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The push&pull rumor spreading protocol
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,

Terry, Woods’87]

1. Consider a simple connected graph.

2. At time 0, one vertex knows a rumor.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumor to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumor (PULL).

We are interested in the spread time.



Applications

1. Replicated databases

2. Broadcasting algorithms

3. News propagation in social networks

4. Spread of viruses on the Internet.



Example: a star

2 rounds



Example: path graph

0 1 2 3 4

vertex 0 knows rumor at round 0

vertex 1 is informed at round 1

vertex 2 is informed at round
1+min{Geo(1/2),Geo(1/2)} = 1+Geo(3/4)

vertex 3 is informed at round 1+Geo(3/4) +Geo(3/4)

vertex 4 is informed at round 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] =
4
3
n − 2
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Example: a complete graph

(1+ o(1)) log3 n rounds in expectation [Karp, Schindelhauer,
Shenker, Vöcking’00]



Known results

s(G) expected value of spread time (for worst starting vertex)

Graph G s(G)

Star 2
Path (4/3)n + O(1)
Hypercube, G(n , p) Θ(lnn)

(connected) [Feige, Peleg, Raghavan, Upfal’90]
Complete (1+ o(1)) log3 n

[Karp,Schindelhauer,Shenker,Vöcking’00]

General O(n)
[Acan, Collevecchio, M., Wormald’15]



An asynchronous variant



A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

Every vertex has an exponential clock with rate 1,
at each clock ring, performs one action. (PUSH or PULL).



Example: a star

synchronous protocol: 1 time-step

asynchronous protocol:
Coupon collector: n lnn actions = lnn amount of time



Example: a star

synchronous protocol: 1 time-step
asynchronous protocol:
Coupon collector: n lnn actions = lnn amount of time



Example: a path

0 1 2 3 4

Spread time ∼ sum of n − 1 independent exponentials

E[Spread Time] = n − 5/3 (versus
4
3
n − 2 for synchronous)



Some known results

a(G) expected value of spread time in asynchronous protocol

Graph G s(G) a(G)

Star 2 lnn + O(1)
Path (4/3)n + O(1) n + O(1)
Complete (1+ o(1)) log3 n lnn + o(1)

[Karp,Schindelhauer,Shenker,Vöcking’00] [Janson’99]

Hypercube Θ(lnn) Θ(lnn)
graph [Feige, Peleg, Raghavan, Upfal’90] [Fill,Pemantle’93]

G(n , p) Θ(lnn) (1+ o(1)) lnn
(connected) [Feige, Peleg, Raghavan, Upfal’90] [Panagiotou,Speidel’13]

General O(n) Ω(lnn), O(n)
[Acan, Collevecchio, M., Wormald’15]



Comparison of the two variants



Comparison of the two protocols: experiments

Figures from: Doerr, Fouz, and Friedrich’12.



The star

In which graph synchronous is quicker than asynchronous?

synchronous protocol: 1
asynchronous protocol: lnn

For any G,
a(G) ≤ O(s(G)× lnn) [Acan, Collevecchio, M., Wormald’15]
a(G) ≤ O(s(G) + lnn) [Giakkoupis, Nazari, and Woelfel’16]
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The string of diamonds

In which graph asynchronous is much quicker than
synchronous?

... ... . . . ...

logarithmic� polynomial
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In which graph asynchronous is much quicker than
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... ... . . . ...

logarithmic� polynomial



Time taken to pass through a diamond

...

k paths of length 2

Birthday paradox: O(
√

k) actions needed to have a vertex do
two actions.
Time to pass the rumor
Asynchronous: ≤ O(

√
k/k) = O(1/

√
k)

Synchronous: ≥ 2
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Time taken to pass through a diamond

...

k paths of length 2

Birthday paradox: O(
√

k) actions needed to have a vertex do
two actions.
Time to pass the rumor
Asynchronous: ≤ O(

√
k/k) = O(1/

√
k)

Synchronous: ≥ 2



The string of diamonds, continued

... ... . . . ...
n1/3 diamonds, each consisting of n2/3 paths of length 2

a(G) ≤ n1/3 ×O
(

1√
n2/3

)
+ lnn = O(lnn)

while
s(G) ≥ 2n1/3

s(G)
a(G) can be as large as Ω̃

(
n1/3), but can it be larger?
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Comparison of the protocols: our results

For any G,

s(G)

a(G)
= Õ

(
n2/3

)
[Acan, Collevecchio, M., Wormald’15]

s(G)

a(G)
= O

(
n1/2

)
[Giakkoupis, Nazari, and Woelfel’16]

Theorem (Angel, M., Peres’17)

We have
s(G)

a(G)
= Õ

(
n1/3

)
,

which is tight (up to a logarithmic factor).
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Proof sketch for s(G) ≤ a(G)× Õ
(
n1/3

)
Build a coupling so that

asynchronous contamination synchronous contamination
by time 1 by time x

If asynchronous contaminates a path of length L,
need to have x ≥ L
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Proof sketch for s(G) ≤ a(G)× Õ
(
n1/3

)
Lemma
In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn1/3 (with high prob).

For fixed path v1v2 . . . vL, this probability is

≤ 2L ×
(
n
L

)
× n−L ×

L−1∏
i=1

max
{

1
deg(vi )

,
1

deg(vi+1)

}
Will show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2 (1)

Implies the total probability is ≤ (C
√

n/L
√

L)L.
Putting L = Cn1/3 makes this o(1).
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(
n1/3

)
Lemma
In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn1/3 (with high prob).

For fixed path v1v2 . . . vL, this probability is

≤ 2L ×
(
n
L

)
× n−L ×

L−1∏
i=1

max
{

1
deg(vi )

,
1

deg(vi+1)

}
Will show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2 (1)

Implies the total probability is ≤ (C
√

n/L
√

L)L.
Putting L = Cn1/3 makes this o(1).



Proof sketch for s(G) ≤ a(G)× Õ
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≤ n

Once we choose the first vertex, the 1/deg factors cancel number of
choices for next vertices!
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Proof sketch for s(G) ≤ a(G)× Õ
(
n1/3

)
Want to show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2

Consider the local minima vertices in the sequence
deg(v1),deg(v2), . . . ,deg(vL).
Once we choose these vertices, the 1/min{deg,deg} factors cancel out
number of choices for other vertices, so

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤
L/2∑
s=0

(
L
s

)
·
(
n
s

)
≤ (Cn/L)L/2



Proof sketch for s(G) ≤ a(G)× Õ(n1/3)

Lemma
In asynchronous, during [0, t ], rumor does not pass along a path
of length > Cn1/3t2/3 (with high prob).

Let s be starting vertex. Observe there are independent exponential
random variables Yx ,y :

A = asynchronous spread time = max
v∈V

min
Γ :(s,v)-path

∑
xy∈E(Γ)

min{Yx ,y ,Yy,x }.

Similarly, there are non-independent geometric random variables Tx ,y :

S = synchronous spread time = max
v∈V

min
Γ :(s,v)-path

∑
xy∈E(Γ)

min{Tx ,y ,Ty,x }.

Fortunately, can couple them with independent exponentials Xx ,y s.t.
Tx ,y ≤ lnn + Xx ,y , so

S ≤ max
v∈V

min
Γ :(s,v)-path

∑
xy∈E(Γ)

(lnn +min{Xx ,y ,Xy,x }) ≤ A2/3n1/3×lnn+A.



Proof sketch for s(G) ≤ a(G)× Õ(n1/3)
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Conclusion

s(G) := expected spread time in G in synchronous time model
a(G) := expected spread time in G in asynchronous time model

Theorem (Angel, M., Peres’17)

For any connected G on n vertices,

s(G)

a(G)
= O

(
n1/3 ln2/3 n

)

For any n there exists G for which

s(G)

a(G)
= Ω

(
n1/3 ln−1/3 n

)
THANKS!


