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An example of distribution learning
Generating random faces for computer games

X Training data consists of actual faces.

X A probability density function P : Rd → R is learned

from the data.

X New random faces are generated using the learned

distribution.

A popular approach: generative adversarial networks

(GANs), based on deep neural networks.
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Distribution learning in action

Top: generated images using generative adversarial

networks

Bottom: a small part of the training data

Picture from Karras, Aila, Laine, and Lehtinen

(NVIDIA and Aalto University), October 2017



Distribution learning task
also known as density estimation

Given an i.i.d. sample generated from an unknown target

distribution P, output a distribution P̂ that is close to P.

X We assume P belongs to some known class F of

distributions.

X We would like our algorithm to use as a small sample

as possible.

X Closeness is measured by the total variation distance:

TV(P, P̂) := supE |P(E) − P̂(E)| = 1
2

∫
|p(x ) − p̂(x )| dx
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Distribution learning task
Our setup

Given an i.i.d. sample generated from an unknown target

distribution P from a known class F , output some P̂ that

is close to P.

What is the smallest number of samples needed to

guarantee TV(P̂,P) ≤ ε with probability 99%? mF(ε).

Main problem

prove bounds for mF(ε) for various classes F .

Often in statistics the problem is stated di�erently: given n

samples from P, how small can you make ETV(P̂,P) ?

The answer is called the minimax risk of F .
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A heuristic

ε2mF (ε) � number of free parameters in F in `natural representation'

Example

X F = Bernoulli distributions: mF (ε) � 1/ε2

X F = Gaussian distributions: mF (ε) � 2/ε2

X F = d-dimensional Gaussians: mF (ε) ≤ Cd2/ε2

X Finite F : mF (ε) ≤ C log |F |/ε2 Devroye-Lugosi'01

Main contribution: this heuristic also works for two more

complicated classes: mixtures of multidimensional

Gaussians, and the Ising model.
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Mixtures of Gaussians



Mixtures of Gaussians

A mixture of k Gaussians in d dimensions has density∑k

i=1wiN (µi , Σi)(x ), where wi ≥ 0 and
∑
wi = 1.

N (µ, Σ)(x ) = density of a Gaussian with mean µ ∈ Rd and covariance

matrix Σ ∈ Rd×d





Main result
mixtures of Gaussians

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let Fk ,d = mixtures of k Gaussians in d

dimensions. Then, mFk ,d
(ε) = kd2/ε2 up to

polylogarithmic factors.

Any density in Fk ,d has form
∑k

i=1wiN (µi , Σi),

and Σi is d × d , so has Θ(kd2) parameters.
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Proof of upper bound: compression

De�nition

F admits τ-compression, if for any P ∈ F , there exist τ
data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.

µ µ + σµ− σ
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Proof of upper bound: compression

De�nition

F admits τ-compression, if for any P ∈ F , you can �nd τ

data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.

x1 x2

µ̂ = x1+x2
2

σ̂ = |x1−x2|
2



Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit O(d2 log d)-compression.

2. Compressing mixtures

If F admits τ-compression, then k -mix(F) admits

(kτ+ k log k)-compression.

3. Compression implies learnability

If F admits τ-compression, then mF (ε) = O(τ log τ/ε2).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let Fk ,d = mixtures of k Gaussians in d dimensions. Then,

mFk ,d (ε) ≤ (kd2/ε2)× polylog(kd/ε).
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T
1 + v2v

T
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit O(d2 log d)-compression.

Suppose d = 2, consider P = N (µ, Σ) = N (µ, v1v
T
1 + v2v

T
2 ).

µ

v1

v2

µ̂

For d > 2, use d log d data points to `encode' the mean, and d log d

data points for each eigenvector.



Proof of upper bound: compression

2. Compressing mixtures

If F admits τ-compression, then k -mix(F) admits

(kτ+ k log k)-compression.

Let P = 1
3
P1 +

1
3
P2 +

1
3
P3, where each Pi is 2-compressible.
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2. Compressing mixtures

If F admits τ-compression, then k -mix(F) admits

(kτ+ k log k)-compression.

Let P = 1
3
P1 +

1
3
P2 +

1
3
P3, where each Pi is 2-compressible.

Let P̂ = 1

3
P̂1 +

1

3
P̂2 +

1

3
P̂3



Proof of upper bound: compression

3. Compression implies learnability

If F admits τ-compression, then mF (ε) = O(τ log τ/ε2).

First, generate a sample of size m = poly(τ).

Try to reconstruct the distribution by considering all
(
m
τ

)
subsets of size τ (we know one of them is correct).

Theorem (Devroye and Lugosi'01)

Given a �nite set C of candidates, given log(|C|)/ε2
additional samples from the target distribution, we can �nd

the candidate that is closest to the target.

In our case, |C | =
(
m
τ

)
≤ mτ, hence total sample complexity

< τ log(m)/ε2.
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit O(d2 log d)-compression.

2. Compressing mixtures

If F admits τ-compression, then k -mix(F) admits

(kτ+ k log k)-compression.

3. Compression implies learnability

If F admits τ-compression, then mF (ε) = O(τ log τ/ε2).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let Fk ,d = mixtures of k Gaussians in d dimensions. Then,

mFk ,d (ε) = Õ(kd2/ε2).



Proof of lower bound: Fano's inequality

Main lemma

Let F1,d = d-dimensional Gaussians. Then,

mF1,d (ε) = Ω̃(d2/ε2).

Fano's lemma

Suppose there exist f1, . . . , fM ∈ F with

KL(fi ‖ fj ) = O(ε2) and TV(fi , fj ) = Ω(ε) ∀i 6= j ∈ [M ].

Then mF (ε) = Ω(logM/ε2).

KL(f1 ‖ f2) :=
∫
f1(x ) log

f1(x )

f2(x )
dx

To apply this lemma, we need to build 2d
2

Gaussian distributions,

with pairwise KL-divergence ≤ ε2, pairwise TV distance ≥ ε.
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Proof of lower bound via Fano's inequality

Need to build 2d
2

Gaussian distributions with pairwise

KL-divergence ≤ ε2 and pairwise TV distance ≥ ε.
We will use zero-mean Gaussians, so just need to specify the

covariance matrices.



Proof of lower bound via Fano's inequality

Need to build 2d
2

Gaussian distributions with pairwise

KL-divergence ≤ ε2 and pairwise TV distance ≥ ε.
We will use zero-mean Gaussians, so just need to specify the

covariance matrices.

First construction (geometric). Repeat 2d
2

times: start

with an identity covariance matrix, then choose a random

subspace of dimension d/9 and slightly increase the eigenvalues

corresponding to this eigenspace: Σ = I + ε√
d
UUT, with

U ∈ Rd×d/9 orthonormal.

Then prove that with large probability, any two of these have

TV distance ≥ ε.



Proof of lower bound via Fano's inequality

Need to build 2d
2

Gaussian distributions with pairwise

KL-divergence ≤ ε2 and pairwise TV distance ≥ ε.
We will use zero-mean Gaussians, so just need to specify the

covariance matrices.

Second construction (combinatorial). For d = 3, consider

the following inverse covariance matrices: 0 −δ −δ

−δ 0 −δ

−δ −δ 0

 ,
0 δ δ

δ 0 −δ

δ −δ 0

 ,
 0 δ −δ

δ 0 δ

−δ δ 0

 ,
 0 −δ δ

−δ 0 δ

δ δ 0


For general d , build 2d

2/10 inverse covariance matrices so that

any two of them are di�erent in at least d2/3 coordinates.



Proof of lower bound: Fano's inequality

Main lemma

Let F1,d = d-dimensional Gaussians. Then,

mF1,d (ε) = Ω̃(d2/ε2).

It is easy to lift this to the class of mixtures, proving

mFk ,d (ε) = Ω̃(kd2/ε2).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)
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The Ising model

De�nition

For a graph G on d vertices, and edge weights {wi ,j }ij∈E(G), the

Ising model with parameters {wi ,j }ij∈E(G) is supported on

{−1,+1}d and has probability mass function

pw(x1, . . . , xd) ∝ exp

 ∑
ij∈E(G)

wi ,j xixj



Number of parameters = |E(G)|.

Theorem (Devroye, M, Reddad'18)

Let IG = Ising models on G. Then, mIG (ε) � |E(G)|/ε2.
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Proof of lower bound: Fano's inequality

Lower bound proof uses Fano's inequality again.

Need to build 2|E(G)| Ising models with pairwise KL-divergence

≤ ε2 and pairwise TV distance ≥ ε.

For d = 3 and G the complete graph, consider the following

weight matrices W : 0 −δ −δ

−δ 0 −δ

−δ −δ 0

 ,
0 δ δ

δ 0 −δ

δ −δ 0

 ,
 0 δ −δ

δ 0 δ

−δ δ 0

 ,
 0 −δ δ

−δ 0 δ

δ δ 0


For a general interaction graph G , build 2|E(G)|/5 weight

matrices so that any two of them are di�erent in at least

|E(G)|/6 coordinates.
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Proof of upper bound

For class F of densities de�ned over X , consider the Yatracos

set system:

AF := {S ⊆ X : ∃p1, p2 ∈ F s. t. S = {x ∈ X : p1(x ) > p2(x )}}

Devroye and Lugosi'01 proved mF (ε) ≤ C · VC-dim(AF )/ε
2.

If F is the class of Ising models on G , standard techniques give

VC-dim(AF ) ≤ |E(G)|+ 1, whence mF (ε) ≤ C (|E(G)|+ 1)/ε2.

Theorem (Devroye, M, Reddad'18)

Let IG = Ising models on G. Then, mIG (ε) � |E(G)|/ε2.
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Recap

ε2mF (ε) � number of free parameters in F in `natural representation'

Example

X F = Bernoulli distributions: mF (ε) � 1/ε2

X F = Gaussian distributions: mF (ε) � 1/ε2

X F = d-dimensional Gaussian distributions: mF (ε) � d2/ε2

X Finite F : mF (ε) ≤ 9 log |F |/ε2 Devroye-Lugosi'01

X Fk ,d = mixture of k Gaussians in d dimensions:

mFk ,d (ε) = Θ̃(kd
2/ε2).

X IG = Ising models on G : mIG (ε) � |E(G)|/ε2.



Questions

ε2mF (ε) � number of free parameters in F in `natural representation'

1. Does the heuristic works for other classes? For example,

other exponential families, graphical models, distributions

generated by neural networks?

2. ε2mF (ε) ≤ smallest compression size of F . Is the converse
true?

3. Can we use ε2mF (ε) as a natural de�nition of `dimension'

for class F ? Are there connections with other dimensions?

4. What about computational complexity?


