
The push&pull protocol for rumour spreading

Abbas Mehrabian

McGill University

20 September 2017



Co-authors

Omer Angel Hüseyin Acan Andrea Collevecchio

Yuval Peres Nick Wormald













The push&pull rumour spreading protocol
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,

Terry, Woods’87]

1. Consider a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumour (PULL).

We are interested in the spread time.



Applications

1. Replicated databases

2. Broadcasting algorithms

3. News propagation in social networks

4. Spread of viruses on the Internet.



Example: a star

2 rounds



Example: path graph

0 1 2 3 4

vertex 0 knows rumour at round 0

vertex 1 is informed at round 1

vertex 2 is informed at round
1+min{Geo(1/2),Geo(1/2)} = 1+Geo(3/4)

vertex 3 is informed at round 1+Geo(3/4) +Geo(3/4)

vertex 4 is informed at round 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] =
4
3
n − 2
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An example: double star

eu v

Time to pass edge e = min{Geo(1/4),Geo(1/4)}

= min{Geo(
1

n/2
),Geo(

1
n/2

)} = Geo(
4
n

−
4
n2 )

Expected spread time ∼ n/4



Example: a complete graph

log3 n rounds [Karp, Schindelhauer, Shenker, Vöcking’00]



Known results

s(G) expected value of spread time (for worst starting vertex)

Graph G s(G)

Star 2
Path (4/3)n + O(1)
Double star (1+ o(1))n/4
Complete (1+ o(1)) log3 n

[Karp,Schindelhauer,Shenker,Vöcking’00]

G(n , p) Θ(lnn)
(connected) [Feige, Peleg, Raghavan, Upfal’90]



An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

O(n lnn) upper bound by [Feige, Peleg, Raghavan, Upfal’90]
for “push only” protocol

Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

s(G)< 5n

Only pull operations are needed!
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An asynchronous variant



A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

In each step, one random vertex performs one action
(PUSH or PULL).
Each step takes time 1/n .

Almost equivalent definition:
every vertex has an exponential clock with rate 1,
at each clock ring, performs one action.
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Example: a star

synchronous protocol: 1 round

Coupon collector: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once? About n lnn .
asynchronous protocol: n lnn steps = lnn amount of time
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Example: a star

synchronous protocol: 1 round
Coupon collector: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once? About n lnn .
asynchronous protocol: n lnn steps = lnn amount of time



Example: a path

0 1 2 3 4

Spread time ∼ sum of n − 1 independent exponentials

E[Spread Time] = n − 5/3 (versus
4
3
n − 2 for synchronous)



An example: double star

e

Time to pass edge e = min{Exp(
1

n/2
),Exp(

1
n/2

)} = Exp(4/n)

Expected spread time ∼ n/4



Some known results

a(G) expected value of spread time in asynchronous protocol

Graph G s(G) a(G)

Star 2 lnn + O(1)
Path (4/3)n + O(1) n + O(1)
Double star (1+ o(1))n/4 (1+ o(1))n/4
Complete (1+ o(1)) log3 n lnn + o(1)

[Karp,Schindelhauer,Shenker,Vöcking’00]

Hypercube Θ(lnn) Θ(lnn)
graph [Feige, Peleg, Raghavan, Upfal’90] [Fill,Pemantle’93]

G(n , p) Θ(lnn) (1+ o(1)) lnn
(connected) [Feige, Peleg, Raghavan, Upfal’90] [Panagiotou,Speidel’13]



The extremal question

What’s the maximum spread time of an n-vertex graph?

Ω(n) Ω(n)

Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

ln(n)/5 < a(G)< 4n

Only pull operations are needed!
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Proof idea for linear upper bound a(G) < 4n

Induction?

e



Proof idea for linear upper bound a(G) < 4n

v

BI R

We show inductively the expected remaining time ≤ 2|B |+ 4|R|

1. If there is some boundary vertex v with
degR(v) > degB (v): it may take a lot of time to inform v ,
but once it is informed, R � and B �
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Proof idea for linear upper bound a(G) < 4n

v

BI R

We show inductively the expected remaining time ≤ 2|B |+ 4|R|

1. If there is some boundary vertex v with
degR(v) > degB (v): it may take a lot of time to inform v ,
but once it is informed, R � and B �

2. Otherwise, each boundary vertex has pulling rate ≥ 1/2|B |,
and the B boundary vertices work together “in parallel”
and average time for one of them to pull the rumour is 2.



Comparison of the two variants



Comparison of the two protocols on the same graph:
experiments

Figures from: Doerr, Fouz, and Friedrich’12.



The star

In which graph synchronous is quicker than asynchronous?

synchronous protocol: 1 round
asynchronous protocol: lnn time

Theorem (Acan, Collevecchio, M, Wormald’15)

a(G) ≤ O(s(G)× lnn).



Proof idea for a(G) ≤ s(G)× lnn

Consider an arbitrary calling sequence:

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1
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Proof idea for a(G) ≤ s(G)× lnn

1 2 1 3 4 4 2 1 4

1 2

3

4

3

2 3 2 2 2 2 23 3 1

1 2 3 4

2 3 2 2

4 2 1 3

2 3 3 1



The string of diamonds

In which graph asynchronous is much quicker than
synchronous?

... ... . . . ...

logarithmic� polynomial
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Time taken to pass through a diamond

...

k paths of length 2

Birthday paradox: Consider a bag containing k different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?

√
πk/2 ≈ 1.25

√
k

Time to pass the rumour
Asynchronous: ≤ 4× 1.25/

√
k

Synchronous: ≥ 2
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The string of diamonds, continued

... ... . . . ...

n1/3 diamonds, each consisting of n2/3 paths of length 2

a(G) ≤ n1/3 × 5√
n2/3

+ lnn = 5+ lnn

while
s(G) ≥ 2n1/3

s(G)
a(G) can be as large as Ω̃

(
n1/3), but can it be larger?
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Comparison of the protocols: our results

For any G,

s(G)

a(G)
= Õ

(
n2/3

)
[Acan, Collevecchio, M., Wormald’15]

s(G)

a(G)
= O

(
n1/2

)
[Giakkoupis, Nazari, and Woelfel’16]

Theorem (Angel, M., Peres’17)

We have
s(G)

a(G)
= Õ

(
n1/3

)
,

which is tight (up to a logarithmic factor).
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Proof sketch for s(G) ≤ a(G)× Õ
(
n1/3

)
Build a coupling so that

asynchronous contamination synchronous contamination
by time 1 by time x

If asynchronous contaminates a path of length L,
need to have x ≥ L
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Proof sketch for s(G) ≤ a(G)× Õ
(
n1/3

)
Lemma
In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn1/3 (with high prob).

For fixed path v1v2 . . . vL, this probability is

≤ 2L ×
(
n
L

)
× n−L ×

L−1∏
i=1

max
{

1
deg(vi )

,
1

deg(vi+1)

}
Will show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2 (1)

Implies the total probability is ≤ (C
√

n/L
√

L)L.
Putting L = Cn1/3 makes this o(1).
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≤ (Cn/L)L/2

Baby version: we have

∑
L−paths
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1
deg(vi )

≤ n

Once we choose the first vertex, the 1/deg factors cancel number of
choices for next vertices!
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(
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)
Want to show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2

Consider the local minima vertices in the sequence
deg(v1),deg(v2), . . . ,deg(vL).
Once we choose these vertices, the 1/min{deg,deg} factors cancel out
number of choices for other vertices, so

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤
L/2∑
s=0

(
L
s

)
·
(
n
s

)
≤ (Cn/L)L/2



Proof sketch for s(G) ≤ a(G)× Õ(n1/3)

Lemma
In asynchronous, during [0, t ], rumor does not pass along a path
of length > Cn1/3t2/3 (with high prob).

Let s be starting vertex. Observe there are independent exponential
random variables Yx ,y :

A = asynchronous spread time = max
v∈V

min
Γ :(s,v)-path

∑
xy∈E(Γ)

min{Yx ,y ,Yy,x }.

Similarly, there are non-independent geometric random variables Tx ,y :

S = synchronous spread time = max
v∈V

min
Γ :(s,v)-path

∑
xy∈E(Γ)

min{Tx ,y ,Ty,x }.

Fortunately, can couple them with independent exponentials Xx ,y s.t.
Tx ,y ≤ lnn + Xx ,y , so

S ≤ max
v∈V

min
Γ :(s,v)-path

∑
xy∈E(Γ)

(lnn +min{Xx ,y ,Xy,x }) ≤ A2/3n1/3×lnn+A.
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Summary of our results on push&pull

Theorem (Acan, Angel, Collevecchio, M, Peres,
Wormald’15,’17)

For any connected G on n vertices,

s(G)< 5n

ln(n)/5 < a(G)< 4n
1

lnn
<

s(G)

a(G)
< C (n lnn)1/3

Black bounds are tight, up to constant factors.
Green bound is tight, up to an O(lnn) factor.

Giakkoupis, Nazari, and Woelfel’16 proved a(G) ≤ O(s(G) + lnn)

THANKS!



Future directions

1. Connect s(G)/a(G) with other graph properties.
2. How to choose first vertex(es) carefully to minimize the

spread time? [Kempe, J. Kleinberg, E. Tardos’03]
3. Number of passed messages? [Fraigniaud, Giakkoupis’10]
4. More than one message? [Censor-Hillel, Haeupler, Kelner,

Maymounkov’12]
5. Variation: each node spreads for a bounded number of

rounds [Akbarpour, Jackson’16].
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