### Learning probability distributions

Abbas Mehrabian

McGill University

1 August 2018

Co-authors: Hassan Ashtiani, Shai Ben-David, Luc Devroye, Nick Harvey, Christopher Liaw, Yaniv Plan, and Tommy Reddad

# An example of distribution learning

Generating random faces for computer games

- $\checkmark\,$  Training data consists of actual faces.
- $\checkmark~$  A probability density function  $\mathbf{P}:\mathbb{R}^d\to\mathbb{R}$  is learned from the data.
- $\checkmark\,$  New random faces are generated using the learned distribution.

# An example of distribution learning

Generating random faces for computer games

- $\checkmark\,$  Training data consists of actual faces.
- $\checkmark~$  A probability density function  $\mathbf{P}:\mathbb{R}^d\to\mathbb{R}$  is learned from the data.
- $\checkmark\,$  New random faces are generated using the learned distribution.

A popular approach: generative adversarial networks, based on deep neural networks.

# Distribution learning in action



# Top: generated images using generative adversarial networks Bottom: training data

Picture from Karras, Aila, Laine, and Lehtinen (NVIDIA and Aalto University), October 2017

# Distribution learning task

also known as density estimation

Given an i.i.d. sample generated from an unknown target distribution  $\hat{\mathbf{P}}$ , output a distribution  $\hat{\mathbf{P}}$  that is close to  $\mathbf{P}$ .

# Distribution learning task

also known as density estimation

Given an i.i.d. sample generated from an unknown target distribution  $\mathbf{P}$ , output a distribution  $\widehat{\mathbf{P}}$  that is close to  $\mathbf{P}$ .

- $\checkmark\,$  We assume P belongs to some known class  ${\mathcal F}$  of distributions.
- $\checkmark\,$  We would like our algorithm to use as a small sample as possible.
- ✓ Closeness is measured by the total variation distance: TV( $\mathbf{P}, \widehat{\mathbf{P}}$ ) := sup<sub>E</sub> |**P**(E) -  $\widehat{\mathbf{P}}(E)$ | =  $\frac{1}{2} \int |p(x) - \widehat{p}(x)| dx$

### Distribution learning task Our setup

Given an i.i.d. sample generated from an unknown target distribution P from a known class  $\mathcal{F}$ , output some  $\widehat{\mathbf{P}}$  that is close to P. What is the smallest number of samples needed to guarantee  $\mathrm{TV}(\widehat{\mathbf{P}}, \mathbf{P}) \leq \varepsilon$  with probability 99%?  $m_{\mathcal{F}}(\varepsilon)$ .

### Distribution learning task Our setup

Given an i.i.d. sample generated from an unknown target distribution P from a known class  $\mathcal{F}$ , output some  $\widehat{\mathbf{P}}$  that is close to P. What is the smallest number of samples needed to guarantee  $\mathrm{TV}(\widehat{\mathbf{P}}, \mathbf{P}) \leq \varepsilon$  with probability 99%?  $m_{\mathcal{F}}(\varepsilon)$ .

Main problem

prove bounds for  $m_{\mathcal{F}}(\varepsilon)$  for various classes  $\mathcal{F}$ .

 $m_{\mathcal{F}}(\varepsilon)$  is also known as the minimax risk of  $\mathcal{F}$ .

# A heuristic

 $arepsilon^2 m_{\mathcal{F}}(arepsilon) symp {
m number}$  of free parameters in  $\mathcal{F}$  in 'natural representation'

### Example

- $\checkmark \mathcal{F} = \text{Bernoulli distributions: } m_{\mathcal{F}}(\varepsilon) \asymp 1/\varepsilon^2$
- $\checkmark \mathcal{F} = ext{Gaussian distributions:} \ m_{\mathcal{F}}(\varepsilon) \asymp 2/\varepsilon^2$
- $\checkmark \ \mathcal{F} = d$ -dimensional Gaussians:  $m_{\mathcal{F}}(arepsilon) \leq C d^2/arepsilon^2$
- $\checkmark$  Finite  $\mathcal{F}$ :  $m_{\mathcal{F}}(\varepsilon) \leq C \log |\mathcal{F}|/\varepsilon^2$  Devroye-Lugosi'01

# A heuristic

 $arepsilon^2 m_{\mathcal{F}}(arepsilon) symp {
m number}$  of free parameters in  $\mathcal{F}$  in 'natural representation'

### Example

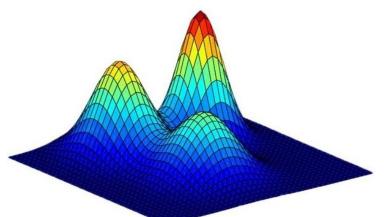
- $\checkmark \mathcal{F} = \text{Bernoulli distributions: } m_{\mathcal{F}}(\varepsilon) \asymp 1/\varepsilon^2$
- $\checkmark \mathcal{F} = ext{Gaussian distributions:} \ m_{\mathcal{F}}(\varepsilon) symp 2/\varepsilon^2$
- $\checkmark~{\cal F}=d$ -dimensional Gaussians:  $m_{{\cal F}}(arepsilon)\leq Cd^2/arepsilon^2$
- $\checkmark$  Finite  $\mathcal{F}$ :  $m_{\mathcal{F}}(\varepsilon) \leq C \log |\mathcal{F}|/\varepsilon^2$  Devroye-Lugosi'01

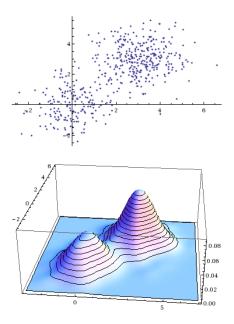
Main result: this heuristic also works for two more complicated classes: mixtures of multidimensional Gaussians, and the Ising model.

# Mixtures of Gaussians

### Mixtures of Gaussians

A mixture of k Gaussians in d dimensions has density  $\sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)(x)$ , where  $w_i \ge 0$  and  $\sum w_i = 1$ .  $\mathcal{N}(\mu, \Sigma)(x) = \text{density of a Gaussian with mean } \mu \in \mathbb{R}^d$  and covariance matrix  $\Sigma \in \mathbb{R}^{d \times d}$ 





## Main results

mixtures of Gaussians

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let  $\mathcal{F}_{k,d} = mixtures$  of k Gaussians in ddimensions. Then,  $m_{\mathcal{F}_{k,d}}(\varepsilon) = kd^2/\varepsilon^2$  up to polylogarithmic factors.

# Main results

mixtures of Gaussians

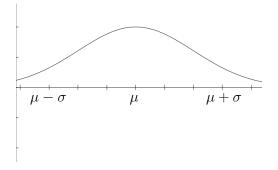
Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let  $\mathcal{F}_{k,d} = mixtures$  of k Gaussians in ddimensions. Then,  $m_{\mathcal{F}_{k,d}}(\varepsilon) = kd^2/\varepsilon^2$  up to polylogarithmic factors.

Any density in  $\mathcal{F}_{k,d}$  has form  $\sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)(x)$ , and  $\Sigma_i$  is  $d \times d$ , so has  $\Theta(kd^2)$  parameters.

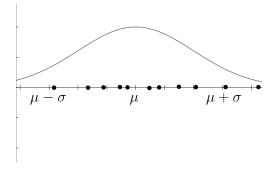
### Definition

 $\mathcal{F}$  admits  $\tau$ -compression, if for any  $\mathbf{P} \in \mathcal{F}$ , you can find  $\tau$  data points from which  $\mathbf{P}$  can be reconstructed.



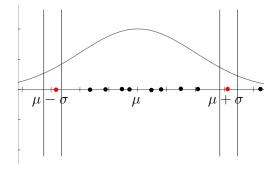
### Definition

 $\mathcal{F}$  admits  $\tau$ -compression, if for any  $\mathbf{P} \in \mathcal{F}$ , you can find  $\tau$  data points from which  $\mathbf{P}$  can be reconstructed.



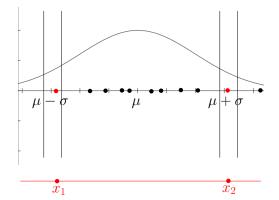
### Definition

 $\mathcal{F}$  admits  $\tau$ -compression, if for any  $\mathbf{P} \in \mathcal{F}$ , you can find  $\tau$  data points from which  $\mathbf{P}$  can be reconstructed.



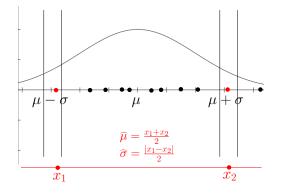
### Definition

 $\mathcal{F}$  admits  $\tau$ -compression, if for any  $\mathbf{P} \in \mathcal{F}$ , you can find  $\tau$  data points from which  $\mathbf{P}$  can be reconstructed.



### Definition

 $\mathcal{F}$  admits  $\tau$ -compression, if for any  $\mathbf{P} \in \mathcal{F}$ , you can find  $\tau$  data points from which  $\mathbf{P}$  can be reconstructed.



Compressing *d*-dimensional Gaussians

d-dimensional Gaussians admit  $\widetilde{O}(d^2)$ -compression.

#### Compressing mixtures

If  $\mathcal{F}$  admits  $\tau$ -compression, then k-mix $(\mathcal{F})$  admits  $(k\tau + k \log k)$ -compression.

Compression implies learnability

If  $\mathcal{F}$  admits  $\tau$ -compression, then  $m_{\mathcal{F}}(\varepsilon) = \widetilde{O}(\tau/\varepsilon^2)$ .

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let  $\mathcal{F}_{k,d} = mixtures$  of k Gaussians in d dimensions. Then,  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \widetilde{O}(kd^2/\varepsilon^2).$ 

### Main lemma

Let  $\mathcal{F}_{1,d} = d$ -dimensional Gaussians. Then,  $m_{\mathcal{F}_{1,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2).$ 

#### Fano's inequality

Suppose there exist  $f_1,\ldots,f_M\in\mathcal{F}$  with

 $\operatorname{KL}(f_i \parallel f_j) = O(\varepsilon^2) ext{ and } \operatorname{TV}(f_i, f_j) = \Omega(\varepsilon) \qquad \forall i \neq j \in [M].$ 

Then  $m_{\mathcal{F}}(\varepsilon) = \Omega(\log M / \varepsilon^2)$ .

To construct this family of  $2^{\Omega(d^2)}$  distributions, start with an identity covariance matrix, then choose a random subspace of dimension d/9 and slightly increase the eigenvalues corresponding to this eigenspace from 1 to  $1 + \varepsilon/\sqrt{d}$ .

#### Main lemma

Let  $\mathcal{F}_{1,d} = d$ -dimensional Gaussians. Then,  $m_{\mathcal{F}_{1,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2).$ 

It is easy to lift this to the class of mixtures, proving  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2).$ 

### Main lemma

Let  $\mathcal{F}_{1,d} = d$ -dimensional Gaussians. Then,  $m_{\mathcal{F}_{1,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2).$ 

It is easy to lift this to the class of mixtures, proving  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2)$ . The logarithmic factors were removed in subsequent work, giving  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \Omega(d^2/\varepsilon^2)$ .

### Main lemma

Let  $\mathcal{F}_{1,d} = d$ -dimensional Gaussians. Then,  $m_{\mathcal{F}_{1,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2).$ 

It is easy to lift this to the class of mixtures, proving  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \widetilde{\Omega}(d^2/\varepsilon^2)$ . The logarithmic factors were removed in subsequent work, giving  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \Omega(d^2/\varepsilon^2)$ .

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Let  $\mathcal{F}_{k,d}$  = mixtures of k Gaussians in d dimensions. Then,  $m_{\mathcal{F}_{k,d}}(\varepsilon) = kd^2/\varepsilon^2$  up to polylogarithmic factors.

# The Ising model

### Definition

For a graph G on d vertices, and edge weights  $\{w_{i,j}\}_{ij\in E(G)}$ , the Ising model with parameters  $\{w_{i,j}\}_{ij\in E(G)}$  is supported on  $\{-1,+1\}^d$  and has probability mass function

$$p_{\mathbf{w}}(\mathit{x}_1,\ldots,\mathit{x}_d) \propto \exp\left(\sum_{ij \in E(G)} w_{i,j} \mathit{x}_i \mathit{x}_j
ight)$$

Number of parameters = |E(G)|.

# The Ising model

#### Definition

For a graph G on d vertices, and edge weights  $\{w_{i,j}\}_{ij\in E(G)}$ , the Ising model with parameters  $\{w_{i,j}\}_{ij\in E(G)}$  is supported on  $\{-1,+1\}^d$  and has probability mass function

$$p_{\mathbf{w}}(x_1,\ldots,x_d) \propto \exp\left(\sum_{ij \in E(G)} w_{i,j} x_i x_j
ight)$$

Number of parameters = |E(G)|.

Theorem (Devroye, M, Reddad'18)

Let  $\mathcal{I}_G = Ising models on G$ . Then,  $m_{\mathcal{I}_G}(\varepsilon) \asymp |E(G)|/\varepsilon^2$ .

# The Ising model

#### Definition

For a graph G on d vertices, and edge weights  $\{w_{i,j}\}_{ij\in E(G)}$ , the Ising model with parameters  $\{w_{i,j}\}_{ij\in E(G)}$  is supported on  $\{-1,+1\}^d$  and has probability mass function

$$p_{\mathbf{w}}(x_1,\ldots,x_d) \propto \exp\left(\sum_{ij \in E(G)} w_{i,j} x_i x_j
ight)$$

Number of parameters = |E(G)|.

Theorem (Devroye, M, Reddad'18)

Let  $\mathcal{I}_G = Ising models on G$ . Then,  $m_{\mathcal{I}_G}(\varepsilon) \asymp |E(G)|/\varepsilon^2$ .

Lower bound proof uses Fano's inequality again. Upper bound proof is simpler, uses a technique of Yatracos.

# Recap

 $\varepsilon^2 m_{\mathcal{F}}(\varepsilon) symp {
m number}$  of free parameters in  $\mathcal{F}$  in 'natural representation'

### Example

- $\checkmark \mathcal{F} =$  Bernoulli distributions:  $m_{\mathcal{F}}(\varepsilon) \asymp 1/\varepsilon^2$
- $\checkmark \mathcal{F} = ext{Gaussian distributions:} \ m_{\mathcal{F}}(\varepsilon) \asymp 1/\varepsilon^2$
- $\checkmark ~ {\cal F}=d$ -dimensional Gaussian distributions:  $m_{{\cal F}}(arepsilon) symp d^2/arepsilon^2$
- $\checkmark$  Finite  $\mathcal{F}$ :  $m_{\mathcal{F}}(\epsilon) \leq 9 \log |\mathcal{F}|/\epsilon^2$  Devroye-Lugosi'01
- $\checkmark \mathcal{F}_{k,d} = \text{mixture of } k \text{ Gaussians in } d \text{ dimensions:}$  $m_{\mathcal{F}_{k,d}}(\varepsilon) = \widetilde{\Theta}(kd^2/\varepsilon^2).$
- $\checkmark \ \mathcal{I}_G = \text{Ising models on } G: \ m_{\mathcal{I}_G}(\varepsilon) \asymp |E(G)|/\varepsilon^2.$

## Future work

 $\varepsilon^2 m_{\mathcal{F}}(\varepsilon) symp {
m number}$  of free parameters in  $\mathcal{F}$  in 'natural representation'

- 1. Does the heuristic works for other classes? For example, graphical models? Distributions generated by neural networks?
- 2.  $\varepsilon^2 m_{\mathcal{F}}(\varepsilon) \leq \text{smallest compression size of } \mathcal{F}$ . Is the converse true?
- For binary classification, sample complexity ≍
   VC-dimension of the hypothesis class /ε<sup>2</sup>. Can we use
   ε<sup>2</sup>m<sub>F</sub>(ε) as a natural definition of 'dimension' for class F ?
   Are there connections with other definitions?
- 4. What about computational complexity?