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Random Apollonian Network

After t steps,
@ a random triangulated plane graph
@ t+ 3 vertices
o 3t + 3 edges
@ 2t + 1 faces

called a Random Apollonian Network (RAN).
Zhou, Yan, Wang, Physical Review (2005)
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Motivation

Modelling real-world networks:
The Web graph

@ Social networks
@ Brain neurons
°

Protein interactions
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Motivation

Modelling real-world networks:
@ The Web graph
@ Social networks
@ Brain neurons
@ Protein interactions

Known models include:

Erdds-Renyi random graphs
preferential attachment model

Kronecker graphs

°
°

o Cooper-Frieze model
@ Aiello-Chung-Lu model
°

protean graphs

Fabrikant-Koutsoupias-Papadimitriou model
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Motivation

RANSs are an interesting model for generating random planar graphs.
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Properties of Real-World Networks

© Power-law degree distribution:
P [deg(a random vertex) = k] = Ck P

@ Small-world phenomenon (six degrees of separation) :
There is a short path connecting every two vertices.
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Known Results

Degree sequence

n := number of vertices
Zy n := number of vertices with degree k.

Theorem (Frieze and Tsourakakis 2012)
For every k = k(n) > 3,

E[Zy ] = O(nk™3),

and,
P H Zin—E[Zk 5]

> 10 nlogn] —0
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Introduction

The Diameter of a Graph

Diameter = 3
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Known Results

The diameter

Theorem (Albenque and Marckert 2008)

Distance between two random vertices — 0.55 log n.

Theorem (Frieze and Tsourakakis 2012)

P [diameter > 7.1logn] — 0
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Known Results

The diameter

Theorem (Albenque and Marckert 2008)

Distance between two random vertices — 0.55 log n.

Theorem (Frieze and Tsourakakis 2012)

P [diameter > 7.1logn] — 0

Theorem (EFGMSWZ'12+)

diamet
clameter . ~1.668  in probability

log n
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Introduction

Our Result on the Diameter

Theorem (EFGMSWZ'12+)

y := unique solution to
x(x —1)f'(x) = f(x)log f(x), x¢€(0,1/2),

c:=(1—y1)/logf(y)~ 1.668
Then for every fixed ¢ > 0,

P[(1—¢)clogn < diameter < (14 ¢)clogn] — 1
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The Longest Path

The conjecture

Conjecture (Frieze and Tsourakakis 2012)

P [3 a path containing a positive fraction of vertices] — 1
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The Longest Path

The conjecture

Conjecture (Frieze and Tsourakakis 2012)

P [3 a path containing a positive fraction of vertices] — 1

Not true!
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The Longest Path

Our results

m := number of faces =2n—5
Lm = length of the longest path
Theorem (EFGMSWZ'12+)

30 > 0 such that
P|L,<n/(logn®| =1
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The Longest Path

Our results

m := number of faces =2n—5
Lm = length of the longest path
Theorem (EFGMSWZ'12+)

30 > 0 such that
P|L,<n/(logn®| =1

Theorem (EFGMSWZ'12+)

and
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The Longest Path

Upper Bound for Longest Path
The Main Idea

Claim: A simple path cannot contain internal vertices of all 9 regions.
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The Longest Path

Upper Bound for Longest Path
The Main Idea

Claim: A simple path cannot contain internal vertices of all 9 regions.
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The Longest Path

Eggenberger-Pélya Urn

Theorem (Eggenberger and Pélya 1923)

Start: g green, r red balls.

In each step:
@ pick a random ball and return it to the urn;
@ add s balls of the same colour.

After n draws:

&n: green balls

t,: number of balls
For any « € [0, 1]

th

. &n _ Tlg+r)/s)
i | <o = ET
=P [Beta(g/s,r/s) < &

x .
J xs 11 —x)stdx
0
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Upper Bound for Longest Path

£

min{Zy,--- , Zo}
n
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Corollary

P <e| <13V/e.




Upper Bound for Longest Path

Fix a small €. We lose
n[e—i—(l—s)s+(1—5)2£+---+(1—£)ke} :n[l—(l—s)k+1

vertices in any simple path.
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The Longest Path

Upper Bound for Longest Path

Fix a small €. We lose
n[z—:—i—(l—s)e+(1—&)25—1—---—1—(1—5)"5} :n[l—(l—s)”l

vertices in any simple path.

Theorem (EFGMSWZ'12+)
30 > 0 such that
P|Lm<n/(logn®| —1
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The Longest Path

Lower Bounds for Longest Path

m := number of faces =2n—5
L, := length of the longest path
1 :=log2/log3 =~ 0.63

Theorem (EFGMSWZ'12+)

and
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Lower Bounds for Longest Path

Lemma

For any two boundary vertices,
3 a path of length > m" connecting them
not containing the third boundary vertex.
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Lower Bounds for Longest Path

m3

Assume that my > mpy > m3
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Lower Bounds for Longest Path
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sincemy > my >mzand m +my+m3=m
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Lower Bounds for Longest Path

Z3

E [Lm} Z E I:Zlo.88 + 220.88

Z > 7y > 23} > m0-88
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Radius

Radius : max distance between a vertex and the boundary

Lemma

If radius /logn — ¢/2 in probability,
then diameter/ log n — c in probability.
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Crucial Observation

2y

Distance of a vertex to the boundary
equals number of type-1 nodes
on path of the corresponding node to the root
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Broutin-Devroye's Theorem

Theorem (Broutin and Devroye 2006)
E := a positive random variable
b := a positive integer
Too := an infinite b-ary tree.
Label the edges of T, randomly,
Q The label of every edge is distributed like E.

@ For vertices u and v, edges going down from u and v are independent.
H; := height of the subtree containing nodes
whose sum of labels on their path to root < t.
Then % — p in probability
P := unique solution to

sup{A/p — log(E [exp(AE)]) : A < 0} =logb.
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Two Difficulties

@ Branches are not independent.
@ We do not want the height!
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Our Result on the Diameter

Theorem (EFGMSWZ'12+)

y := unique solution to
x(x —1)f'(x) = f(x)log f(x), x € (0,1/2),
ci=(1—y 1) /logf(y)~ 1.668
Then for every fixed ¢ > 0,

P[(1—¢)clogn < diameter < (1 + ¢)clogn] — 1
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Open Problems

Open Problems

Concentration of Diameter

We showed

P [1.667 log n < diameter < 1.669logn] — 1

How much can the diameter deviate from its expected value?
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Open Problems

Open Problems
The Longest Path

We showed 30 > 0 such that

P [Lm < m/(log mP®| =1

and
Ly >m
and

E [I—m] s (m0.88)

All these bounds can perhaps be improved.
Concentration of L, around its expected value?
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Open Problems

Cheeger constant

Definition (Cheeger constant)

. [IE(S,V\S)| n
min {ISI 151 < 2}
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Open Problems

Cheeger constant

Definition (Cheeger constant)

. [IE(S,V\S)| n
min {ISI 151 < 2}

Frieze and Tsourakakis: maximum degree is O(+/n).

O(+\/n) 1
< = —_
Cheeger constant < n/6 (0] ( ﬁ)

Is this bound tight?
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Open Problems

Thanks for your attention!
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