The push&pull protocol for rumour spreading

Abbas Mehrabian

UBC and SFU

UBC Discrete Math seminar 6 October 2015

Co-authors

Hüseyin Acan

Andrea Collevecchio Nick Wormald

Monash University

The push&pull rumour spreading protocol

[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87]

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL).

ROUND 0

Push-Pull Protocol

Push-Pull Protocol

Push-Pull Protocol

Push-Pull Protocol Each node contacts a random neighbor: Node pushes the rumor (if knows);

and pulls otherwise

Push-Pull Protocol

Applications

- 1. Replicated databases
- 2. Broadcasting algorithms
- 3. News propagation in social networks
- 4. Spread of viruses on the Internet.

Example: a star

1 or 2 rounds

inform - time(0) = 0

inform - time(0) = 0inform - time(1) = 1

$$\begin{split} & \inf orm - time(0) = 0 \\ & \inf orm - time(1) = 1 \\ & \inf orm - time(2) = 1 + \min\{Geo(1/2), Geo(1/2)\} \\ & = 1 + Geo(3/4) \end{split}$$

$$\begin{split} & inform-time(0)=0\\ & inform-time(1)=1\\ & inform-time(2)=1+Geo(3/4)\\ & inform-time(3)=1+Geo(3/4)+Geo(3/4) \end{split}$$

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = 1 \\ & \inf form - time(2) = 1 + \text{Geo}(3/4) \\ & \inf form - time(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ & \inf form - time(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \end{split}$$

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = 1 \\ & \inf form - time(2) = 1 + \text{Geo}(3/4) \\ & \inf form - time(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ & \inf form - time(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ & \mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \end{split}$$

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = 1 \\ & \inf form - time(2) = 1 + \text{Geo}(3/4) \\ & \inf form - time(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ & \inf form - time(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ & \mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \\ & = \frac{4}{3}n - 2 \end{split}$$

Example: a complete graph

 $\log_3 n$ rounds

[Karp, Schindelhauer, Shenker, Vöcking'00]

An example: double star

$$\begin{split} &\inf \text{orm} - \text{time}(s) = 0\\ &\inf \text{orm} - \text{time}(u) = 1\\ &\inf \text{orm} - \text{time}(v) = 1 + \min\{\text{Geo}(1/4), \text{Geo}(1/4)\} = 1 + \text{Geo}(7/16)\\ &\inf \text{orm} - \text{time}(t) = 1 + \text{Geo}(7/16) + 1\\ &\mathbb{E}[\text{Spread Time}] = 2 + 7/16 \approx 2.44\\ &\sim n/4 \end{split}$$

Known results

s(G) : expected value of the spread time

Graph G	s(G)	
Star	2	
Path	(4/3)n + O(1)	
Double star	(1+o(1))n/4	
Complete	$(1+o(1))\log_3 n$	
	[Karp,Schindelhauer,Shenker,Vöcking'00]	
$\mathcal{G}(n,p)$	$\Theta(\ln n)$	
(connected)	[Feige-Peleg-Raghavan-Upfal'90]	

Known results

s(G) : expected value of the spread time

Graph G	s(G)	
Star	2	
Path	(4/3)n + O(1)	
Double star	(1+o(1))n/4	
Complete	$(1+o(1))\log_3 n$	
	[Karp,Schindelhauer,Shenker,Vöcking'00]	
$\mathcal{G}(n,p)$	$\Theta(\ln n)$	
(connected)	[Feige-Peleg-Raghavan-Upfal'90]	

- ✓ Many graph classes have been analyzed, including hypercube graphs, random regular graphs, expander graphs, Barabási-Albert graphs, Chung-Lu graphs. In all of them $s(G) = \Theta(\ln n)$.
- ✓ Tight upper bounds have been found for s(G) in terms of expansion profile by [Giakkoupis'11,'14].

An extremal question

What's the maximum spread time of an n-vertex graph?

An upper bound of $13n \log_2 n$ is proved by [Feige-Peleg-Raghavan-Upfal'90] An asynchronous variant

A (more realistic) variant

In above protocol, all vertices act at the same time! Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

Every vertex has an independent rate-1 Poisson process, and at times of process performs an operation (PUSH or PULL)

A (more realistic) variant

In above protocol, all vertices act at the same time! Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

Every vertex has an independent rate-1 Poisson process, and at times of process performs an operation (PUSH or PULL)

- ✓ Related to first-passage-percolation and Richardson's model for disease spread
- ✓ Vertices have no memory!

A discrete viewpoint of the asynchronous protocol

A discrete viewpoint of the asynchronous protocol

Discrete viewpoint of the asynchronous variant: In each step, one random vertex performs an operation (PUSH or PULL); but each step takes 1/n time units.

Coupon collector

Question: Consider a bag containing n different balls. In each step we draw a random ball and put it back. How many draws to see each ball at least once?

Coupon collector

Question: Consider a bag containing n different balls. In each step we draw a random ball and put it back. How many draws to see each ball at least once? About $n \ln n$

Corollary

The first time by which all vertices' clocks have rung at least once is about $\ln n$.

Example: a star

synchronous protocol: 1 or 2 rounds asynchronous protocol: $\ln n$ amount of time

inform - time(0) = 0

 $\begin{aligned} & \text{inform} - \text{time}(0) = 0 \\ & \text{inform} - \text{time}(1) = \min\{\text{Exp}(1), \text{Exp}(1/2)\} = \text{Exp}(3/2) \end{aligned}$

$$\begin{split} \inf & \operatorname{orm} - \operatorname{time}(0) = 0\\ \inf & \operatorname{orm} - \operatorname{time}(1) = \operatorname{Exp}(3/2)\\ \inf & \operatorname{orm} - \operatorname{time}(2) = \operatorname{Exp}(3/2) + \min\{\operatorname{Exp}(1/2), \operatorname{Exp}(1/2)\}\\ & = \operatorname{Exp}(3/2) + \operatorname{Exp}(1) \end{split}$$

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = Exp(3/2) \\ & \inf form - time(2) = Exp(3/2) + Exp(1) \\ & \inf form - time(3) = Exp(3/2) + Exp(1) + Exp(1) \end{split}$$

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = Exp(3/2) \\ & \inf form - time(2) = Exp(3/2) + Exp(1) \\ & \inf form - time(3) = Exp(3/2) + Exp(1) + Exp(1) \\ & \inf form - time(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2) \end{split}$$

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = Exp(3/2) \\ & \inf form - time(2) = Exp(3/2) + Exp(1) \\ & \inf form - time(3) = Exp(3/2) + Exp(1) + Exp(1) \\ & \inf form - time(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2) \\ & \mathbb{E}[Spread Time] = 2/3 + 1 + 1 + 2/3 = 10/3 \end{split}$$

$$\begin{split} &\inf form - time(0) = 0 \\ &\inf form - time(1) = Exp(3/2) \\ &\inf form - time(2) = Exp(3/2) + Exp(1) \\ &\inf form - time(3) = Exp(3/2) + Exp(1) + Exp(1) \\ &\inf form - time(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2) \\ &\mathbb{E}[\text{Spread Time}] = 2/3 + 2 \times 2/3 = 10/3 \\ &= n - 5/3 \qquad (\text{versus } \frac{4}{3}n - 2 \text{ for synchronous}) \end{split}$$

An example: double star

 $egin{aligned} &\inf - \operatorname{time}(u) = 0 \ &\inf - \operatorname{time}(v) = \min \{ \operatorname{Exp}(2/n), \operatorname{Exp}(2/n) \} = \operatorname{Exp}(4/n) \ & \mathbb{E}[\operatorname{Spread Time}] = n/4 + \ln n \end{aligned}$

Known results

a(G) : expected value of spread time in asynchronous protocol

Graph <i>G</i>	s(G)	a(G)
Star	2	$\ln n + O(1)$
Path	(4/3)n + O(1)	n + O(1)
Double star	(1+o(1))n/4	(1+o(1))n/4
Complete	$(1+o(1))\log_3 n$	$\ln n + o(1)$
	[Karp,Schindelhauer,Shenker,Vöcking'00]	
Hypercube	$\Theta(\ln n)$	$\Theta(\ln n)$
graph	[Feige-Peleg-Raghavan-Upfal'90]	[Fill,Pemantle'93]
$\mathcal{G}(n,p)$	$\Theta(\ln n)$	$(1+o(1))\ln n$
(connected)	[Feige-Peleg-Raghavan-Upfal'90]	[Panagiotou,Speidel'13]

Many graph classes have been analyzed, including Erdős-Rényi graphs, random regular graphs, expander graphs, Barabási-Albert graphs, Chung-Lu graphs. In all of them s(G), $a(G) = \Theta(\ln n)$ Comparison of the two variants

Comparison of the two protocols on the same graph: experiments

Figures from: Doerr, Fouz, and Friedrich. MedAlg 2012.

The string of diamonds

The asynchronous protocol is much quicker than its synchronous variant!

 $a(G) \ll s(G)$

The string of diamonds

The asynchronous protocol is much quicker than its synchronous variant!

$$a(G) \ll s(G)$$

Indeed, asynchronous can be logarithmic, while synchronous is polynomial counter-inuititive: synchrony harms!

Birthday paradox

Question: Consider a bag containing n different balls. In each step we draw a random ball and put it back. How many draws to see some ball twice?

Birthday paradox

Question: Consider a bag containing n different balls. In each step we draw a random ball and put it back. How many draws to see some ball twice? About $\sqrt{\pi n/2} \approx 1.25\sqrt{n}$

Corollary

The first time to have some clock ring twice is about $1.25/\sqrt{n}$.

Time taken to pass through a diamond

Average time to pass the rumour: Synchronous: 2 rounds

Time taken to pass through a diamond

Average time to pass the rumour: Synchronous: 2 rounds Asynchronous: $\leq 4 \times 1.25/\sqrt{k}$

The string of diamonds, continued

 $n^{1/3}$ diamonds, each consisting of $n^{2/3}$ paths of length 2

$$a(G) \le n^{1/3} imes rac{5}{\sqrt{n^{2/3}}} + \ln n = 5 + \ln n$$

The string of diamonds, continued

 $n^{1/3}$ diamonds, each consisting of $n^{2/3}$ paths of length 2

$$a(G) \le n^{1/3} imes rac{5}{\sqrt{n^{2/3}}} + \ln n = 5 + \ln n$$

while

$$s(G) \geq 2n^{1/3}$$

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'15) We have $1 \qquad s(G)$

$$\frac{1}{\ln n} \leq \frac{s(G)}{a(G)} \leq 200n^{2/3}\ln n$$

Moreover, for infinitely many graphs this ratio is $\widetilde{\Omega}(n^{1/3})$.

Consider an arbitrary calling sequence:

Proof idea for $s(G) \leq a(G) imes n^{2/3}$

Proof idea for $s(G) \leq a(G) imes n^{2/3}$

Extremal spread times

The extremal question

What's the maximum broadcast time of an n-vertex graph?

The extremal question

What's the maximum broadcast time of an n-vertex graph?

Theorem (Acan, Collevecchio, M, Wormald'15) For any connected G on n vertices

s(G) < 5n $\ln(n)/5 < a(G) < 4n$

Only pull operations are needed!

Only pull operations are needed!

We show inductively the expected remaining time $\leq 2|B| + 4|R|$

Only pull operations are needed!

We show inductively the expected remaining time $\leq 2|B| + 4|R|$

 If there is some boundary vertex v with deg_R(v) > deg_B(v): it may take a lot of time to inform v, but once it is informed, R ↓↓ and B ↑↑

Only pull operations are needed!

We show inductively the expected remaining time $\leq 2|B| + 4|R|$

- If there is some boundary vertex v with deg_R(v) > deg_B(v): it may take a lot of time to inform v, but once it is informed, R ↓↓ and B ↑↑
- Otherwise, each boundary vertex has pulling rate ≥ 1/2|B|, and the B boundary vertices work together "in parallel" and average time for one of them to pull the rumour is 2.

Final slide

Theorem (Acan, Collevecchio, M, Wormald'15) For any connected G on n vertices

$$s(G) < 5n \ \ln(n)/5 < a(G) < 4n \ rac{1}{\ln n} < rac{s(G)}{a(G)} < 200 n^{2/3} \ln n$$

For infinitely many graphs this ratio is $\widetilde{\Omega}(n^{1/3})$.

Final slide

Theorem (Acan, Collevecchio, M, Wormald'15) For any connected G on n vertices

$$s(G) < 5n \ \ln(n)/5 < a(G) < 4n \ rac{1}{\ln n} < rac{s(G)}{a(G)} < 200 n^{2/3} \ln n$$

For infinitely many graphs this ratio is $\widetilde{\Omega}(n^{1/3})$. Giakkoupis, Nazari, and Woelfel [July 2015] improved upper bound to $O(n^{1/2})$

