Bounds for randomized rumour spreading protocols

Abbas Mehrabian amehrabi@uwaterloo.ca

University of Waterloo

20 November 2014 Dalhousie University

joint work with H. Acan, A. Collevecchio, A. Pourmiri, N. Wormald

Protocol definition

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex tells the rumour to a random neighbour.

Protocol definition

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex tells the rumour to a random neighbour.

Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t + 1.

Protocol definition

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex tells the rumour to a random neighbour.

Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t + 1.

inform-time(v): the first time v learns the rumour.

Spread Time: the first time everyone knows the rumour.

Applications

- \checkmark Replicated databases
- \checkmark Broadcasting algorithms
- \checkmark News propagation in social networks
- $\checkmark\,$ Spread of viruses on the Internet

inform - time(0) = 0

Abbas (Waterloo)

Rumour spreading

20 November 11 / 50

inform - time(0) = 0inform - time(1) = 1

Abbas (Waterloo)

Rumour spreading

20 November 12 / 50

 $\begin{aligned} & \text{inform} - \text{time}(0) = 0 \\ & \text{inform} - \text{time}(1) = 1 \\ & \text{inform} - \text{time}(2) = 1 + \text{Geo}(1/2) \end{aligned}$

$$\begin{split} & \text{inform} - \text{time}(0) = 0 \\ & \text{inform} - \text{time}(1) = 1 \\ & \text{inform} - \text{time}(2) = 1 + \text{Geo}(1/2) \\ & \text{inform} - \text{time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \end{split}$$

inform - time(0) = 0 inform - time(1) = 1 inform - time(2) = 1 + Geo(1/2) inform - time(3) = 1 + Geo(1/2) + Geo(1/2)inform - time(4) = 1 + Geo(1/2) + Geo(1/2) + Geo(1/2)

$$\begin{split} &\inf_{1} \text{form} - \text{time}(0) = 0 \\ &\inf_{1} \text{form} - \text{time}(1) = 1 \\ &\inf_{1} \text{form} - \text{time}(2) = 1 + \text{Geo}(1/2) \\ &\inf_{1} \text{form} - \text{time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf_{1} \text{form} - \text{time}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\mathbb{E}[\text{Spread Time}] = 1 + 3 \times 2 = 7 \end{split}$$

$$\begin{split} &\inf_{0} - \operatorname{time}(0) = 0 \\ &\inf_{0} - \operatorname{time}(1) = 1 \\ &\inf_{0} - \operatorname{time}(2) = 1 + \operatorname{Geo}(1/2) \\ &\inf_{0} - \operatorname{time}(3) = 1 + \operatorname{Geo}(1/2) + \operatorname{Geo}(1/2) \\ &\inf_{0} - \operatorname{time}(4) = 1 + \operatorname{Geo}(1/2) + \operatorname{Geo}(1/2) + \operatorname{Geo}(1/2) \\ &\mathbb{E}[\operatorname{Spread Time}] = 1 + 3 \times 2 = 7 \\ &= 2n - 3 \end{split}$$

When k + 1 vertices are informed and n - 1 - k uninformed, after $\frac{n-1}{n-1-k}$ more rounds a new vertex will be informed.

When k + 1 vertices are informed and n - 1 - k uninformed, after $\frac{n-1}{n-1-k}$ more rounds a new vertex will be informed.

$$\mathbb{E}[ext{Spread Time}] = rac{n-1}{n-1} + rac{n-1}{n-2} + \dots + rac{n-1}{2} + rac{n-1}{1} pprox n \ln n$$

Example: a complete graph

 $\mathbb{E}[\text{Spread Time}] \approx \log_2 n + \ln n$ [Pittel'87]

Abbas (Waterloo)

Rumour spreading

20 November 19 / 50

Other known results

With probability close to 1, for any starting vertex,

```
1. \max\{\operatorname{diameter}(G)/2, \log_2 n\} \leq \operatorname{Spread Time} \leq n \ln n
```

[Elsässer and Sauerwald'06]

Other known results

With probability close to 1, for any starting vertex,

1. $\max\{\operatorname{diameter}(G)/2, \log_2 n\} \leq \operatorname{Spread} \operatorname{Time} \leq n \ln n$

[Elsässer and Sauerwald'06]

2. Spread Time of $\mathcal{H}_d = \Theta(d)$ [Feige, Peleg, Raghavan, Upfal'90]

Other known results

With probability close to 1, for any starting vertex,

1. $\max\{\operatorname{diameter}(G)/2, \log_2 n\} \leq \operatorname{Spread} \operatorname{Time} \leq n \ln n$

[Elsässer and Sauerwald'06]

2. Spread Time of $\mathcal{H}_d = \Theta(d)$ [Feige, Peleg, Raghavan, Upfal'90]

3. If $pn \ge (1 + \varepsilon) \ln n$ then Spread Time of $G(n, p) = \Theta(\ln n)$ [Feige et al.'90] Improving the protocol

Uninformed vertices ask the informed ones...

Abbas (Waterloo)

Rumour spreading

20 November 21 / 50

The push-pull protocol

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$,

every informed vertex sends the rumour to a random neighbour (PUSH);

and every uninformed vertex queries a random neighbour about the rumour (PULL).

push protocol: $n \ln n$ rounds push-pull protocol: 1 or 2 rounds

inform - time(0) = 0

Abbas (Waterloo)

Rumour spreading

20 November 24 / 50

inform - time(0) = 0inform - time(1) = 1

Abbas (Waterloo)

Rumour spreading

20 November 25 / 50

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = 1 \\ & \inf form - time(2) = 1 + \min\{ \text{Geo}(1/2), \text{Geo}(1/2) \} \\ & = 1 + \text{Geo}(3/4) \end{split}$$

 $\begin{aligned} &\inf form - time(0) = 0\\ &\inf form - time(1) = 1\\ &\inf form - time(2) = 1 + \operatorname{Geo}(3/4)\\ &\inf form - time(3) = 1 + \operatorname{Geo}(3/4) + \operatorname{Geo}(3/4) \end{aligned}$

inform - time(0) = 0 inform - time(1) = 1 inform - time(2) = 1 + Geo(3/4) inform - time(3) = 1 + Geo(3/4) + Geo(3/4)inform - time(4) = 1 + Geo(3/4) + Geo(3/4) + 1
Example: a path

$$\begin{split} & \inf form - time(0) = 0 \\ & \inf form - time(1) = 1 \\ & \inf form - time(2) = 1 + \text{Geo}(3/4) \\ & \inf form - time(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ & \inf form - time(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ & \mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \end{split}$$

Abbas (Waterloo)

Example: a path

$$\begin{split} &\inf form - time(0) = 0 \\ &\inf form - time(1) = 1 \\ &\inf form - time(2) = 1 + \text{Geo}(3/4) \\ &\inf form - time(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ &\inf form - time(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ &\mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \\ &= \frac{4}{3}n - 2 \qquad (\text{versus } 2n - 3 \text{ for push}) \end{split}$$

Example: a complete graph

push: $\log_2 n + \ln n$ push-pull: $\log_3 n$ [Pittel'87] [Karp, Schindelhauer, Shenker, Vöcking'00]

Abbas (Waterloo)

Rumour spreading

Other results on push-pull protocol

1. Barabasi-Albert preferential attachment graph has Spread Time $\Theta(\ln n)$, PUSH alone has Spread Time poly(n).

```
[Doerr, Fouz, Friedrich '11]
```

2. Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent $\in (2,3)$ has Spread Time $\Theta(\ln n)$.

[Fountoulakis, Panagiotou, Sauerwald '12]

 If α is the vertex expansion (vertex isoperimetric number), and Φ is the conductance, Spread Time ≤ C max{Φ⁻¹ ln n, α⁻¹ ln² n}. [Giakkoupis '11, '14] No bottleneck ⇒ fast rumour spreading

An extremal question

What's the maximum spread time of an *n*-vertex graph?

An extremal question

What's the maximum spread time of an n-vertex graph?

Theorem (Acan, Collevecchio, M, Wormald'14+) On any n-vertex graph, \mathbb{E} [Spread Time] $\leq 5n$

Abbas (Waterloo)

Abbas (Waterloo)

Push-Pull on Random k-trees

Example (k = 3)

Abbas (Waterloo)

Rumour spreading

20 November 36 / 50

Some properties of random k-trees

- ✓ Logarithmic diameter
- V Power law degree sequence: fraction of vertices with degree $d \approx d^{-2-\frac{1}{k-1}}$
- ✓ Very small conductance and vertex expansion Lots of bottlenecks

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14, upper bound)

If initially a random vertex knows the rumor, after $(\ln n)^{1+3/k}$ rounds, 99 percent of vertices will know it.

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14, upper bound)

If initially a random vertex knows the rumor, after $(\ln n)^{1+3/k}$ rounds, 99 percent of vertices will know it.

Push-Pull is efficient on a poorly connected random network, if informing almost all vertices suffices.

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14, upper bound)

If initially a random vertex knows the rumor, after $(\ln n)^{1+3/k}$ rounds, 99 percent of vertices will know it.

Push-Pull is efficient on a poorly connected random network, if informing almost all vertices suffices.

Theorem (M, Pourmiri'14, lower bound)

The time required to inform all vertices is $> n^{1/3k}$

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14, upper bound)

If initially a random vertex knows the rumor, after $(\ln n)^{1+3/k}$ rounds, 99 percent of vertices will know it.

Push-Pull is efficient on a poorly connected random network, if informing almost all vertices suffices.

Theorem (M, Pourmiri'14, lower bound)

The time required to inform all vertices is $> n^{1/3k}$

Exponential blow up if informing each and every vertex is required.

•

Abbas (Waterloo)

Proof sketch of the upper bound

Let d be some parameter.

```
Definition (fast edge)
```

An edge $uv \in E(H)$ is fast if $deg(u) \leq d$ or $deg(v) \leq d$ or u and v have a common neighbour with degree $\leq d$.

Let d be some parameter.

Definition (fast edge)

An edge $uv \in E(H)$ is fast if $deg(u) \le d$ or $deg(v) \le d$ or u and v have a common neighbour with degree $\le d$.

Let d be some parameter.

Definition (fast edge)

An edge $uv \in E(H)$ is fast if $deg(u) \leq d$ or $deg(v) \leq d$ or u and v have a common neighbour with degree $\leq d$.

Let d be some parameter.

Definition (fast edge)

An edge $uv \in E(H)$ is fast if $deg(u) \leq d$ or $deg(v) \leq d$ or u and v have a common neighbour with degree $\leq d$.

Let d be some parameter.

Definition (fast edge)

An edge $uv \in E(H)$ is fast if $deg(u) \le d$ or $deg(v) \le d$ or u and v have a common neighbour with degree $\le d$.

Let d be some parameter.

```
Definition (fast edge)
```

An edge $uv \in E(H)$ is fast if $deg(u) \leq d$ or $deg(v) \leq d$ or u and v have a common neighbour with degree $\leq d$.

Observe: if uv is fast, average transmission time from u to $v \leq 2d$.

Lemma

 $\begin{array}{l} \mbox{Transmission time along a path of length ℓ of fast edges is} \\ \le O(d(\ell+\ln n)) \mbox{ with prob. } \ge 1-n^{-3}. \end{array}$

1. H = graph at round $m \approx n/\ln n$

- 1. H = graph at round $m \approx n/\ln n$
- 2. Almost all vertices in small pieces have degrees $\leq d = (\ln n)^{3/k}$

- 1. $H = {
 m graph}$ at round $m pprox n / \ln n$
- 2. Almost all vertices in small pieces have degrees $\leq d = (\ln n)^{3/k}$
- 3. \exists an almost-spanning tree of H of height $O(\ln n)$ consisting fast edges.

- 1. H = graph at round $m \approx n/\ln n$
- 2. Almost all vertices in small pieces have degrees $\leq d = (\ln n)^{3/k}$
- 3. \exists an almost-spanning tree of H of height $O(\ln n)$ consisting fast edges.

Theorem (upper bound)

If initially a random vertex knows the rumor, after $O\left(\ln n \times (\ln n)^{3/k}\right)$ rounds, 99 percent of vertices will know it.

Proof sketch of the lower bound

Definition (*D*-barrier)

Vertices in the two k-cliques have degrees $\geq D$.

Observe: if a *D*-barrier exists, Spread Time is $\geq \Omega(D)$.

Definition (*D*-barrier)

Vertices in the two k-cliques have degrees $\geq D$.

Observe: if a *D*-barrier exists, Spread Time is $\geq \Omega(D)$.

Lemma

A random k-tree has a
$$\Omega\left(n^{1-1/k}
ight)$$
-barrier with prob. $\geq \Omega\left(n^{-k}
ight)$

1. H = graph at round $m \approx \sqrt{n}$

Abbas (Waterloo)

- 1. H = graph at round $m \approx \sqrt{n}$
- 2. Each piece has a $(n/km)^{1-1/k}$ -barrier with prob. $\Omega((n/km)^{-k})$.

- 1. H = graph at round $m \approx \sqrt{n}$
- 2. Each piece has a $(n/km)^{1-1/k}$ -barrier with prob. $\Omega((n/km)^{-k})$.
- 3. Since $km((n/km)^{-k}) \to \infty$ and by independence of pieces, w.h.p. there exists a $(n/km)^{1-1/k}$ -barrier.

- 1. H = graph at round $m \approx \sqrt{n}$
- 2. Each piece has a $(n/km)^{1-1/k}$ -barrier with prob. $\Omega((n/km)^{-k})$.
- 3. Since $km((n/km)^{-k}) \to \infty$ and by independence of pieces, w.h.p. there exists a $(n/km)^{1-1/k}$ -barrier.

Hence, w.h.p. Spread Time> $n^{1/3k}$

Future research directions

- 1. Design a (deterministic) approximation algorithm for finding the Spread Time of a given graph.
- 2. Study other graph classes, e.g. random geometric graphs.

Future research directions

- 1. Design a (deterministic) approximation algorithm for finding the Spread Time of a given graph.
- 2. Study other graph classes, e.g. random geometric graphs.

