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An example of distribution learning
Generating random faces for computer games

X Training data consists of actual faces.

X A probability density function P : Rd → R is learned
from the data.

X New random faces are generated using the learned
distribution.

A popular approach: generative adversarial networks,
based on deep neural networks.
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Distribution learning in action

Top: generated images using generative adversarial
networks

Bottom: training data

Picture from Karras, Aila, Laine, and Lehtinen (NVIDIA and Aalto
University), October 2017



Distribution learning task
also known as density estimation

Given an i.i.d. sample generated from an unknown target
distribution P, output a distribution P̂ that is close to P.

X We assume P belongs to some known class F of
distributions.

X We would like our algorithm to use as a small sample
as possible.

X Closeness is measured by the total variation distance:
TV(P, P̂) := supE |P(E) − P̂(E)| = 1

2

∫
|p(x ) − p̂(x )| dx
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Distribution learning task
Our setup

Given an i.i.d. sample generated from an
unknown target distribution P from a known
class F , output some P̂ that is close to P.
What is the smallest number of samples needed
to guarantee TV(P̂,P) ≤ ε with probability
99%? mF(ε).

Main problem

prove bounds for mF(ε) for various classes F .

mF(ε) is also known as the minimax risk of F .
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A heuristic

ε2mF (ε) � number of free parameters in F in ‘natural representation’

Example

X F = Bernoulli distributions: mF (ε) � 1/ε2

X F = Gaussian distributions: mF (ε) � 2/ε2

X F = d-dimensional Gaussians: mF (ε) ≤ Cd2/ε2

X Finite F : mF (ε) ≤ C log |F |/ε2 Devroye-Lugosi’01

Main result: this heuristic also works for two more
complicated classes: mixtures of multidimensional
Gaussians, and the Ising model.
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Mixtures of Gaussians



Mixtures of Gaussians

A mixture of k Gaussians in d dimensions has density∑k
i=1 wiN (µi , Σi)(x ), where wi ≥ 0 and

∑
wi = 1.

N (µ, Σ)(x ) = density of a Gaussian with mean µ ∈ Rd and covariance

matrix Σ ∈ Rd×d





Main results
mixtures of Gaussians

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Let Fk ,d = mixtures of k Gaussians in d
dimensions. Then, mFk ,d(ε) = kd2/ε2 up to
polylogarithmic factors.

Any density in Fk ,d has form∑k
i=1 wiN (µi , Σi)(x ), and Σi is d × d , so has

Θ(kd2) parameters.
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Proof of upper bound: compression

Definition

F admits τ-compression, if for any P ∈ F , you can find τ
data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.

µ µ + σµ− σ
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Proof of upper bound: compression

Definition

F admits τ-compression, if for any P ∈ F , you can find τ
data points from which P can be reconstructed.

Example: 1 dimensional Gaussians admit 2-compression.

µ µ + σµ− σ

x1 x2

µ̂ = x1+x2
2

σ̂ = |x1−x2|
2



Proof of upper bound: compression

Compressing d-dimensional Gaussians

d-dimensional Gaussians admit Õ(d2)-compression.

Compressing mixtures

If F admits τ-compression, then k -mix(F) admits
(kτ+ k log k)-compression.

Compression implies learnability

If F admits τ-compression, then mF (ε) = Õ(τ/ε2).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Let Fk ,d = mixtures of k Gaussians in d dimensions. Then,
mFk ,d (ε) = Õ(kd2/ε2).



Proof of lower bound: Fano’s inequality

Main lemma
Let F1,d = d-dimensional Gaussians. Then,
mF1,d (ε) = Ω̃(d2/ε2).

Fano’s inequality

Suppose there exist f1, . . . , fM ∈ F with

KL(fi ‖ fj ) = O(ε2) and TV(fi , fj ) = Ω(ε) ∀i 6= j ∈ [M ].

Then mF (ε) = Ω(logM/ε2).

To construct this family of 2Ω(d2) distributions, start with an
identity covariance matrix, then choose a random subspace of
dimension d/9 and slightly increase the eigenvalues
corresponding to this eigenspace from 1 to 1+ ε/

√
d .
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The logarithmic factors were removed in subsequent work,
giving mFk ,d (ε) = Ω(d2/ε2).
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The Ising model

Definition
For a graph G on d vertices, and edge weights {wi ,j }ij∈E(G), the
Ising model with parameters {wi ,j }ij∈E(G) is supported on
{−1,+1}d and has probability mass function

pw(x1, . . . , xd) ∝ exp

 ∑
ij∈E(G)

wi ,j xixj


Number of parameters = |E(G)|.

Theorem (Devroye, M, Reddad’18)

Let IG = Ising models on G. Then, mIG (ε) � |E(G)|/ε2.

Lower bound proof uses Fano’s inequality again.
Upper bound proof is simpler, uses a technique of Yatracos.
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Recap

ε2mF (ε) � number of free parameters in F in ‘natural representation’

Example

X F = Bernoulli distributions: mF (ε) � 1/ε2

X F = Gaussian distributions: mF (ε) � 1/ε2

X F = d-dimensional Gaussian distributions: mF (ε) � d2/ε2

X Finite F : mF (ε) ≤ 9 log |F |/ε2 Devroye-Lugosi’01

X Fk ,d = mixture of k Gaussians in d dimensions:
mFk ,d (ε) = Θ̃(kd

2/ε2).

X IG = Ising models on G : mIG (ε) � |E(G)|/ε2.



Future work

ε2mF (ε) � number of free parameters in F in ‘natural representation’

1. Does the heuristic works for other classes? For example,
graphical models? Distributions generated by neural
networks?

2. ε2mF (ε) ≤ smallest compression size of F . Is the converse
true?

3. For binary classification, sample complexity �
VC-dimension of the hypothesis class /ε2. Can we use
ε2mF (ε) as a natural definition of ‘dimension’ for class F ?
Are there connections with other definitions?

4. What about computational complexity?


