The push&pull protocol for rumour spreading

Abbas Mehrabian

PIMS, UBC and SFU

PODC 2015 Donostia-San Sebastián

Co-authors

Hüseyin Acan

Andrea Collevecchio Nick Wormald

Monash University

The push&pull rumour spreading protocol

[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87]

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL).

ROUND 0

Push-Pull Protocol

Push-Pull Protocol

Push-Pull Protocol

Push-Pull Protocol Each node contacts a random neighbor: Node pushes the rumor (if knows);

and pulls otherwise

Push-Pull Protocol

Applications

- 1. Replicated databases
- 2. Broadcasting algorithms
- 3. News propagation in social networks and
- 4. Spread of viruses on the Internet.

A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

Every vertex has an independent rate-1 Poisson process, and at times of process performs an operation (PUSH or PULL)

A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

Every vertex has an independent rate-1 Poisson process, and at times of process performs an operation (PUSH or PULL) Or, equivalently,

In each step, one random vertex performs an operation (PUSH or PULL); but each step takes 1/n time units.

A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

Every vertex has an independent rate-1 Poisson process, and at times of process performs an operation (PUSH or PULL) Or, equivalently,

In each step, one random vertex performs an operation (PUSH or PULL); but each step takes 1/n time units.

s(G) and a(G): average time it takes to broadcast the rumour.

Known results

Graph G	s(G)	a(G)
Star	2	$\log n + O(1)$
Path	(4/3)n + O(1)	n + O(1)
Complete	$(1+o(1))\log_3 n$	$\log n + o(1)$
	[Karp,Schindelhauer,Shenker,Vöcking'00]	
$\mathcal{G}(n,p)$	$\Theta(\log n)$	$(1+o(1))\log n$
(connected)	[Feige-Peleg-Raghavan-Upfal'90]	[Panagiotou,Speidel'13]

- ✓ Many graph classes have been analyzed, including Erdős-Rényi graphs, random regular graphs, expander graphs, Barabási-Albert graphs, Chung-Lu graphs. In all of them $s(G) ≍ a(G) ≍ \log n$.
- ✓ Tight upper bounds have been found for s(G) in terms of expansion profile by [Giakkoupis'11,'14].

An extremal question

What's the maximum broadcast time of an n-vertex graph?

An extremal question

What's the maximum broadcast time of an n-vertex graph?

Theorem (Acan, Collevecchio, M, Wormald'15) For any connected G on n vertices

 $s(G){<}$ 4.6n $\log(n){/}5 \leq a(G){<}$ 4n

Only pull operations are needed!

Only pull operations are needed!

We show inductively the expected remaining time $\leq 2|B|+4|R|$

Only pull operations are needed!

We show inductively the expected remaining time $\leq 2|B| + 4|R|$ Two cases:

 If there is some boundary vertex v with deg_R(v) > deg_B(v): it may take a lot of time to inform v, but once it is informed, R ↓↓ and B ↑↑

Only pull operations are needed!

We show inductively the expected remaining time $\leq 2|B| + 4|R|$ Two cases:

- If there is some boundary vertex v with deg_R(v) > deg_B(v): it may take a lot of time to inform v, but once it is informed, R ↓↓ and B ↑↑
- 2. Otherwise, boundary vertices work together "in parallel" and average time for one of them to pull the rumour is 2.

Comparison of the two protocols on the same graph: experiments

Figures from: Doerr, Fouz, and Friedrich. MedAlg 2012.

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'15) We have

$$rac{C_1}{\log n} \leq rac{s(G)}{a(G)} \leq C_2 n^{2/3} \log n$$

Moreover, there exist infinitely many graphs for which this ratio is $\Omega((n/\log n)^{1/3})$.

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'15) We have

$$rac{C_1}{\log n} \leq rac{s(G)}{a(G)} \leq C_2 n^{2/3} \log n$$

Moreover, there exist infinitely many graphs for which this ratio is $\Omega\left((n/\log n)^{1/3}\right)$.

The inequalities are proved by building careful couplings between the two variants.

The string of diamonds

The asynchronous protocol is much quicker than its synchronous variant!

 $a(G) \ll s(G)$

The string of diamonds

The asynchronous protocol is much quicker than its synchronous variant!

$$a(G) \ll s(G)$$

Indeed, asynchronous can be logarithmic, while synchronous is polynomial counter-inuititive: synchrony harms!

Time taken to pass through a diamond

Synchronous: needs ≥ 2 rounds

Time taken to pass through a diamond

 κ paths of length 2

Synchronous: needs ≥ 2 rounds Asynchronous: using a birthday-paradox type argument, the average time needed to pass the rumour is $O(1/\sqrt{k})$

The string of diamonds, continued

 $pprox n^{1/3}$ diamonds, each consisting of $pprox n^{2/3}$ paths of length 2 Then

$$a(G) \leq n^{1/3} imes rac{C}{\sqrt{n^{2/3}}} + \log n = C + \log n$$

The string of diamonds, continued

 $pprox n^{1/3}$ diamonds, each consisting of $pprox n^{2/3}$ paths of length 2 Then

$$a(G) \leq n^{1/3} imes rac{C}{\sqrt{n^{2/3}}} + \log n = C + \log n$$

while

$$s(G) \geq 2n^{1/3}$$

Final slide

Theorem (Acan, Collevecchio, M, Wormald'15) For any connected G on n vertices

$$egin{aligned} &s(G) < 4.6n \ &\log(n)/5 \leq a(G) < 4n \ &rac{C_1}{\log n} \leq rac{s(G)}{a(G)} \leq C_2 n^{2/3} \log n \end{aligned}$$

For infinitely many graphs this ratio is $\Omega\left((n/\log n)^{1/3}\right)$.

Final slide

Theorem (Acan, Collevecchio, M, Wormald'15) For any connected G on n vertices

$$egin{aligned} &s(G) < 4.6n \ &\log(n)/5 \leq a(G) < 4n \ &rac{C_1}{\log n} \leq rac{s(G)}{a(G)} \leq C_2 n^{2/3} \log n \end{aligned}$$

For infinitely many graphs this ratio is $\Omega((n/\log n)^{1/3})$. Two weeks ago, Giakkoupis, Nazari, and Woelfel improved upper bound to $O(n^{1/2})$

