
The push&pull protocol for rumour spreading

Abbas Mehrabian

UBC and SFU

UBC Discrete Math seminar
6 October 2015

Co-authors

Hüseyin Acan Andrea Collevecchio Nick Wormald

Monash University

The push&pull rumour spreading protocol
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,

Terry, Woods’87]

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumour (PULL).

Applications

1. Replicated databases

2. Broadcasting algorithms

3. News propagation in social networks

4. Spread of viruses on the Internet.

Example: a star

1 or 2 rounds

Example: a path

inform− time(0) = 0

Example: a path

inform− time(0) = 0

Example: a path

inform− time(0) = 0

inform− time(1) = 1

Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+min{Geo(1/2),Geo(1/2)}

= 1+Geo(3/4)

Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3

Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3

=
4
3
n − 2

Example: a complete graph

log3 n rounds [Karp, Schindelhauer, Shenker, Vöcking’00]

An example: double star

u
s

v
t

inform− time(s) = 0

inform− time(u) = 1

inform− time(v) = 1+min{Geo(1/4),Geo(1/4)} = 1+Geo(7/16)

inform− time(t) = 1+Geo(7/16) + 1

E[Spread Time] = 2+ 7/16 ≈ 2.44

∼ n/4

Known results

s(G) : expected value of the spread time

Graph G s(G)

Star 2
Path (4/3)n +O(1)
Double star (1+ o(1))n/4
Complete (1+ o(1)) log3 n

[Karp,Schindelhauer,Shenker,Vöcking’00]

G(n , p) Θ(lnn)
(connected) [Feige-Peleg-Raghavan-Upfal’90]

X Many graph classes have been analyzed, including
hypercube graphs, random regular graphs, expander
graphs, Barabási-Albert graphs, Chung-Lu graphs.
In all of them s(G) = Θ(lnn).

X Tight upper bounds have been found for s(G) in terms of
expansion profile by [Giakkoupis’11,’14].

Known results

s(G) : expected value of the spread time

Graph G s(G)

Star 2
Path (4/3)n +O(1)
Double star (1+ o(1))n/4
Complete (1+ o(1)) log3 n

[Karp,Schindelhauer,Shenker,Vöcking’00]

G(n , p) Θ(lnn)
(connected) [Feige-Peleg-Raghavan-Upfal’90]

X Many graph classes have been analyzed, including
hypercube graphs, random regular graphs, expander
graphs, Barabási-Albert graphs, Chung-Lu graphs.
In all of them s(G) = Θ(lnn).

X Tight upper bounds have been found for s(G) in terms of
expansion profile by [Giakkoupis’11,’14].

An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

An upper bound of 13n log2 n is proved by
[Feige-Peleg-Raghavan-Upfal’90]

An asynchronous variant

A (more realistic) variant

In above protocol, all vertices act at the same time!

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

Every vertex has an independent rate-1 Poisson process,
and at times of process performs an operation (PUSH or PULL)

X Related to first-passage-percolation and Richardson’s
model for disease spread

X Vertices have no memory!

A (more realistic) variant

In above protocol, all vertices act at the same time!

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

Every vertex has an independent rate-1 Poisson process,
and at times of process performs an operation (PUSH or PULL)

X Related to first-passage-percolation and Richardson’s
model for disease spread

X Vertices have no memory!

A discrete viewpoint of the asynchronous protocol

1 2 1 3 4 4 2 1 4

1 2

3

4

1
4

1
4

1
4

1
4

Discrete viewpoint of the asynchronous variant:
In each step, one random vertex performs an operation (PUSH
or PULL); but each step takes 1/n time units.

A discrete viewpoint of the asynchronous protocol

1 2 1 3 4 4 2 1 4

1 2

3

4

1
4

1
4

1
4

1
4

Discrete viewpoint of the asynchronous variant:
In each step, one random vertex performs an operation (PUSH
or PULL); but each step takes 1/n time units.

Coupon collector

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once?

About n lnn

Corollary
The first time by which all vertices’ clocks
have rung at least once is about lnn.

Coupon collector

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once? About n lnn

Corollary
The first time by which all vertices’ clocks
have rung at least once is about lnn.

Example: a star

synchronous protocol: 1 or 2 rounds
asynchronous protocol: lnn amount of time

Example: a path

inform− time(0) = 0

Example: a path

inform− time(0) = 0

Example: a path

inform− time(0) = 0

inform− time(1) = min{Exp(1),Exp(1/2)} = Exp(3/2)

Example: a path

inform− time(0) = 0

inform− time(1) = Exp(3/2)

inform− time(2) = Exp(3/2) +min{Exp(1/2),Exp(1/2)}

= Exp(3/2) + Exp(1)

Example: a path

inform− time(0) = 0

inform− time(1) = Exp(3/2)

inform− time(2) = Exp(3/2) + Exp(1)

inform− time(3) = Exp(3/2) + Exp(1) + Exp(1)

Example: a path

inform− time(0) = 0

inform− time(1) = Exp(3/2)

inform− time(2) = Exp(3/2) + Exp(1)

inform− time(3) = Exp(3/2) + Exp(1) + Exp(1)

inform− time(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)

Example: a path

inform− time(0) = 0

inform− time(1) = Exp(3/2)

inform− time(2) = Exp(3/2) + Exp(1)

inform− time(3) = Exp(3/2) + Exp(1) + Exp(1)

inform− time(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)

E[Spread Time] = 2/3+ 1+ 1+ 2/3 = 10/3

Example: a path

inform− time(0) = 0

inform− time(1) = Exp(3/2)

inform− time(2) = Exp(3/2) + Exp(1)

inform− time(3) = Exp(3/2) + Exp(1) + Exp(1)

inform− time(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)

E[Spread Time] = 2/3+ 2× 2/3 = 10/3

= n − 5/3 (versus
4
3
n − 2 for synchronous)

An example: double star

u
s

v
t

inform− time(u) = 0

inform− time(v) = min{Exp(2/n),Exp(2/n)} = Exp(4/n)

E[Spread Time] = n/4+ lnn

Known results

a(G) : expected value of spread time in asynchronous protocol

Graph G s(G) a(G)

Star 2 lnn +O(1)
Path (4/3)n +O(1) n +O(1)
Double star (1+ o(1))n/4 (1+ o(1))n/4
Complete (1+ o(1)) log3 n lnn + o(1)

[Karp,Schindelhauer,Shenker,Vöcking’00]

Hypercube Θ(lnn) Θ(lnn)
graph [Feige-Peleg-Raghavan-Upfal’90] [Fill,Pemantle’93]
G(n , p) Θ(lnn) (1+ o(1)) lnn
(connected) [Feige-Peleg-Raghavan-Upfal’90] [Panagiotou,Speidel’13]

Many graph classes have been analyzed, including Erdős-Rényi
graphs, random regular graphs, expander graphs,
Barabási-Albert graphs, Chung-Lu graphs.
In all of them s(G), a(G) = Θ(lnn)

Comparison of the two variants

Comparison of the two protocols on the same graph:
experiments

Figures from: Doerr, Fouz, and Friedrich. MedAlg 2012.

The string of diamonds

...

The asynchronous protocol is much quicker than its
synchronous variant!

a(G)� s(G)

Indeed, asynchronous can be logarithmic, while synchronous is
polynomial
counter-inuititive: synchrony harms!

The string of diamonds

...

The asynchronous protocol is much quicker than its
synchronous variant!

a(G)� s(G)

Indeed, asynchronous can be logarithmic, while synchronous is
polynomial
counter-inuititive: synchrony harms!

Birthday paradox

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?

About
√
πn/2 ≈ 1.25

√
n

Corollary
The first time to have some clock ring twice is about
1.25/

√
n.

Birthday paradox

Question: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?
About

√
πn/2 ≈ 1.25

√
n

Corollary
The first time to have some clock ring twice is about
1.25/

√
n.

Time taken to pass through a diamond

...
k paths of length 2

Average time to pass the rumour:
Synchronous: 2 rounds

Asynchronous: ≤ 4× 1.25/
√
k

Time taken to pass through a diamond

...
k paths of length 2

Average time to pass the rumour:
Synchronous: 2 rounds
Asynchronous: ≤ 4× 1.25/

√
k

The string of diamonds, continued

...

n1/3 diamonds, each consisting of n2/3 paths of length 2

a(G) ≤ n1/3 × 5√
n2/3

+ lnn = 5+ lnn

while
s(G) ≥ 2n1/3

The string of diamonds, continued

...

n1/3 diamonds, each consisting of n2/3 paths of length 2

a(G) ≤ n1/3 × 5√
n2/3

+ lnn = 5+ lnn

while
s(G) ≥ 2n1/3

Comparison of the two protocols on the same graph:
our results

Theorem (Acan, Collevecchio, M, Wormald’15)
We have

1
lnn

≤ s(G)

a(G)
≤ 200n2/3 lnn

Moreover, for infinitely many graphs this ratio is Ω̃
(
n1/3).

Proof idea for a(G) ≤ s(G)× lnn

Consider an arbitrary calling sequence:

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

Proof idea for a(G) ≤ s(G)× lnn

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

1 2 1 3 4

2 3 2 2 2

Proof idea for a(G) ≤ s(G)× lnn

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

1 2 3 4

2 3 2 2

Proof idea for a(G) ≤ s(G)× lnn

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

1 2 3 4

2 3 2 2

Proof idea for a(G) ≤ s(G)× lnn

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

1 2 3 4

2 3 2 2

4 2 1 3

2 3 3 1

Proof idea for s(G) ≤ a(G)× n2/3

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

Proof idea for s(G) ≤ a(G)× n2/3

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

1 2

2 3

1 3 4

2 2 2

4 2 1

2 3 3

4 3

2 1

Extremal spread times

The extremal question

What’s the maximum broadcast time of an n-vertex graph?

s(G), a(G) ∼ n/4 s(G) ∼ 4n/3 and a(G) ∼ n

Theorem (Acan, Collevecchio, M, Wormald’15)
For any connected G on n vertices

s(G)< 5n

ln(n)/5 < a(G)< 4n

The extremal question

What’s the maximum broadcast time of an n-vertex graph?

s(G), a(G) ∼ n/4 s(G) ∼ 4n/3 and a(G) ∼ n

Theorem (Acan, Collevecchio, M, Wormald’15)
For any connected G on n vertices

s(G)< 5n

ln(n)/5 < a(G)< 4n

Proof idea for linear upper bound a(G) < 4n

Only pull operations are needed!

v

BI R

We show inductively the expected remaining time ≤ 2|B |+ 4|R|

1. If there is some boundary vertex v with
degR(v) > degB (v): it may take a lot of time to inform v ,
but once it is informed, R � and B �

Proof idea for linear upper bound a(G) < 4n

Only pull operations are needed!

v

BI R

We show inductively the expected remaining time ≤ 2|B |+ 4|R|

1. If there is some boundary vertex v with
degR(v) > degB (v): it may take a lot of time to inform v ,
but once it is informed, R � and B �

Proof idea for linear upper bound a(G) < 4n

Only pull operations are needed!

v

BI R

We show inductively the expected remaining time ≤ 2|B |+ 4|R|

1. If there is some boundary vertex v with
degR(v) > degB (v): it may take a lot of time to inform v ,
but once it is informed, R � and B �

Proof idea for linear upper bound a(G) < 4n

Only pull operations are needed!

v

BI R

We show inductively the expected remaining time ≤ 2|B |+ 4|R|

1. If there is some boundary vertex v with
degR(v) > degB (v): it may take a lot of time to inform v ,
but once it is informed, R � and B �

2. Otherwise, each boundary vertex has pulling rate ≥ 1/2|B |,
and the B boundary vertices work together “in parallel”
and average time for one of them to pull the rumour is 2.

Final slide

Theorem (Acan, Collevecchio, M, Wormald’15)
For any connected G on n vertices

s(G) < 5n

ln(n)/5 < a(G) < 4n
1

lnn
<

s(G)

a(G)
< 200n2/3 lnn

For infinitely many graphs this ratio is Ω̃
(
n1/3).

Giakkoupis, Nazari, and Woelfel [July 2015] improved upper
bound to O

(
n1/2)

Final slide

Theorem (Acan, Collevecchio, M, Wormald’15)
For any connected G on n vertices

s(G) < 5n

ln(n)/5 < a(G) < 4n
1

lnn
<

s(G)

a(G)
< 200n2/3 lnn

For infinitely many graphs this ratio is Ω̃
(
n1/3).

Giakkoupis, Nazari, and Woelfel [July 2015] improved upper
bound to O

(
n1/2)

