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After t steps,

X a random triangulated plane graph

X n = t + 3 vertices

X 3t + 3 edges

X 2t + 1 faces

called a Random Apollonian Network (RAN).
Zhou, Yan, Wang’05: generating power-law planar graphs.

Theorem (Frieze and Tsourakakis’12)
For any fixed k, the fraction of vertices with degree k is
concentrated around k−3.
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The Diameter of a Graph

Diameter = 3
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Diameters of RANs

Theorem (Albenque and Marckert’08; Frieze and Tsourakakis’12)

With high probability (asymptotically almost surely),

0.54 logn < diameter < 7.1 logn

Theorem (Ebrahimzadeh, Farczadi, Gao, M, Sato, Wormald, Zung’13)

diameter
logn

→ c ≈ 1.668 in probability

A similar result was proved independently by
Cooper, Frieze, Uehara’13 and Kolossváry, Komjáty, Vágó’13.
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Longest paths in RANs

Ln := length of a longest path (self-avoiding walk)

Frieze and Tsourakakis’12 Is Ln = Ω(n) whp?

EFGMSWZ’13 No! whp we have Ln < ne− log log n

Cooper and Frieze’Mar14 whp we have Ln < ne−
√

log n

Collevecchio, M, Wormald’Apr14 whp we have
Ln < n0.99999996 < ne−ε log n

Theorem (EFGMSWZ’13)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)

Abbas (UBC-CS) Random Apollonian Networks 5 October 18 / 66



Longest paths in RANs

Ln := length of a longest path (self-avoiding walk)

Frieze and Tsourakakis’12 Is Ln = Ω(n) whp?

EFGMSWZ’13 No! whp we have Ln < ne− log log n

Cooper and Frieze’Mar14 whp we have Ln < ne−
√

log n

Collevecchio, M, Wormald’Apr14 whp we have
Ln < n0.99999996 < ne−ε log n

Theorem (EFGMSWZ’13)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)

Abbas (UBC-CS) Random Apollonian Networks 5 October 18 / 66



Longest paths in RANs

Ln := length of a longest path (self-avoiding walk)

Frieze and Tsourakakis’12 Is Ln = Ω(n) whp?

EFGMSWZ’13 No! whp we have Ln < ne− log log n

Cooper and Frieze’Mar14 whp we have Ln < ne−
√

log n

Collevecchio, M, Wormald’Apr14 whp we have
Ln < n0.99999996 < ne−ε log n

Theorem (EFGMSWZ’13)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)

Abbas (UBC-CS) Random Apollonian Networks 5 October 18 / 66



Longest paths in RANs

Ln := length of a longest path (self-avoiding walk)

Frieze and Tsourakakis’12 Is Ln = Ω(n) whp?

EFGMSWZ’13 No! whp we have Ln < ne− log log n

Cooper and Frieze’Mar14 whp we have Ln < ne−
√

log n

Collevecchio, M, Wormald’Apr14 whp we have
Ln < n0.99999996 < ne−ε log n

Theorem (EFGMSWZ’13)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)

Abbas (UBC-CS) Random Apollonian Networks 5 October 18 / 66



Longest paths in RANs

Ln := length of a longest path (self-avoiding walk)

Frieze and Tsourakakis’12 Is Ln = Ω(n) whp?

EFGMSWZ’13 No! whp we have Ln < ne− log log n

Cooper and Frieze’Mar14 whp we have Ln < ne−
√

log n

Collevecchio, M, Wormald’Apr14 whp we have
Ln < n0.99999996 < ne−ε log n

Theorem (EFGMSWZ’13)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)

Abbas (UBC-CS) Random Apollonian Networks 5 October 18 / 66



∆-tree of a RAN
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In each step, a random leaf gives birth to three children.
This is called a random (recursive) ternary tree.



Proof outline for
length of the longest paths < n0.99999996

Abbas (UBC-CS) Random Apollonian Networks 5 October 26 / 66



Upper Bound for Longest Path
The Main Idea

Claim: A path cannot contain internal vertices of all 9 faces.
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If we colour those nodes of ∆-tree which a path goes inside, each
coloured node can have at most 8 black grandchildren.

New goal: bound the total number of coloured nodes in a random
ternary tree.
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Simplified goal

Simplified goal: any binary subtree of a random n-vertex ternary tree
has size ≤ n0.9999

(with probability → 1 as n → ∞).

h
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Simplified goal: any binary subtree of a random n-vertex ternary tree
has size ≤ n0.9999 (with probability → 1 as n → ∞).

h

size of binary subtree = 2h+1 − 1 ≤ 2× (3h)log3 2 < 2× n0.64
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Simplified goal: any binary subtree of a random n-vertex ternary tree
has size ≤ n0.9999 (with probability → 1 as n → ∞).

Abbas (UBC-CS) Random Apollonian Networks 5 October 32 / 66



Simplified goal: any binary subtree of a random n-vertex ternary tree
has size ≤ n0.9999 (with probability → 1 as n → ∞).

size of binary tree = n − o(n)
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The strategy

h

h/2

subtree size < 2× 3h/2

size of any binary subtree
< 2× 3h/2 + 2h/2 × 2× 3h/2 < O

(
3log3 2×h/2+h/2) < O

(
30.82h) < n0.83
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Analyzing subtree sizes
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Analyzing subtree sizes
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Analyzing subtree sizes

Growth rule: Start with one blue two green. In each step, choose a uniformly
random leaf, and increase number of leaves of that colour by 2.
This is exactly an Eggenberger-Polya (1923) urn!

blue vertices
n−1

in distribution−−−−−−−−−→
n→∞ Beta(1/2, 1)
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Analyzing subtree sizes

Growth rule: Start with one blue two green. In each step, choose a uniformly
random leaf, and increase number of leaves of that colour by 2.

blue vertices
n − 1

in distribution−−−−−−−−−→
n→∞ Beta(1/2, 1)

Draws from an E-P urn are exchangeable, so by de Finetti’s theorem,

blue vertices ∼ Binomial(n − 1,Beta(1/2, 1))
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analyzing subtree sizes

b

c

β1

β2

Suppose β1, β2 ∼ Beta(1/2, 1) independent.
Size of subtree rooted at b ∼ Bin(n − 1, β1)

Size of subtree rooted at c ∼ Bin(size of b, β2)

∼ Bin(Bin(n − 1, β1), β2) 4 Bin(n , β1β2)
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wrap up

goal:any binary subtree of random n-vertex ternary tree has size ≤ n0.9999

d

subtree size ≤ Bin(n, β1β2 . . . βd)

For suitable d , each red subtree size is sharply concentrated around n/3d .
Apply union bound over 3d nodes gives uniform bound for all red subtrees
Size of any binary subtree ≤ 2× 3d + 2d × uniform bound ≤ n0.99986
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Proof Outline for
diameter
logn → c ≈ 1.668 in probability
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Radius

(c/2) log n

(c/2) log n

Radius : max distance between a vertex and the boundary

Lemma
If radius / logn → c/2 in probability,
then diameter/ logn → c in probability.
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distance in graph ≤ distance in tree



distance in graph � distance in tree













Crucial Observation

Distance of a vertex to the boundary (in graph) equals
number of type-1 nodes on path of the corresponding node to the root (in
tree)

New goal: bound the largest number of type-1 nodes in any root-to-leaf path
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Simplified problem

Consider binary trees for simplicity:
a type-1 node has two type-2 children,
a type-2 node has on type-1 child and one type-2 child.
In every step a random leaf gives birth. After n steps,
what’s the largest number of type-1 nodes in any root-to-leaf path?!

1

2

2

1 2

1

2

1 2

1 2
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The theorem of Broutin and Devroye
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Infinite binary tree:

B3 B4

B1

B5 B6

B2
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Theorem (Broutin and Devroye’06)
Assume:

X All birth times have the same distribution.

X One-level offsprings of distinct vertices are mutually
independent.
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Infinite binary tree:

B3 B4

B1

B5 B6

B2

B1 ∼ B2 ∼ · · · ∼ B6 and B1 ⊥ B3,B4,B5,B6 etc.
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Theorem (Broutin and Devroye’06)
Assume:

X All birth times have the same distribution.

X One-level offsprings of distinct vertices are mutually
independent.

Then, height of tree at time t is whp asymptotic to ρt,
ρ := unique solution to

sup
λ≤0

{λ/ρ− log(E [exp(λE)])} = log 2 .
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Random apollonian networks (cont’d)

Back to random Apollonian networks...
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Random apollonian networks (cont’d)

Simplified problem

A type-1 node has two type-2 children,
a type-2 node has on type-1 child and one type-2 child.
In every step a random leaf gives birth. After n steps,
what’s the largest number of type-1 nodes in any root-to-leaf path?!

1

2

2

1 2

1

2

1 2

1 2
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Random apollonian networks (cont’d)

1

2

2

1 2

1

2

1 2

1 2

1

2

2

1

B4

2

B4

B2

1

B2

B1

2

1

B3

2

1

B5

2

B5

B3

B1

Use exponential birth times !
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Random apollonian networks (cont’d)

1
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1 2

1
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1 2

1 2

1

2

2

1
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2

B4

B2

1

B2
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Random apollonian networks (cont’d)

1

2

2

1 2

1

2

1 2

1 2

1

2

2

1

B4

2

B4

B2

1

B2

B1

2

1

B3

2

1

B5

2

B5

B3

B1

C1 C2 C3 C4

1

1

B(1, 2, 4)

1 1

B(1, 3)

1

B(1, 3, 5)
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Random apollonian networks (cont’d)
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Random apollonian networks (cont’d)
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Random apollonian networks (cont’d)

X For every fixed cut-off threshold k , we stochastically sandwich
1-height of our typed tree between heights of B&D-friendly trees.

X As k → ∞, lower and upper bounds converge to (c/2) logn .

Theorem (EFGMSWZ’13)

f (x ) :=
12x 3

1− 2x
−

6x 3

1− x
,

y := unique solution to

x (x − 1)f ′(x ) = f (x ) log f (x ), x ∈ (0, 1/2) ,

c := (1− y−1)/ log f (y) ≈ 1.668

Then for every fixed ε > 0,

P [(1− ε)c logn ≤ diameter of a RAN ≤ (1+ ε)c logn ] → 1
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Random apollonian networks (cont’d)

Eggenberger-Pólya Urn

Theorem (Eggenberger and Pólya 1923)
Start: g green, r red balls.
In each step:

X pick a random ball and return it to the urn;

X add s balls of the same colour.

After n draws:
gn : green balls
tn : number of balls
For any α ∈ [0, 1]

lim
n→∞P

[
gn
tn
< α

]
=
Γ((g + r)/s)
Γ(g/s)Γ(r/s)

∫α
0
x

g
s −1(1− x )

r
s −1 dx

= P [Beta(g/s , r/s) < α]
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Random apollonian networks (cont’d)

Broutin-Devroye’s Theorem

Theorem (Broutin and Devroye 2006)
E := a positive random variable
b := a positive integer
T∞ := an infinite b-ary tree.
Label the edges of T∞ randomly,

1 The label of every edge is distributed like E.
2 For vertices u and v, edges going down from u and v are

independent.

Ht := height of the subtree containing nodes
whose sum of labels on their path to root ≤ t.
Then Ht

t → ρ in probability
ρ := unique solution to

sup{λ/ρ− log(E [exp(λE)]) : λ ≤ 0} = log b .
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