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Overview

Density estimation (a.k.a. distribution learning)

Given an iid sample generated from an unknown density g∗, find
density ĝ that is ”close” to g .

Close in what sense?

Learning Mixtures: g∗ belongs to (or can be approximated by) a
”mixture class”

E.g., learning a mixture of k Gaussians

How can we efficiently ”learn” mixture models?

Statistical efficiency
Computational efficiency

Our focus is on statistical efficiency

We improve the state-of-the-art for learning mixture models in terms
of sample complexity.
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Mixture Classes

F is a class of probability density functions.

E.g., Multivariate Gaussian pdfs over Rd

∆k is the k-dimensional simplex.

∆k = {(w1, . . . ,wk) : wi ≥ 0,
∑

wi = 1}
The class of k-mixtures of F is defined by

Fk := {
∑k

i=1 wi fi : (w1, . . . ,wk) ∈ ∆k , f1, . . . , fk ∈ F}
E.g., Gaussian Mixture Models (GMMs) with k components.

Lots of applications, e.g., in modelling multi-modal distributions

() Learning Mixtures July 13, 2017



Density Estimation vs Parameter Estimation/Identification

Parameter Learning/Identification

E.g., approximate µi ,Σi ,wi for GMMs
Is in general harder, exponential in k samples needed.

Density Estimation

The output of the algorithm is a pdf, ĝ
The goal is to have d(g , ĝ) < ε in some metric

Our focus: density estimation w.r.t. the total variation distance

‖g − ĝ‖TV := supA⊂Rd |g(A)− ĝ(A)|
‖g − ĝ‖TV = 1

2
‖g − ĝ‖1 = 1

2

∫
z
|g − ĝ |dz
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The goal is to have d(g , ĝ) < ε in some metric
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|g − ĝ |dz

() Learning Mixtures July 13, 2017



PAC-Learning Distributions

PAC-Learning of Distributions (Realizable Setting)

A distribution learning method is called a PAC-learner for F with sample
complexity mF (ε, δ) if for all distribution g ∈ F and all ε, δ > 0, given ε,
δ, and a sample of size mF (ε, δ), with probability at least 1− δ outputs an
ε-approximation of g .
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Results

Main Theorem

Assume that F can be learned in the realizable setting with sample
complexity mF (ε, δ) Then the class Fk can be learned with

mFk (ε, δ) = O

(
k log k ·mF (ε, δ/3k)

ε2

)
samples.

So by going from one component to a mixture of k components, the
sample complexity increases at most by a factor of (k log k)/ε2.
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Applications

Learning Axis-aligned Gaussians

The class of d-dimensional axis-aligned Gaussians is PAC-learnable in the
realizable setting with mF (ε, δ) = O((d + log(1/δ))/ε2)

Learning Mixture of Axis-aligned Gaussians

The class of mixtures of k axis-aligned Gaussians in Rd is PAC-learnable
with sample complexity mFk (ε, δ) = O(kd log k log(k/δ)/ε4) = Õ(kd/ε4).

(Somewhat) Improvement over previous known upper bounds

Õ(dk9/ε4) (Suresh, Orlitsky, Acharya, Jafarpour’14)

Õ((d2k4 + d3k3)/ε2) (Karpinski and Macintyre (1997))

Lower Bound (Suresh, Orlitsky, Acharya, Jafarpour’14)

The sample complexity of learning mixtures of k axis-aligned Gaussians in
Rd in the realizable setting is mFk (ε, 1/2) = Ω(dk/ε2).
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Õ(d4k4/ε2) (Karpinski and Macintyre’97)

() Learning Mixtures July 13, 2017



Applications

Learning Gaussians

The class of d-dimensional Gaussians is PAC-learnable in the realizable
setting with mF (ε, δ) = O((d2 + log(1/δ))/ε2)

Learning Mixture of Gaussians

The class Fk of mixtures of k Gaussians in Rd is PAC-learnable with
sample complexity mFk (ε, δ) = Õ(kd2/ε4).
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Õ(d2k3/ε4) (Diakonikolas, Kane, Stewart’17)
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High level overview of the algorithm

Create a finite set of “candidate” pdfs based on the sample

Choose the best one based on a fresh new sample

Learning Finite Classes (Devroye and Lugosi (2001))

For a finite class F of distributions, there is an algorithm than learns F
with O(log(M)/ε2) new samples.

Learning means choosing the closest candidate from F to the target.

Note that we know how to learn a single Gaussian using d2/ε2 samples
But in the case of mixtures, we don’t know which sample point came from which
component of mixture,

but we can try “all” possible cases (exhaustive search) to generate the candidates.
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Algorithm

Recall, target has form {
∑k

i=1 wi fi : wi ≥ 0,
∑

wi = 1, f1, . . . , fk ∈ Gd}
In words: try all possible ways of partitioning data into components, and
all possible mixture weights

Input: k , ε, δ and an iid sample S of size kd2/ε2

0. Let Ŵ be an (ε/k)-cover for ∆k in `∞ distance.
1. C = ∅. (set of candidate distributions)

2. For each (ŵ1, . . . , ŵk) ∈ Ŵ do:
3. For each possible partition of S into A1,A2, ...,Ak+1:

4. Provide Ai to the F-learner, and let Ĝi be its output.
5. Add the candidate distribution

∑
i∈[k] ŵi Ĝi to C.

6. Apply the algorithm for finite classes to C and output its result.

|C | ≤ kkd
2/ε2 × (1/ε)k so log |C | ≤ (kd2/ε2) log k + k log(1/ε).

Remains to prove that there is an ε-close candidate in C.
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0. Let Ŵ be an (ε/k)-cover for ∆k in `∞ distance.
1. C = ∅. (set of candidate distributions)

2. For each (ŵ1, . . . , ŵk) ∈ Ŵ do:
3. For each possible partition of S into A1,A2, ...,Ak+1:

4. Provide Ai to the F-learner, and let Ĝi be its output.
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Open Questions

For learning mixture of k Gaussians in Rd ,

kd

ε2
≤ statistical complexity ≤ kd2

ε4

within log factors. Close the gap!
Guess: correct answer is kd2

ε2

Polynomial algorithm?

Thank You!
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