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The push&pull rumour spreading protocol
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87]

1. The ground is a simple connected graph.
2. At time 0, one vertex knows a rumour.

3. At each time-step 1,2,...,
every informed vertex sends the rumour to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumour (PULL).



Example

ROUND 0 Push-Pull Protocol

Each node contacts a random neighbor:
Node pushes the rumor (if knows);
& and pulls otherwise
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ROUND 0 Push-Pull Protocol

Each node contacts a random neighbor:
Node pushes the rumor (if knows);
and pulls otherwise
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Applications

Replicated databases
Broadcasting algorithms
News propagation in social networks

Spread of viruses on the Internet.
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Example: a star

1 or 2 rounds
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Example: a path
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Example: a path

*—o—0—0—0
0 1 2 3 4
inform — time(0) =0
inform — time(1) = 1
inform — time(2) = 1 + Geo(3/4)
inform — time(3) = 1 + Geo(3/4) + Geo(3/4)
inform — time(4) = 1 + Geo(3/4) + Geo(3/4) + 1

E[Spread Time] =2+ 2 x 4/3 =14/3



Example: a path

*—o—0—0—90

0 2 3 4

[N

inform — time(0

inform — time(1

inform — time(3

)
+ Geo(3/4) + Geo(3/4)
inform — time(4 + Geo(3/4) + Geo(3/4) + 1
E[Spread Time] =2+ 2 x 4/3 =14/3

(0)=0
(1)=1
inform — time(2) = 1 + Geo(3/4
3)=1
(4)=1

=-n—2
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Example: a complete graph

logs n rounds [Karp, Schindelhauer, Shenker, Vécking’00]



An example: double star

s t
u v
inform — time(s) =0
inform — time(u) =1
inform — time(v) = 1 + min{Geo(1/4), Geo(1/4)} = 1 + Geo(7/16)
inform — time(¢) = 1 + Geo(7/16) + 1

E[Spread Time] =2+ 7/16 ~ 2.44
~n/4



Known results

s(@G) : expected value of the spread time

Graph G H s(G)

Star 2

Path (4/3)n+ O(1)

Double star (14+o0(1))n/4

Complete (14 0(1))logsn
[Karp,Schindelhauer,Shenker,V6cking’00]

G(n,p) O(Inn)

(connected) [Feige-Peleg-Raghavan-Upfal’90]



Known results

s(@G) : expected value of the spread time

Graph G H s(G)

Star 2

Path (4/3)n+ O(1)

Double star (14+o0(1))n/4

Complete (14 0(1))logsn
[Karp,Schindelhauer,Shenker,V6cking’00]

G(n,p) O(Inn)

(connected) [Feige-Peleg-Raghavan-Upfal’90]

v' Many graph classes have been analyzed, including
hypercube graphs, random regular graphs, expander
graphs, Barabési-Albert graphs, Chung-Lu graphs.

In all of them s(G) = BO(lnn).

v" Tight upper bounds have been found for s(G) in terms of

expansion profile by [Giakkoupis’11,’14].



An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

An upper bound of 13nlog, n is proved by
[Feige-Peleg-Raghavan-Upfal’90]



An asynchronous variant



A (more realistic) variant

In above protocol, all vertices act at the same time!

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

Every vertex has an independent rate-1 Poisson process,
and at times of process performs an operation (PUSH or PULL)



A (more realistic) variant

In above protocol, all vertices act at the same time!

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

Every vertex has an independent rate-1 Poisson process,
and at times of process performs an operation (PUSH or PULL)

v' Related to first-passage-percolation and Richardson'’s
model for disease spread

v' Vertices have no memory!



A discrete viewpoint of the asynchronous protocol
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A discrete viewpoint of the asynchronous protocol

1 2 4
3
1 2 1 3 4 4 2 1 4 >
1 1 1 1 >
4 4 1 4

Discrete viewpoint of the asynchronous variant:
In each step, one random vertex performs an operation (PUSH
or PULL); but each step takes 1/n time units.



Coupon collector

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once?



Coupon collector

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once? About nlnn

Corollary

The first time by which all vertices’ clocks
have rung at least once s about Inn.



Example: a star

synchronous protocol: 1 or 2 rounds
asynchronous protocol: Inn amount of time
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Example: a path

0 1 2 3 4

inform — time(0) =0
inform — time(1) = min{Exp(1), Exp(1/2)} = Exp(3/2)



Example: a path

0 1 2 3 4

inform — time(0) =0

inform — time(1) = Exp(3/2)

Exp(3/2) + min{Exp(1/2), Exp(1/2)}
Exp(3/2) + Exp(1)

inform — time(2)



Example: a path

*—o—0—0—90
0 1 2 3 4
inform — time(0) =0
inform — time(1) = Exp(3/2)

Exp(3/2) + Exp(1)
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inform — time
inform — time
inform — time
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Example: a path

*—o—0—0—0
0 1 2 3 4
0) =0
1) = Exp(3/2)
2) = Exp(3/2) + Exp(1)
3) = Exp(3/2) + Exp(1) + Exp(1)
4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)



inform — time(0

inform — time(1

(0) =
(1) =
inform — time(2) =
inform — time(3) =

(4) =

inform — time(4

E[Spread Time] =

Example: a path

*—o—0—0—0
1 2 3 4
0
Exp(3/2

(3/2)
Exp(3/2) + Exp(1)
Exp(3/2) + Exp(1) + Exp(1)
Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)
2/3+1+1+2/3=10/3



inform — time(0

inform — time(1

(0) =
(1) =
inform — time(2) =
inform — time(3) =

(4) =

inform — time(4

E[Spread Time] =

Example: a path

*—o—0—0—0
0 1 2 3 4
0

Exp(3/2)

Exp(3/2) + Exp(1)
Exp(3/2) + Exp(1) + Exp(1)

Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)

=n—5/3

2/3+2x2/3=10/3

4
(versus gn — 2 for synchronous)



An example: double star

inform — time(u) =0
inform — time(v) = min{Exp(2/n), Exp(2/n)} = Exp(4/n)
E[Spread Time] = n/4+1nn



Known results

a(G) : expected value of spread time in asynchronous protocol

Graph G || s(G) \ a(@)

Star 2 Inn+ O(1)

Path (4/3)n+ O(1) n+ O(1)

Double star (14 0(1))n/4 (1+o0(1))n/4

Complete (14 0(1))logsn Inn + o(1)
[Karp,Schindelhauer,Shenker,Vécking’00]

Hypercube O(lnn) O(lnn)

graph [Feige-Peleg-Raghavan-Upfal’90] [Fill,Pemantle’93]

G(n,p) O(lnn) (1+o0(1))lnn

(connected) [Feige-Peleg-Raghavan-Upfal’90] [Panagiotou,Speidel’13]

Many graph classes have been analyzed, including Erd&s-Rényi
graphs, random regular graphs, expander graphs,
Barabési-Albert graphs, Chung-Lu graphs.

In all of them s(G),a(G) =0O(lnn)



Comparison of the two variants



Comparison of the two protocols on the same graph:

experiments
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(a) Orkut network (b) Twitter network

Figures from: Doerr, Fouz, and Friedrich. MedAlg 2012.



The string of diamonds

The asynchronous protocol is much quicker than its
synchronous variant!

a(G) < s(G)



The string of diamonds

The asynchronous protocol is much quicker than its
synchronous variant!

a(G) < s(G)

Indeed, asynchronous can be logarithmic, while synchronous is
polynomial
counter-inuititive: synchrony harms!



Birthday paradox

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?



Birthday paradox

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?

About \/7mn/2 ~ 1.25\/n
Corollary

The first time to have some clock ring twice s about

1.25/\/n.



Time taken to pass through a diamond

k paths of length 2

Average time to pass the rumour:
Synchronous: 2 rounds



Time taken to pass through a diamond

k paths of length 2

Average time to pass the rumour:
Synchronous: 2 rounds
Asynchronous: < 4 x 1.25/Vk



The string of diamonds, continued

5
a(G)<nY®*x —— +Inn=5+Inn

/n2/3



The string of diamonds, continued

5
a(G)<nY®*x —— +Inn=5+Inn

/n2/3

while
s(G) > 2n'/?



Comparison of the two protocols on the same graph:
our results

Theorem (Acan, Collevecchio, M, Wormald’15)

We have
1 s(@)
— <

< 200n2/31
Inn ~ a(G) — neomn

Moreover, for infinitely many graphs this ratio is Q (n'/3).



Proof idea for a(G) < s(G) xInn

Consider an arbitrary calling sequence:

1 2 4
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Proof idea for a(G) < s(G) xInn

12 4

*3
1213%?%1%?
2225223321
IO
23522




Proof idea for a(G) < s(G) xInn
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Proof idea for a(G) < s(G) xInn
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Proof idea for a(G) < s(G) xInn

DO -—
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Proof idea for s(G) < a(G) x n?/3
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Proof idea for s(G) < a(G) x n
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Extremal spread times



The extremal question

What’s the maximum broadcast time of an n-vertex graph?

s(G),a(G)~n/4 s(G)~4n/3 and a(G) ~n



The extremal question

What’s the maximum broadcast time of an n-vertex graph?

s(G),a(G)~n/4 s(G)~4n/3 and a(G) ~n
Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

s(G)< 5n
In(n)/5 < a(G)< 4n



Proof idea for linear upper bound 4(G) < 4n

Only pull operations are needed!



Proof idea for linear upper bound q(G) < 4n

Only pull operations are needed!

We show inductively the expected remaining time < 2|B| + 4|R]
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1. If there is some boundary vertex v with
degr(v) > degg(v): it may take a lot of time to inform v,
but once it is informed, R || and B |



Proof idea for linear upper bound (@) < 4n

Only pull operations are needed!

I B R

We show inductively the expected remaining time < 2|B| + 4|R|

1. If there is some boundary vertex v with
degr(v) > degp(v): it may take a lot of time to inform v,
but once it is informed, R || and B ]

2. Otherwise, each boundary vertex has pulling rate > 1/2|B],
and the B boundary vertices work together “in parallel”
and average time for one of them to pull the rumour is 2.



Final slide

Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

s(G) < 5n
In(n)/5 < a(G) < 4n
1 s(@G)

i 200n%/%1
o < 2(G) < n“"lnn

For infinitely many graphs this ratio is Q (n'/?).



Final slide

Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

s(G) < 5n
In(n)/5 < a(G) < 4n
1 s(G) 2/3
— < ——= < 200 |
i < Q) <200n*“1lnn
For infinitely many graphs this ratio is Q (n'/?).
Giakkoupis, Nazari, and Woelfel [July 2015] improved upper
bound to O (n'/?)




