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An example of distribution learning

Generating random faces for computer games

v/ Training data consists of actual faces.

v’ A probability density function P : R¢ — R is learned
from the data.

v' New random faces are generated using the learned
distribution.



An example of distribution learning

Generating random faces for computer games

v/ Training data consists of actual faces.

v’ A probability density function P : R¢ — R is learned
from the data.

v' New random faces are generated using the learned
distribution.

A popular approach: generative adversarial networks
(GANs), based on deep neural networks.



Distribution learning in action
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Top: generated images using generative adversarial

networks
Bottom: a small part of the training data

Picture from Karras, Aila, Laine, and Lehtinen
(NVIDIA and Aalto University), October 2017
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Given an i.i.d. sample generated from an unknown target
distribution P, output a distribution P that is close to P.



Distribution learning task

also known as density estimation

Given an i.i.d. sample generated from an unknown target
distribution P, output a distribution P that is close to P.

v' We assume P belongs to some known class F of
distributions.

v We would like our algorithm to use as a small sample
as possible.

v' Closeness is measured by the total variation distance:
TV(P,P) = supy [P(B) - P(B) = } [Ip(e) - Bla]| da



Distribution learning task
Our setup

Given an i.i.d. sample generated from an unknown target
distribution P from a known class F, output some P that
is close to P.

What is the smallest number of samples needed to
guarantee TV(13,P) < ¢ with probability 99%? mx(¢).
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Main problem

prove bounds for mr(e) for various classes F.



Distribution learning task
Our setup

Given an i.i.d. sample generated from an unknown target
distribution P from a known class F, output some P that
is close to P.

What is the smallest number of samples needed to
guarantee TV(f’,P) < ¢ with probability 99%? mx(¢).

Main problem
prove bounds for mr(e) for various classes F.
Often in statistics the problem is stated differently: given n

samples from P, how small can you make IETV(f’, P)?
The answer is called the minimax risk of F.



A heuristic

e2mr(¢e) < number of free parameters in F in ‘natural representation’

v F = Bernoulli distributions: mz(e) < 1/¢?

v F = Gaussian distributions: mz(e) =< 2/¢?

v F = d-dimensional Gaussians: mr(e) < Cd?/e?

v Finite F: mxz(e) < Clog|F|/e? Devroye-Lugosi’01




A heuristic

e2mr(¢e) < number of free parameters in F in ‘natural representation’

v F = Bernoulli distributions: mz(e) < 1/¢?

v F = Gaussian distributions: mz(e) =< 2/¢?

v F = d-dimensional Gaussians: mr(e) < Cd?/e?

v Finite F: mxz(e) < Clog|F|/e? Devroye-Lugosi’01

Main contribution: this heuristic also works for two more
complicated classes: mixtures of multidimensional
Gaussians, and the Ising model.



Mixtures of Gaussians



Mixtures of Gaussians

A mixture of k Gaussians in d dimensions has density
Zle w,N (1, L;)(z), where w; > 0 and > w; = 1.
N(w, Z)(z) = density of a Gaussian with mean u € R? and covariance

matrix ¥ € R4x¢







Let Fi 4 = maztures of k Gaussians in d
dimensions. Then, mg, (&) = kd*/e* up to
polylogarithmac factors.



Main result

mixtures of Gaussians

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Let Fi 4 = maztures of k Gaussians in d
dimensions. Then, mg, ,(¢) = kd*/e* up to
polylogarithmac factors.

Any density in Fj 4 has form Zle wiN (Wi, L),
and X; is d x d, so has ©(kd?) parameters.



F admits t-compression, if for any P € F, there exist T
data points from which P can be reconstructed.



Proof of upper bound: compression

Definition

F admits t-compression, if for any P € F, there exist T
data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.

'M—‘O' | ' /)/ | ' ,U‘Y‘FO'I




Proof of upper bound: compression

Definition

F admits t-compression, if for any P € F, you can find T
data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.
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Proof of upper bound: compression

Definition

F admits t-compression, if for any P € F, you can find T
data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit O(d?log d)-compression.

2. Compressing mixtures

If 7 admits T-compression, then k-mix(F) admits
(kT + klog k)-compression.

3. Compression implies learnability

If F admits T-compression, then mr(e) = O(tlogT/€?).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Let Fi 4 = maztures of k Gaussians in d dimensions. Then,
mr, ,(e) < (kd?/e?) x polylog(kd/e).
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Suppose d = 2, consider P = N (i, Z) = N (, v1v] + vy ).
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d-dimensional Gaussians admit O(d?log d)-compression.

Suppose d = 2, consider P = N (1, Z) = N (i, v1v) + vy ).
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d-dimensional Gaussians admit O(d?log d)-compression.

Suppose d = 2, consider P = NV (i, Z) = N (i, v1v] + v2v] ).




Proof of upper bound: compression

1. Compressing d-dimensional Gaussians
d-dimensional Gaussians admit O(d?log d)-compression.
Suppose d = 2, consider P = N (1, Z) = N (i, v19 + vv] )

For d > 2, use dlog d data points to ‘encode’ the mean, and dlog d
data points for each eigenvector.



If F admits t-compression, then k-mix(F) admits
(kT + klog k)-compression.

Let P = 1P, + 1P, + 1 P;, where each P; is 2-compressible.
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Let P = ;P; + P> + 3 P3, where each P; is 2-compressible.



If 7 admits T-compression, then k-mix(F) admits
(kT + klog k)-compression.

Let P = 1P, + 1P, + £ P;, where each P; is 2-compressible.

Let P=1P + 1P, + 1P



Proof of upper bound: compression

3. Compression implies learnability
If 7 admits T-compression, then mr(e) = O(tlogT/e?).
First, generate a sample of size m = poly(t).

Try to reconstruct the distribution by considering all ()
subsets of size T (we know one of them is correct).



Proof of upper bound: compression

3. Compression implies learnability
If 7 admits T-compression, then mr(e) = O(tlogT/e?).
First, generate a sample of size m = poly(t).

Try to reconstruct the distribution by considering all ()
subsets of size T (we know one of them is correct).

Theorem (Devroye and Lugosi’01)

Given a finite set C of candidates, given log(|C|)/e?
additional samples from the target distribution, we can find
the candidate that s closest to the target.

In our case, |C| = (T) < mT, hence total sample complexity
< tlog(m)/€2.



Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit O(d?log d)-compression.

2. Compressing mixtures

If 7 admits T-compression, then k-mix(F) admits
(kT + klog k)-compression.

3. Compression implies learnability

If F admits T-compression, then mr(e) = O(tlogT/€?).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Let Fi 4 = maztures of k Gaussians in d dimensions. Then,
mr, . () = O(kd?/€?).



Let F; 4 = d-dimensional Gaussians. Then,
mr, 4 () = Q(d?/€2).



Proof of lower bound: Fano’s inequality

Main lemma

Let F; 4 = d-dimensional Gaussians. Then,
mr, 4 () = Q(d?/€2).

Fano’s lemma
Suppose there exist fi,...,fiy € F with

KL(f; | ;) = O(®) and TV(f;, f;) = Q(e) Vi #j € [M].
Then mz(e) = Q(log M /€?).

filz)

h@)

KL(f, | ) = me)log



Proof of lower bound: Fano’s inequality

Main lemma

Let F; 4 = d-dimensional Gaussians. Then,
mr, 4 () = Q(d?/€2).

Fano’s lemma
Suppose there exist fi,..., fir € F with

KL(fi || fj) = O(e?) and TV(f;, f;) = Qe) ~ Vi#j € [M].
Then mz(e) = Q(log M /€?).

filz)
fa(z)

To apply this lemma, we need to build 29° Gaussian distributions,
with pairwise KL-divergence < &2, pairwise TV distance > «.

KL(f, | ) = me)log dz



Proof of lower bound via Fano’s inequality

Need to build 2¢° Gaussian distributions with pairwise
KL-divergence < ¢ and pairwise T'V distance > «.

We will use zero-mean Gaussians, so just need to specify the
covariance matrices.



Proof of lower bound via Fano’s inequality

Need to build 2¢° Gaussian distributions with pairwise
KL-divergence < €2 and pairwise TV distance > «.

We will use zero-mean Gaussians, so just need to specify the
covariance matrices.

First construction (geometric). Repeat 24" times: start
with an identity covariance matrix, then choose a random
subspace of dimension d/9 and slightly increase the eigenvalues
corresponding to this eigenspace: ¥ =1 + ﬁ UUT, with

U € R%*4/? orthonormal.

Then prove that with large probability, any two of these have
TV distance > «.



Proof of lower bound via Fano’s inequality

Need to build 2%’ Gaussian distributions with pairwise
KL-divergence < ¢2 and pairwise TV distance > e.

We will use zero-mean Gaussians, so just need to specify the
covariance matrices.

Second construction (combinatorial). For d = 3, consider
the following inverse covariance matrices:

0 -5 -5\ [0 & & 0 &5 —b 0 -5 &
-5 0 -5|,|s o —8|,[85 o s5],|-5 0 &
5 =5 0 § -5 0 5 5 0 § & 0

For general d, build 24°/10 inverse covariance matrices so that
any two of them are different in at least d2/3 coordinates.



Let /1 4 = d-dimensional Gaussians. Then,
mz, ,(e) = Q(d?/€?).

It is easy to lift this to the class of mixtures, proving
mz, ,(€) = Q(kd?/€?).



Proof of lower bound: Fano’s inequality

Main lemma

Let /1 4 = d-dimensional Gaussians. Then,
mr, ,(e) = Q(d?/e?).

It is easy to lift this to the class of mixtures, proving
mr, ,(e) = Q(kd?/e?).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Let Fy 4 = maztures of k Gaussians in d dimensions. Then,
mr, ,(€) = kd®/e* up to polylogarithmic factors.



The Ising model



The Ising model

Definition

For a graph G on d vertices, and edge weights {w; ;};;cp(g), the
Ising model with parameters {w; ;};;cp(q) is supported on
{—1,+1}¢ and has probability mass function

Pw(T1,...,Tq) X €xp Z W; 5 T5 T
§EB(G)

Number of parameters = |E(G)|.



The Ising model

Definition

For a graph G on d vertices, and edge weights {w; ;};;cp(g), the
Ising model with parameters {w; ;};;cp(q) is supported on
{—1,+1}¢ and has probability mass function

Pw(T1,...,Tq) X €xp Z W; 5 T5 T
y€eE(G)
Number of parameters = |E(G)|.

Theorem (Devroye, M, Reddad’18)
Let g = Ising models on G. Then, mz,(e) < |E(G)|/€?.



Proof of lower bound: Fano’s inequality

Lower bound proof uses Fano’s inequality again.
Need to build 2/F(G)! Ising models with pairwise KL-divergence
< ¢2 and pairwise TV distance > e.



Proof of lower bound: Fano’s inequality

Lower bound proof uses Fano’s inequality again.
Need to build 2/F(G) Ising models with pairwise KL-divergence
< ¢2 and pairwise TV distance > e.

For d = 3 and G the complete graph, consider the following
weight matrices W:

0 -5 -5\ [0 & & 0 &5 —b 0 -5 &
-5 0 -5|,|ls o —8|,[5 o s5],|-5 0 &
5 -5 0 § -5 0 5 5 0 § & 0

For a general interaction graph G, build 2/E(¢)/5 weight
matrices so that any two of them are different in at least
|E(G)|/6 coordinates.



For class F of densities defined over X, consider the Yatracos
set system:

Ar ={SCX:dp,ppeFs.t.S={zecX:pz)>p(z)}}



Proof of upper bound

For class F of densities defined over X, consider the Yatracos
set system:

Ar={SC X :dpy,poe Fs.t. S={z € X :pi(z) > p(z)}}

Devroye and Lugosi’01 proved mz(e) < C - VC-dim(Ar)/e.



Proof of upper bound

For class F of densities defined over X, consider the Yatracos
set system:

Ar={SC X :dpy,poe Fs.t. S={z € X :pi(z) > p(z)}}
Devroye and Lugosi’01 proved mz(e) < C - VC-dim(Ar)/e.

If F is the class of Ising models on G, standard techniques give
VC-dim(Ar) < |E(G)|+ 1, whence mr(e) < C(|E(G)| + 1)/

Theorem (Devroye, M, Reddad’18)
Let T = Ising models on G. Then, mz,(e) < |EB(G)|/€2.



Recap

e2mr(¢e) < number of free parameters in F in ‘natural representation’

v F = Bernoulli distributions: mz(e) < 1/¢?
v F = Gaussian distributions: mz(e) =< 1/¢2
v F = d-dimensional Gaussian distributions: mr(e) =< d?/e?
v Finite 7: mxz(e) < 9log|F]|/e? Devroye-Lugosi’01
V' Fra= mixtllre of k Gaussians in d dimensions:

mz, ,(€) = O(kd?/?).
v Ig = Ising models on G: mz,(e) < |E(G)|/e.



Questions

e2mz(e) =< number of free parameters in F in ‘natural representation

3

1. Does the heuristic works for other classes? For example,
other exponential families, graphical models, distributions
generated by neural networks?

2. e2myr(e) < smallest compression size of F. Is the converse
true?

3. Can we use e2mz(¢) as a natural definition of ‘dimension’
for class F 7 Are there connections with other dimensions?

4. What about computational complexity?



