Cops and a Fast Robber on Planar and Random Graphs

Abbas Mehrabian

UBC and SFU

UBC Discrete Math seminar, 27 October 2015

joint work with Noga Alon

ANIMATE!

Remarks

ANIMATE!

- 1. perfect-information game
- 2. More than one cops can be at the same vertex.
- 3. Robber cannot jump over a cop.
- 4. Moves are deterministic.
- 5. When describing a strategy for the cops, we assume the robber is clever; and vice versa.
- 6. Interested in minimum number of cops to guarantee capture.

What's known

- \checkmark On a path/complete graph one cop suffices.
- \checkmark On a cycle/grid, two cops suffice (bus problem).
- ✓ On a planar graph, three cops suffice. [Aigner,Fromme'84]
- ✓ Meyniel conjectured $\leq O(\sqrt{n})$ cops suffice for any graph. [Frankl'87] We don't have a proof that $n^{0.99}$ cops suffice for all graphs! n: number of vertices
- \checkmark On a random graph $\leq O\left(\sqrt{n}\right)$ cops suffice with high prob. [Prałat,Wormald'15]

The fast robber variant

ANIMATE!

The fast robber variant

ANIMATE!

Definition (The Game of Cops and Robber)

- \checkmark In the beginning,
 - First, each cop chooses a starting vertex.
 - Then, the robber chooses a starting vertex.
- $\checkmark~$ In each round,
 - First, each cop chooses to stay or go to an adjacent vertex.
 - Then, the robber chooses to stay, or move along a cop-free path.
- \checkmark The cops capture the robber if, at some moment, a cop is at the same vertex with the robber.
- ✓ Cop number of G = c(G)

What's known

- \checkmark On a path/complete graph one cop suffices.
- \checkmark On a cycle two cops suffice.
- ✓ Computing c(G) is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

✓ For every *n*, there exists a graph with $c(G) = \Theta(n)$. [Frieze, Krivelevich, Loh'12]

What's known

- \checkmark On a path/complete graph one cop suffices.
- \checkmark On a cycle two cops suffice.
- ✓ Computing c(G) is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

✓ For every *n*, there exists a graph with $c(G) = \Theta(n)$. [Frieze, Krivelevich, Loh'12]

Today we study cop numbers of planar and random graphs.

Dominating Set

N(S) := (closed) neighbourhood of set SA is dominating set : N(A) = V(G)

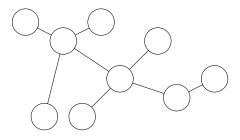
Example

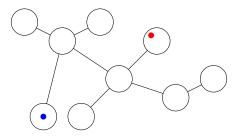
Dominating Set

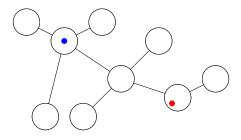
N(S) := (closed) neighbourhood of set SA is dominating set : N(A) = V(G)

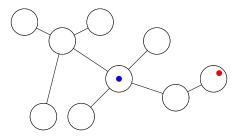
Example

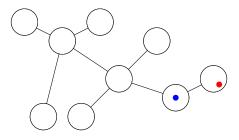
 $c(G) \leq \gamma(G) =$ size of a minimum dominating set (will be used for bounding cop number of random graphs)



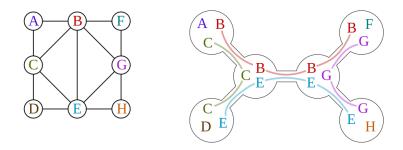






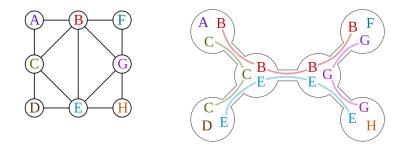


Tree decompositions

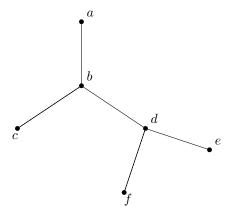


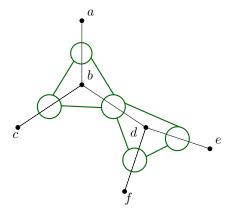
- 1. For every edge of graph there is a bag of tree containing both endpoints.
- 2. Each vertex of graph induces a connected subtree in the tree.

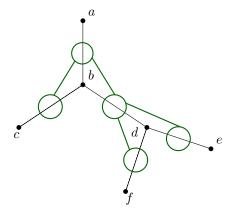
Tree decompositions: treewidth

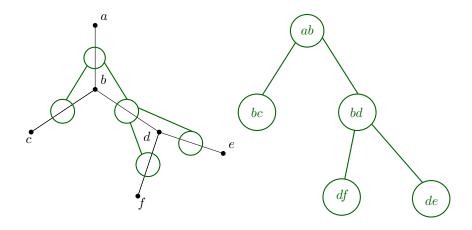


Width = maximum size of a bag -1 = 2tw(G) = minimum width of a tree decomposition for G





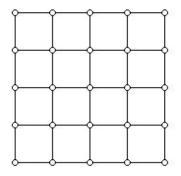




Examples of treewidth

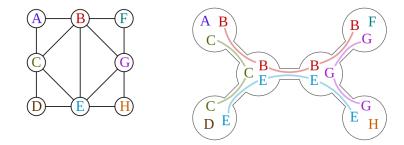
Example

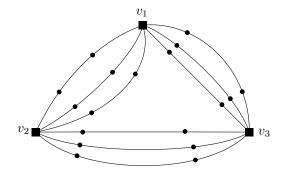
- 1. Treewidth of a complete graph is n-1
- 2. Treewidth of a planar graph is $\leq O\left(\sqrt{n}\right)$
- 3. Treewidth of an $m \times m$ grid is m

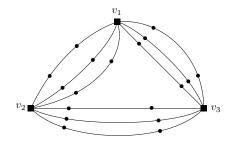


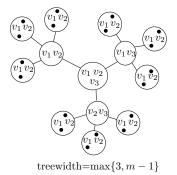
The Relation Between Cop Number and Treewidth

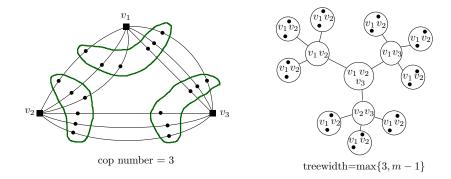
For any G, $c(G) \leq tw(G) + 1$

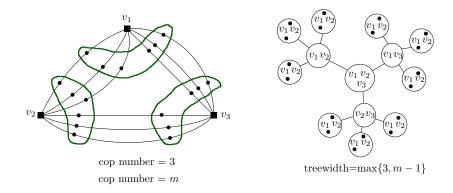












Two easy upper bounds

For any graph G we have

```
c(G) \leq \min\{\gamma(G), \mathsf{tw}(G) + 1\}
```

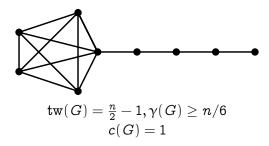
Is any of these tight?

Two easy upper bounds

For any graph G we have

$$c(G) \leq \min\{\gamma(G), \operatorname{\mathsf{tw}}(G) + 1\}$$

Is any of these tight?



Our main results

Theorem (Alon, M'15)

There exists a constant $\kappa > 0$ such that for any planar G

 $\kappa \operatorname{tw}(G) \leq c(G) \leq \operatorname{tw}(G) + 1$

There exists a constant $\lambda > 0$ such that for a random graph $G = \mathcal{G}(n, p)$, with high probability,

 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

Our main results

Theorem (Alon, M'15)

There exists a constant $\kappa > 0$ such that for any planar G

 $\kappa\, {\rm tw}(G) \leq c(G) \leq {\rm tw}(G) + 1$

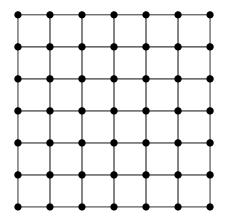
There exists a constant $\lambda > 0$ such that for a random graph $G = \mathcal{G}(n, p)$, with high probability,

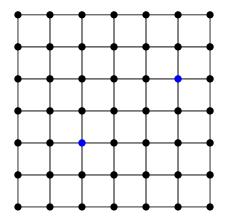
$$\lambda\gamma(G) \leq c(G) \leq \gamma(G)$$

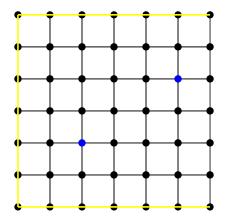
The two easy upper bounds are tight up to a constant factor, for two important classes of graphs.

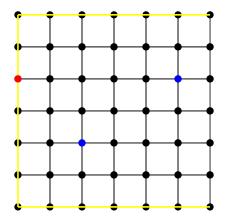
Planar graphs

$\kappa\, {\rm tw}(\,G) \leq c(\,G) \leq {\rm tw}(\,G) + 1$



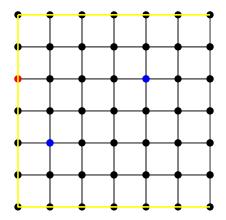






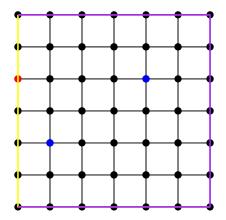
Cop number of an $m \times m$ grid

 $m/3 \leq ext{cop number} \leq m$



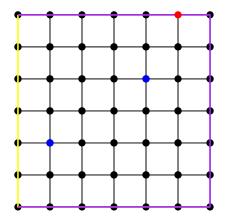
Cop number of an $m \times m$ grid

 $m/3 \leq ext{cop number} \leq m$

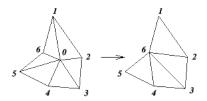


Cop number of an $m \times m$ grid

 $m/3 \leq ext{cop number} \leq m$

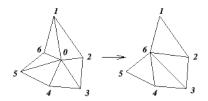


Contraction and cop number



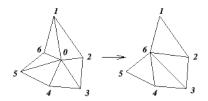
Observe: contracting an edge can only help the cops, and thus decrease the cop number!

Contraction and cop number



Observe: contracting an edge can only help the cops, and thus decrease the cop number! Obtain a "large" grid graph by contracting edges of a planar graph?

Contraction and cop number



Observe: contracting an edge can only help the cops, and thus decrease the cop number!

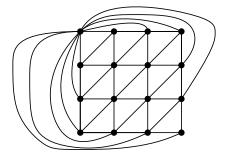
Obtain a "large" grid graph by contracting edges of a planar graph?

Theorem. Any planar graph G contains an $\alpha \operatorname{tw}(G) \times \alpha \operatorname{tw}(G)$ grid as a minor. [Demaine-Hajiaghayi'08]

A useful theorem

Theorem (Fomin, Golovach, Thilikos'11)

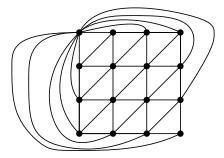
Any planar graph G contains an $\alpha tw(G) \times \alpha tw(G)$ grid-like graph as a contraction.



A useful theorem

Theorem (Fomin, Golovach, Thilikos'11)

Any planar graph G contains an $\alpha tw(G) \times \alpha tw(G)$ grid-like graph as a contraction.



Hence for any planar G we have

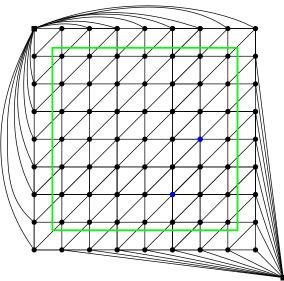
 $c(G) \ge c(\Gamma_{\alpha tw(G)}) \ge \beta \alpha tw(G)$

 $c(\Gamma_m) \ge (m-2)/3 > 2$

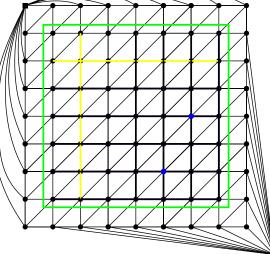
 $c(\Gamma_m) \geq (m-2)/3 > 2$



 $c(\Gamma_m) \geq (m-2)/3 > 2$



 $c(\Gamma_m) \ge (m-2)/3 > 2$



 $c(\Gamma_m) \ge (m-2)/3 > 2$

What we've proved so far

Theorem (Alon, M'15)

There exists a constant $\kappa > 0$ such that for any planar G

$$\kappa\, {\rm tw}(G) \leq c(G) \leq {\rm tw}(G) + 1$$

- 1. $c(G) \leq O\left(\sqrt{n}\right)$
- 2. Constant-factor approximation algorithm for computing cop number of planar graphs.

Random graphs

$\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

The Random graph model

Definition

 $\mathcal{G}(n,p)$ is a random graph on *n* vertices, each edge appears in $\mathcal{G}(n,p)$ with probability *p* (*p* can depend on *n*). For a graph property \mathcal{A} , we say $\mathcal{G}(n,p)$ asymptotically almost surely (a.a.s.) satisfies \mathcal{A} , if

 $\lim_{n o \infty} \mathbf{\Pr} \left[\mathcal{G}(n,p) \text{ satisfies } \mathcal{A}
ight] = 1$

The Random graph model

Definition

 $\mathcal{G}(n,p)$ is a random graph on n vertices, each edge appears in $\mathcal{G}(n,p)$ with probability p(p can depend on n). For a graph property \mathcal{A} , we say $\mathcal{G}(n,p)$ asymptotically almost surely (a.a.s.) satisfies \mathcal{A} , if

 $\lim_{n \to \infty} \Pr \left[\mathcal{G}(n,p) \text{ satisfies } \mathcal{A}
ight] = 1$

We will show that for any p = p(n), $\mathcal{G}(n, p)$ a.a.s. satisfies

 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

The "small p" case

We will show that for any p = p(n), $\mathcal{G}(n, p)$ a.a.s. satisfies

 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

Different arguments for different ranges of p: First, suppose p = L/n for a constant L

The "small p" case

We will show that for any p = p(n), $\mathcal{G}(n, p)$ a.a.s. satisfies

 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

Different arguments for different ranges of p: First, suppose p = L/n for a constant LEasy to compute: expected number of isolated vertices $\approx ne^{-L}$ a.a.s. number of isolated vertices $\geq ne^{-L}/2$

The "small p" case

We will show that for any p = p(n), $\mathcal{G}(n, p)$ a.a.s. satisfies

 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

Different arguments for different ranges of p: First, suppose p = L/n for a constant LEasy to compute: expected number of isolated vertices $\approx ne^{-L}$ a.a.s. number of isolated vertices $\geq ne^{-L}/2$

 $\gamma(G) \geq c(G) \geq$ number of isolated vertices $\geq n e^{-L}/2 \geq \gamma(G) e^{-L}/2$

Next we analyze the case $rac{1}{n} \ll p,$ i.e. $pn o \infty$

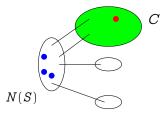
Main lemma for random graphs

Lemma

Suppose $\mathbf{d}:=pn \to \infty$ as $n \to \infty$. For any fixed $\varepsilon > 0$ we have

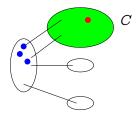
$$(1-arepsilon)rac{\ln(d)}{d} imes n < c(G) \leq \gamma(G) < (1+arepsilon)rac{\ln(d)}{d} imes n$$

N(S) := (closed) neighbourhood of S

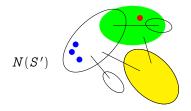


Invariant: Robber in largest component of G - N(S)S = cops' position

N(S) := (closed) neighbourhood of S

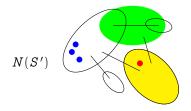


N(S) := (closed) neighbourhood of S



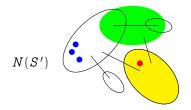
Invariant: Robber in largest component of G - N(S')S' = cops' position

N(S) := (closed) neighbourhood of S



Invariant: Robber in largest component of G - N(S')S' = cops' position

N(S) := (closed) neighbourhood of S



Invariant: Robber in largest component of G - N(S')S' = cops' position Need 2 things: (1) if S is small, largest component of G - N(S) is big, (2) and there is an edge between any two big subsets of vertices

Principle: a.a.s. for all large sets X, $|V(G) \setminus N(X)|$ is very close to its expected value $= (1-p)^{|S|} \approx e^{-p|S|}$.

Principle: a.a.s. for all large sets X, $|V(G) \setminus N(X)|$ is very close to its expected value $= (1-p)^{|S|} \approx e^{-p|S|}$.

Set $b := en \ln d/d$.

Fact 1: a.a.s. any two subsets of size b are joined by an edge. Bus problem: if you have some numbers summing to $\geq 3b$, one of the following is true:

one of them is at least b,

or you can partition them into two groups, each group summing to $\geq b$.

Principle: a.a.s. for all large sets X, $|V(G) \setminus N(X)|$ is very close to its expected value $= (1-p)^{|S|} \approx e^{-p|S|}$.

Set $b := en \ln d/d$.

Fact 1: a.a.s. any two subsets of size b are joined by an edge. Bus problem: if you have some numbers summing to $\geq 3b$, one of the following is true:

one of them is at least b,

or you can partition them into two groups, each group summing to $\geq b$.

Hence, a.a.s. any set of vertices of size $\geq 3b$ has a connected component of size $\geq b$.

Principle: a.a.s. for all large sets X, $|V(G) \setminus N(X)|$ is very close to its expected value $= (1-p)^{|S|} \approx e^{-p|S|}$.

Set $b := en \ln d/d$.

Fact 1: a.a.s. any two subsets of size b are joined by an edge. Bus problem: if you have some numbers summing to $\geq 3b$, one of the following is true:

one of them is at least b,

or you can partition them into two groups, each group summing to $\geq b$.

Hence, a.a.s. any set of vertices of size $\geq 3b$ has a connected component of size $\geq b$.

Fact 2: a.a.s. any S with $|S| \le (1-\varepsilon)n \ln d/d$ has $|V(G) \setminus N(S)| \ge 3b$.

Principle: a.a.s. for all large sets X, $|V(G) \setminus N(X)|$ is very close to its expected value $= (1-p)^{|S|} \approx e^{-p|S|}$.

Set $b := en \ln d/d$.

Fact 1: a.a.s. any two subsets of size b are joined by an edge. Bus problem: if you have some numbers summing to $\geq 3b$, one of the following is true:

one of them is at least b,

or you can partition them into two groups, each group summing to $\geq b$.

Hence, a.a.s. any set of vertices of size $\geq 3b$ has a connected component of size $\geq b$.

Fact 2: a.a.s. any S with $|S| \le (1-\varepsilon)n \ln d/d$ has $|V(G) \setminus N(S)| \ge 3b$. Therefore, $c(G) > (1-\varepsilon)n \ln d/d$

Claim: for any graph G with minimum degree δ ,

$$\gamma(G) \leq rac{1+\ln \delta}{\delta} imes n$$

Claim: for any graph G with minimum degree δ ,

$$\gamma(G) \leq rac{1+\ln\delta}{\delta} imes n$$

Proof uses the probabilistic method: choose each vertex with probability q and put it in X.

Claim: for any graph G with minimum degree δ ,

$$\gamma(G) \leq rac{1+\ln \delta}{\delta} imes n$$

Proof uses the probabilistic method: choose each vertex with probability q and put it in X. Then

$$egin{aligned} &\gamma(G) \leq \mathbb{E}\left[|X \cup (V(G) \setminus N(X))|
ight] \ &\leq \mathbb{E}\left[|X|
ight] + \mathbb{E}\left[|V(G) \setminus N(X)|
ight] \leq qn + (1-q)^{\delta}n \end{aligned}$$

Choosing $q = \ln(\delta)/\delta$ gives the claim.

Claim: for any graph G with minimum degree δ ,

$$\gamma(G) \leq rac{1+\ln\delta}{\delta} imes n$$

Proof uses the probabilistic method: choose each vertex with probability q and put it in X. Then

$$egin{aligned} &\gamma(G) \leq \mathbb{E}\left[|X \cup (V(G) \setminus N(X))|
ight] \ &\leq \mathbb{E}\left[|X|
ight] + \mathbb{E}\left[|V(G) \setminus N(X)|
ight] \leq qn + (1-q)^{\delta}n \end{aligned}$$

Choosing $q = \ln(\delta)/\delta$ gives the claim. An adaptation of this proof gives a.a.s.

$$\gamma(\mathcal{G}(n,p)) < (1+arepsilon) rac{\ln(d)}{d} imes n$$

What we've proved for random graphs

Lemma

Suppose d:= pn $\rightarrow \infty$ as n $\rightarrow \infty.$ For any fixed $\epsilon > 0$ we have

$$(1-arepsilon)rac{\ln(d)}{d} imes n < c(G) \leq \gamma(G) < (1+arepsilon)rac{\ln(d)}{d} imes n$$

Combining with the analysis for the constant d case, we conclude the following.

Theorem (Alon, M'15)

There exists a constant $\lambda > 0$ such that for a random graph $G = \mathcal{G}(n, p)$, asymptotically almost surely,

$$\lambda\gamma(G) \leq c(G) \leq \gamma(G)$$

Conclusion

Summary of our results

Theorem (Alon, M'15)

There exists a constant $\kappa > 0$ such that for any planar G

 $\kappa \operatorname{\mathsf{tw}}(G) \le c(G) \le \operatorname{\mathsf{tw}}(G) + 1$

There exists a constant $\lambda > 0$ such that for a random graph $G = \mathcal{G}(n, p)$, asymptotically almost surely,

 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

Summary of our results

Theorem (Alon, M'15)

There exists a constant $\kappa > 0$ such that for any planar G

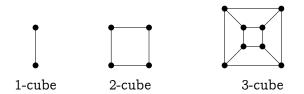
 $\kappa\, {\rm tw}(G) \leq c(G) \leq {\rm tw}(G) + 1$

There exists a constant $\lambda > 0$ such that for a random graph $G = \mathcal{G}(n, p)$, asymptotically almost surely,

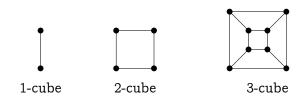
 $\lambda\gamma(G) \leq c(G) \leq \gamma(G)$

Question: find other graph classes for which these upper bounds are tight.

Hypercube graph



Hypercube graph



Proposition

For any graph G we have

$$rac{\operatorname{\mathsf{tw}}(G)+1}{\Delta(G)+1} \leq c(G) \leq \gamma(G)$$

The *d*-cube graph has

$$\lambda_1 imes rac{2^d}{d\sqrt{d}} \leq c(G) \leq \lambda_2 imes rac{2^d}{d}$$