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Protocol definition
Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . , every informed vertex tells the rumour
to a random neighbour.

Remark 1. Informed vertex may call a neighbour in consecutive steps.
Remark 2. If a vertex receives the rumour at time t , it starts passing it
from time t + 1.
inform-time(v): the first time v learns the rumour.
Spread Time: the first time everyone knows the rumour.
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Applications

X Replicated databases

X Broadcasting algorithms

X News propagation in social networks

X Spread of viruses on the Internet
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Example: a path

inform− time(0) = 0
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Example: a path

inform− time(0) = 0

inform− time(1) = 1
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(1/2)
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(1/2)

inform− time(3) = 1+Geo(1/2) +Geo(1/2)
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(1/2)

inform− time(3) = 1+Geo(1/2) +Geo(1/2)

inform− time(4) = 1+Geo(1/2) +Geo(1/2) +Geo(1/2)

E[Spread Time] = 1+ 3× 2 = 7

= 2n − 3
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Example: a star

When k + 1 vertices are informed and n − 1− k uninformed,
after n−1

n−1−k more rounds a new vertex will be informed.

E[Spread Time] =
n − 1
n − 1

+
n − 1
n − 2

+ · · ·+ n − 1
2

+
n − 1
1
≈ n lnn
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Example: a complete graph

E[Spread Time] ≈ log2 n + lnn [Pittel ′87]
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Other known results

With probability close to 1, for any starting vertex,

1. max{diameter(G)/2, log2 n} ≤ Spread Time ≤ n lnn
[Elsässer and Sauerwald’06]

2. Spread Time of Hd = Θ(d) [Feige, Peleg, Raghavan, Upfal’90]

H3

3. If pn ≥ (1+ ε) lnn then Spread Time of G(n , p) = Θ(lnn)
[Feige et al.’90]
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Improving the protocol

Uninformed vertices ask the informed ones...
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The push-pull protocol
Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random neighbour
(PUSH);
and every uninformed vertex queries a random neighbour about
the rumour (PULL).
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Example: a star

push protocol: n lnn rounds
push-pull protocol: 1 or 2 rounds
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Example: a path

inform− time(0) = 0
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Example: a path

inform− time(0) = 0

inform− time(1) = 1
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+min{Geo(1/2),Geo(1/2)}

= 1+Geo(3/4)
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Example: a path

inform− time(0) = 0

inform− time(1) = 1
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3

=
4
3
n − 2 (versus 2n − 3 for push)
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Example: a complete graph

push: log2 n + lnn [Pittel’87]
push-pull: log3 n [Karp, Schindelhauer, Shenker, Vöcking’00]
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Other results on push-pull protocol

1. Barabasi-Albert preferential attachment graph has
Spread Time Θ(lnn),
PUSH alone has Spread Time poly(n).

[Doerr, Fouz, Friedrich ’11]

2. Random graphs with power-law expected degrees
(a.k.a. the Chung-Lu model) with exponent ∈ (2, 3) has
Spread Time Θ(lnn).

[Fountoulakis, Panagiotou, Sauerwald ’12]

3. If α is the vertex expansion (vertex isoperimetric number),
and Φ is the conductance,
Spread Time ≤ C max{Φ−1 lnn , α−1 ln2 n}. [Giakkoupis ’11, ’14]
No bottleneck ⇒ fast rumour spreading
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An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

Theorem (Acan, Collevecchio, M, Wormald’14+)

On any n-vertex graph, E [Spread Time] ≤ 5n

Abbas (Waterloo) Rumour spreading 20 November 33 / 50



An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

Theorem (Acan, Collevecchio, M, Wormald’14+)

On any n-vertex graph, E [Spread Time] ≤ 5n

Abbas (Waterloo) Rumour spreading 20 November 33 / 50



...
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Push-Pull on Random k -trees
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Random k -trees

Example (k = 3)

Abbas (Waterloo) Rumour spreading 20 November 36 / 50



Random k -trees

Example (k = 3)

Abbas (Waterloo) Rumour spreading 20 November 37 / 50



Random k -trees

Example (k = 3)

Abbas (Waterloo) Rumour spreading 20 November 38 / 50



Random k -trees

Example (k = 3)
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Some properties of random k -trees

X Logarithmic diameter

X Power law degree sequence:
fraction of vertices with degree d ≈ d−2− 1

k−1

X Very small conductance and vertex expansion
Lots of bottlenecks
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Our results

Push-Pull protocol on random k -trees (k > 1 fixed):

Theorem (M, Pourmiri’14, upper bound)
If initially a random vertex knows the rumor,
after (lnn)1+3/k rounds, 99 percent of vertices will know it.

Push-Pull is efficient on a poorly connected random network,
if informing almost all vertices suffices.

Theorem (M, Pourmiri’14, lower bound)

The time required to inform all vertices is > n1/3k

Exponential blow up if informing each and every vertex is required.
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Self-similarity of random k -trees
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Self-similarity of random k -trees
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Proof sketch of the upper bound
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Fast edges

Let d be some parameter.

Definition (fast edge)

An edge uv ∈ E(H ) is fast if deg(u) ≤ d or deg(v) ≤ d or u and v
have a common neighbour with degree ≤ d .

Observe: if uv is fast, average transmission time from u to v ≤ 2d .

v

deg ≤ du

v deg ≤ d

u

v

u

x deg ≤ d
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Fast edges

Let d be some parameter.

Definition (fast edge)

An edge uv ∈ E(H ) is fast if deg(u) ≤ d or deg(v) ≤ d or u and v
have a common neighbour with degree ≤ d .

Observe: if uv is fast, average transmission time from u to v ≤ 2d .

Lemma
Transmission time along a path of length ` of fast edges is
≤ O(d(`+ lnn)) with prob. ≥ 1− n−3.
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Proof of upper bound

1. H = graph at round m ≈ n/ lnn

2. Almost all vertices in small pieces have degrees ≤ d = (lnn)3/k

3. ∃ an almost-spanning tree of H of height O(lnn) consisting fast edges.

Theorem (upper bound)

If initially a random vertex knows the rumor,
after O

(
lnn × (lnn)3/k

)
rounds, 99 percent of vertices will know it.
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Proof sketch of the lower bound
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Proof of lower bound

Definition (D-barrier)

Vertices in the two k -cliques have degrees ≥ D .

Observe: if a D-barrier exists, Spread Time is ≥ Ω(D).

Lemma

A random k-tree has a Ω
(
n1−1/k)-barrier with prob. ≥ Ω

(
n−k)
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Proof of lower bound

1. H = graph at round m ≈
√

n

2. Each piece has a (n/km)1−1/k -barrier with prob. Ω
(
(n/km)−k).

3. Since km
(
(n/km)−k) → ∞ and by independence of pieces,

w.h.p. there exists a (n/km)1−1/k -barrier.

Hence, w.h.p. Spread Time> n1/3k
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Future research directions

1. Design a (deterministic) approximation algorithm for finding
the Spread Time of a given graph.

2. Study other graph classes, e.g. random geometric graphs.
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