + bi)
)

(

∑n
i=1

aibi
ai+bi

)

≤
(
∑n

i=1 ai
) (

∑n
i=1 bi

)

Carleman
∑n

k=1

(

∏k
i=1 |ai|

)1/k
≤ e

∑n
k=1 |ak|

sum & product
m
∑

j=1

n
∏

i=1
aij ≥

m
∑

j=1

n
∏

i=1
aiπ(j) and

m
∏

j=1

n
∑

i=1
aij ≤

m
∏

j=1

n
∑

i=1
aiπ(j)

where 0 ≤ ai1 ≤ · · · ≤ aim for i = 1, . . . , n and π is a permutation of [n].

∣

∣

∏n
i=1 ai −

∏n
i=1 bi

∣

∣ ≤
∑n

i=1 |ai − bi| for |ai|, |bi| ≤ 1.

∏n
i=1 (α+ ai) ≥ (1 + α)n, where

∏n
i=1 ai ≥ 1, ai > 0, α > 0.

Callebaut
(

∑

i a
1+x
i b1−x

i

)(

∑

i a
1−x
i b1+x

i

)

≥
(

∑

i a
1+y
i b1−y

i

)(

∑

i a
1−y
i b1+y

i

)

for 1 ≥ x ≥ y ≥ 0, and i = 1, . . . , n.

Karamata
∑n

i=1 ϕ(ai) ≥
∑n

i=1 ϕ(bi) for a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn,

and {ai} � {bi} (majorization), i.e.
∑t

i=1 ai ≥
∑t

i=1 bi for all 1 ≤ t ≤ n,

with equality for t = n and ϕ is convex (for concave ϕ the reverse holds).

Muirhead 1
n!

∑

π xa1
π(1)

· · ·xan

π(n)
≥ 1

n!

∑

π xb1
π(1)

· · ·xbn
π(n)

where a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn and {ak} � {bk},
xi ≥ 0 and the sums extend over all permutations π of [n].

Hilbert
∑∞

m=1

∑∞
n=1

ambn
m+n

≤ π
(
∑∞

m=1 a
2
m

) 1
2
(
∑∞

n=1 b
2
n

) 1
2 for am, bn ∈ R.

With max{m,n} instead of m+ n, we have 4 instead of π.

Hardy
∑∞

n=1

(

a1+a2+···+an

n

)p
≤

(

p
p−1

)p
∑∞

n=1 a
p
n for an ≥ 0, p > 1.

Carlson
(
∑∞

n=1 an
)4 ≤ π2

∑∞
n=1 a

2
n

∑∞
n=1 n

2a2n for an ∈ R.

Mathieu 1
c2+1/2

<
∑∞

n=1
2n

(n2+c2)2
< 1

c2
for c 6= 0.

Copson
∞
∑

n=1

(

∑

k≥n

ak

k

)p
≤ pp

∞
∑

n=1
anp for an ≥ 0, p > 1, reverse if p ∈ (0, 1).

Kraft
∑

2−c(i) ≤ 1 for c(i) depth of leaf i of binary tree, sum over all leaves.

LYM
∑

X∈A

( n
|X|

)−1 ≤ 1, A ⊂ 2[n], no set in A is subset of another set in A.

Sauer-Shelah |A| ≤ |str(A)| ≤
vc(A)
∑

i=0

(n
i

)

for A ⊆ 2[n], and

str(A) = {X ⊆ [n] : X shattered by A}, vc(A) = max{|X| : X ∈ str(A)}.

Bonferroni Pr
[

n
∨

i=1
Ai

]

≤
k
∑

j=1
(−1)j−1Sj for 1 ≤ k ≤ n, k odd,

Pr
[

n
∨

i=1
Ai

]

≥
k
∑

j=1
(−1)j−1Sj for 2 ≤ k ≤ n, k even.

Sk =
∑

1≤i1<···<ik≤n

Pr
[

Ai1 ∧ · · · ∧Aik

]

where Ai are events.



Bhatia-Davis Var[X] ≤
(

M − E[X]
)(

E[X]−m
)

where X ∈ [m,M ].

Samuelson µ− σ
√
n− 1 ≤ xi ≤ µ+ σ

√
n− 1 for i = 1, . . . , n.

Where µ =
∑

xi/n , σ2 =
∑

(xi − µ)2/n.

Markov Pr
[

|X| ≥ a
]

≤ E
[

|X|
]

/a where X is a random variable (r.v.), a > 0.

Pr
[

X ≤ c
]

≤ (1− E[X])/(1− c) for X ∈ [0, 1] and c ∈
[

0,E[X]
]

.

Pr
[

X ∈ S] ≤ E[f(X)]/s for f ≥ 0, and f(x) ≥ s > 0 for all x ∈ S.

Chebyshev Pr
[∣

∣X − E[X]
∣

∣ ≥ t
]

≤ Var[X]/t2 where t > 0.

Pr
[

X − E[X] ≥ t
]

≤ Var[X]/(Var[X] + t2) where t > 0.

2nd moment Pr
[

X > 0
]

≥ (E[X])2/(E[X2]) where E[X] ≥ 0.

Pr
[

X = 0
]

≤ Var[X]/(E[X2]) where E[X2] 6= 0.

kth moment Pr
[∣

∣X − µ
∣

∣ ≥ t
]

≤
E
[

(X − µ)k
]

tk
and

Pr
[∣

∣X − µ
∣

∣ ≥ t
]

≤ Ck

(

nk

t2

)k/2

for Xi ∈ [0, 1] k-wise indep. r.v.,

X =
∑

Xi, i = 1, . . . , n, µ = E[X], Ck = 2
√
πke1/6k ≤ 1.0004, k even.

Chernoff Pr[X ≥ t] ≤ F (a)/at for X r.v., Pr[X = k] = pk,

F (z) =
∑

k pkz
k probability gen. func., and a ≥ 1.

Pr
[

X ≥ (1 + δ)µ
]

≤
(

eδ

(1 + δ)(1+δ)

)µ

≤ exp

(−µδ2

3

)

for Xi i.r.v. from [0,1], X =
∑

Xi, µ = E[X], δ ≥ 0 resp. δ ∈ [0, 1).

Pr
[

X ≤ (1− δ)µ
]

≤
(

e−δ

(1− δ)(1−δ)

)µ

≤ exp

(−µδ2

2

)

for δ ∈ [0, 1).

Further from the mean: Pr
[

X ≥ R
]

≤ 2−R for R ≥ 2eµ (≈ 5.44µ).

Pr
[

X ≥ t
]

≤
(

n
k

)

pk

(

t
k

) for Xi ∈ {0, 1} k-wise i.r.v., E[Xi] = p, X =
∑

Xi.

Pr
[

X ≥ (1 + δ)µ
]

≤
(n
k̂

)

pk̂/
((1+δ)µ

k̂

)

for Xi ∈ [0, 1] k-wise i.r.v.,

k ≥ k̂ = ⌈µδ/(1− p)⌉, E[Xi] = pi, X =
∑

Xi, µ = E[X], p = µ
n
, δ > 0.

Hoeffding Pr
[∣

∣X − E[X]
∣

∣ ≥ δ
]

≤ 2 exp

( −2δ2
∑n

i=1 (bi − ai)2

)

for Xi i.r.v.,

Xi ∈ [ai, bi] (w. prob. 1), X =
∑

Xi, δ ≥ 0.

A related lemma, assuming E[X] = 0, X ∈ [a, b] (w. prob. 1) and λ ∈ R:

E
[

eλX
]

≤ exp

(

λ2(b− a)2

8

)

Kolmogorov Pr
[

max
k

|Sk| ≥ ε
]

≤ 1
ε2

Var[Sn] =
1
ε2

∑

i
Var[Xi]

where X1, . . . , Xn are i.r.v., E[Xi] = 0,

Var[Xi] < ∞ for all i, Sk =
∑k

i=1 Xi and ε > 0.

Paley-Zygmund Pr
[

X ≥ µ E[X]
]

≥ 1− Var[X]

(1− µ)2 (E[X])2 +Var[X]
for X ≥ 0,

Var[X] < ∞, and µ ∈ (0, 1).

Vysochanskij- Pr
[∣

∣X − E[X]
∣

∣ ≥ λσ
]

≤ 4
9λ2 if λ ≥

√

8
3
,

Petunin-Gauss Pr
[∣

∣X −m
∣

∣ ≥ ε
]

≤ 4τ2

9ε2
if ε ≥ 2τ√

3
,

Pr
[∣

∣X −m
∣

∣ ≥ ε
]

≤ 1− ε√
3τ

if ε ≤ 2τ√
3
.

Where X is a unimodal r.v. with mode m,

σ2 = Var[X] < ∞, τ2 = Var[X] + (E[X]−m)2 = E[(X −m)2].

Etemadi Pr
[

max
1≤k≤n

|Sk| ≥ 3α
]

≤ 3 max
1≤k≤n

(

Pr
[

|Sk| ≥ α
])

where Xi are i.r.v., Sk =
∑k

i=1 Xi, α ≥ 0.

Doob Pr
[

max1≤k≤n |Xk| ≥ ε
]

≤ E
[

|Xn|
]

/ε for martingale (Xk) and ε > 0.

Bennett Pr
[

n
∑

i=1
Xi ≥ ε

]

≤ exp

(

−nσ2

M2
θ
(Mε

nσ2

)

)

where Xi i.r.v.,

E[Xi] = 0, σ2 = 1
n

∑

Var[Xi], |Xi| ≤ M (w. prob. 1), ε ≥ 0,

θ(u) = (1 + u) log(1 + u)− u.

Bernstein Pr
[

n
∑

i=1
Xi ≥ ε

]

≤ exp

( −ε2

2(nσ2 +Mε/3)

)

for Xi i.r.v.,

E[Xi] = 0, |Xi| < M (w. prob. 1) for all i, σ2 = 1
n

∑

Var[Xi], ε ≥ 0.

Azuma Pr
[∣

∣Xn −X0

∣

∣ ≥ δ
]

≤ 2 exp

( −δ2

2
∑n

i=1 ci
2

)

for martingale (Xk) s.t.

∣

∣Xi −Xi−1

∣

∣ < ci (w. prob. 1), for i = 1, . . . , n, δ ≥ 0.

Efron-Stein Var[Z] ≤ 1
2
E

[

n
∑

i=1

(

Z − Z(i)
)2

]

for Xi, Xi
′ ∈ X i.r.v.,

f : Xn → R, Z = f(X1, . . . , Xn), Z(i) = f(X1, . . . , Xi
′, . . . , Xn).

McDiarmid Pr
[∣

∣Z − E[Z]
∣

∣ ≥ δ
]

≤ 2 exp

( −2δ2
∑n

i=1 c
2
i

)

for Xi, Xi
′ ∈ X i.r.v.,

Z, Z(i) as before, s.t.
∣

∣Z − Z(i)
∣

∣ ≤ ci for all i, and δ ≥ 0.

Janson M ≤ Pr
[
∧

Bi

]

≤ M exp

(

∆

2− 2ε

)

where Pr[Bi] ≤ ε for all i,

M =
∏

(1− Pr[Bi]), ∆ =
∑

i 6=j,Bi∼Bj

Pr[Bi ∧Bj ].

Lovász Pr
[
∧

Bi

]

≥ ∏

(1− xi) > 0 where Pr[Bi] ≤ xi ·
∏

(i,j)∈D

(1− xj),

for xi ∈ [0, 1) for all i = 1, . . . , n and D the dependency graph.

If each Bi mutually indep. of the set of all other events, exc. at most d,

Pr[Bi] ≤ p for all i = 1, . . . , n , then if ep(d+ 1) ≤ 1 then Pr
[
∧

Bi

]

> 0.
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