Abbas Mehrabian

Simons Research Fellow

Simons Institute Industry Day 23 March 2017

joint with Nick Harvey and Chris liaw University of British Columbia

Neural networks

Neural networks

How many data samples is needed to learn?

How many data samples is needed to learn?

Theorem (fundamental theorem of statistical learning Blumer, Ehrenfeucht, Haussler, Warmuth'89)

The number of samples required for PAC learning within error ε in a model with VC-dimension v is essentially $\Theta(v/\varepsilon)$.

Theorem (fundamental theorem of statistical learning Blumer, Ehrenfeucht, Haussler, Warmuth'89)

The number of samples required for PAC learning within error ε in a model with VC-dimension v is essentially $\Theta(v/\varepsilon)$.

e.g. VC-dimension of polynomials of degree d is d + 1.

 $v(e, \ell) \coloneqq$ maximum VC-dimension of a neural network e edges ℓ layers

If the activation function is piecewise polynomial,

 $v(e, \ell) \leq Ce^2$ [Goldberg, Jerrum'95] $ce\ell \leq v(e, \ell) \leq C(e\ell^2 + e\ell \log e)$ [Bartlett, Maiorov, Meir'98]

If the activation function is piecewise polynomial,

 $v(e, \ell) \le Ce^2$ [Goldberg, Jerrum'95] $ce\ell < v(e, \ell) < C(e\ell^2 + e\ell \log e)$ [Bartlett, Maiorov, Meir'98]

Theorem (Harvey, Liaw, M'16)

If the activation function is piecewise linear,

 $\mathit{cel}\log(\mathit{e/l}) \leq \mathit{v}(\mathit{e},\mathit{l}) \leq \mathit{Cel}\log \mathit{e}$

If the activation function is piecewise polynomial,

 $v(e, \ell) \le Ce^2$ [Goldberg, Jerrum'95] $ce\ell \le v(e, \ell) \le C(e\ell^2 + e\ell \log e)$ [Bartlett, Maiorov, Meir'98]

Theorem (Harvey, Liaw, M'16)

If the activation function is piecewise linear,

 $ce\ell \log(e/\ell) \leq v(e,\ell) \leq Ce\ell \log e$

GoogleNet'14: $\ell = 41, e = 7$ million