On the Density of Nearly Regular Graphs with a Good Edge-Labelling

Abbas Mehrabian
amehrabi@uwaterloo.ca
University of Waterloo

SIAM Conference on Discrete Mathematics
Dalhousie University
June 19th, 2012
What is a *Good Edge-Labelling*?

Graphs are simple and undirected and have n vertices.

Definition (Bermond, Cosnard, and Pérennes 2009)

A good edge-labelling is a labelling of edges with integers such that for any ordered pair (u, v), there is at most one increasing (non-decreasing) (u, v)-path.

Defined in the context of Wavelength Division Multiplexing problems.
Example
Example

$K_{2,3}$
What is a *good* graph?

Definition

A graph is **good** if it admits a good edge-labelling; otherwise it is **bad**.

Example

C_4 is good, K_3 and $K_{2,3}$ are bad.
Question

What is the maximum number of edges of a good graph?

Araújo, Cohen, Giroire, and Havet (2009):

$$\Omega(n \log n) \leq \gamma(n) \leq O(n^{3/2}).$$
Density of Good Graphs

Question

What is the maximum number of edges of a good graph?

Araújo, Cohen, Giroire, and Havet (2009):

\[\Omega(n \log n) \leq \gamma(n) \leq O(n^{3/2}). \]

Today we will see that a good regular graph has \(n^{1+o(1)} \) edges.
Girth of Bad Graphs

Question [Bode, Farzad, and Theis 2011]
Is having a small girth the obstacle for being good?

NO! We will see there exist bad graphs with arbitrarily large girth.
Question [Bode, Farzad, and Theis 2011]

Is having a small girth the obstacle for being good?

NO! We will see there exist bad graphs with arbitrarily large girth.
The Main Result

Theorem (M 2012+)

For any integer t, there exists $\epsilon(t)$ such that any d-regular n-vertex graph with $\epsilon(t)d^t > n$ is bad.
The Approach

Consider an arbitrary labelling of the graph, and show there exist $\geq n^2$ increasing paths.
Consider an arbitrary labelling of the graph, and show there exist \(\geq n^2 \) increasing paths.

Definition

A **nice** \(k \)-**walk** is an increasing non-backtracking walk of length \(k \).
Example

```
Example

Example
```
An Observation

If for some k there exist $> n^2$ nice k-walks, then the labelling is not good.
The Strategy

cdba

cdbc

25 nice 3-walks

5 nice 2-walks

cdb
The Main Theorem

Writing and solving a recursive formula for the number of k-walks gives

Lemma

For any integer t, there exists $\epsilon(t) > 0$ such that any d-regular n-vertex graph has at least $\epsilon(t) d^{t}$ nice t-walks.

Theorem

Any d-regular n-vertex graph with $\epsilon(t) d^{t} > n$ is bad.

Can be extended to graphs with bounded Δ/d.
The Main Theorem

Writing and solving a recursive formula for the number of k-walks gives

Lemma

For any integer t, there exists $\epsilon(t) > 0$ such that any d-regular n-vertex graph has at least $\epsilon(t)nd^t$ nice t-walks.
The Main Theorem

Writing and solving a recursive formula for the number of k-walks gives

Lemma

For any integer t, there exists $\epsilon(t) > 0$ such that any d-regular n-vertex graph has at least $\epsilon(t)nd^t$ nice t-walks.

Theorem

Any d-regular n-vertex graph with $\epsilon(t)d^t > n$ is bad.
The Main Theorem

Writing and solving a recursive formula for the number of k-walks gives

Lemma

For any integer t, there exists $\epsilon(t) > 0$ such that any d-regular n-vertex graph has at least $\epsilon(t)nd^t$ nice t-walks.

Theorem

Any d-regular n-vertex graph with $\epsilon(t)d^t > n$ is bad.

Can be extended to graphs with bounded Δ / \overline{d}.
Corollary

Let $\gamma_r(n)$ be the maximum number of edges of a good regular graph. Then

$$\gamma_r(n) \leq n^{1+o(1)}.$$
The First Corollary

Corollary

Let $\gamma_r(n)$ be the maximum number of edges of a good regular graph. Then

$$\gamma_r(n) \leq n^{1+o(1)}.$$

Proof.

Consider a sequence of regular graphs with at least $n^{1+\frac{1}{k}}$ edges, k fixed. Then their degree is going to infinity with n.
The First Corollary

Corollary

Let $\gamma_r(n)$ be the maximum number of edges of a good regular graph. Then

$$\gamma_r(n) \leq n^{1+o(1)}.$$

Proof.

Consider a sequence of regular graphs with at least $n^{1+\frac{1}{k}}$ edges, k fixed. Then their degree is going to infinity with n.

Consider a d-regular graph in this sequence with $d > 1/\epsilon(k + 1)$. Then for this graph

$$\epsilon(k + 1)d^{k+1} > d^k = \left(\frac{2n^{1+\frac{1}{k}}}{n}\right)^k = 2^kn > n.$$

\square
The Second Corollary

Corollary

For any g, there exists a bad graph with girth $\geq g$.

Proof. Lazebnik, Ustimenko, and Woldar (1997) proved that for any odd prime power d, there exists a d-regular graph with girth g with $< 2d^{3/4}g$ vertices. Let $d > 2/\epsilon(g)$. Then $\epsilon(g) d^g > 2d^g - 1 > 2d^{3/4}g > n$.

The Second Corollary

Corollary

For any g, there exists a bad graph with girth $\geq g$.

Proof.

Lazebnik, Ustimenko, and Woldar (1997) proved that for any odd prime power d, there exists a d-regular graph with girth g with $< 2d^{\frac{3}{4}}g$ vertices.
Corollary

For any g, there exists a bad graph with girth $\geq g$.

Proof.

Lazebnik, Ustimenko, and Woldar (1997) proved that for any odd prime power d, there exists a d-regular graph with girth g with $< 2d^{\frac{3}{4}g}$ vertices.

Let $d > 2/\epsilon(g)$. Then

$$\epsilon(g) d^g > 2d^{g-1} > 2d^{\frac{3}{4}g} > n.$$
A Result in The Other Direction

Theorem (M 2012+)

Any graph with max degree Δ and girth $\geq 2k$ such that

$$4ek^2(\Delta - 1)^{k-1} < k!$$

is good.

Corollary

Any graph with max degree Δ and girth $\geq 40\Delta$ is good.
Theorem

Any graph with max degree Δ and girth $\geq 2k$ such that

$$4ek^2(\Delta - 1)^{k-1} < k!$$

is good.
A Result in The Other Direction

Theorem

Any graph with max degree Δ and girth $\geq 2k$ such that

$$4ek^2(\Delta - 1)^{k-1} < k!$$

is good.

Proof.

1. The label of each edge: independent and uniform from $[0, 1]$.
A Result in The Other Direction

Theorem

Any graph with max degree Δ and girth $\geq 2k$ such that

$$4ek^2(\Delta - 1)^{k-1} < k!$$

is good.

Proof.

1. The label of each edge: independent and uniform from $[0, 1]$.
2. Labelling not good $\Rightarrow \exists$ increasing path of length exactly k (k-path).
A Result in The Other Direction

Theorem

Any graph with max degree Δ and girth $\geq 2k$ such that

$$4ek^2(\Delta - 1)^{k-1} < k!$$

is good.

Proof.

1. The label of each edge: independent and uniform from $[0, 1]$.
2. Labelling not good $\Rightarrow \exists$ increasing path of length exactly k (k-path).
3. For any k-path P, $\Pr[P$ increasing$] = \frac{2}{k!}$.
A Result in The Other Direction

Theorem

Any graph with max degree Δ and girth $\geq 2k$ such that

$$4ek^2(\Delta - 1)^{k-1} < k!$$

is good.

Proof.

1. The label of each edge: independent and uniform from $[0, 1]$.
2. Labelling not good $\Rightarrow \exists$ increasing path of length exactly k (k-path).
3. For any k-path P, $\Pr[P$ increasing$] = \frac{2}{k!}$.
4. Any k-path intersects at most $2k^2(\Delta - 1)^{k-1}$ other k-paths.
Open Problems

We showed any graph with max degree Δ and girth $\geq 40\Delta$ is good.
Open Problems

We showed any graph with max degree Δ and girth $\geq 40\Delta$ is good.

Open Problem 1
Improve the dependence on Δ!
We showed any graph with max degree Δ and girth $\geq 40\Delta$ is good.

Open Problem 1

Improve the dependence on Δ!

Open Problem 2 (Araújo, Cohen, Giroire, and Havet)

Does every planar graph of girth at least 5 have a good edge-labelling?
Thanks for your attention :-}