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What is distribution learning?

X The goal for unsupervised learning is to find structure
in the data in order to learn more about the data, e.g.

1. Clustering
2. Anomaly detection
3. Principal component analysis

X Distribution learning (density estimation) means
explicitly estimating the distribution underlying the
data
1. can be explored to find structure in the data
2. can be used to generate new data
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Applications of distribution learning
detecting breast cancer

X Training data consists of non-cancerous X-ray images.

X A probability density function P : Rd → R is learned
from the data.

X When a new input x is presented, a high value for
P(x ) indicates a non-cancerous image, while a low
value indicates a novel input, which might be
characteristic of cancer.



Distribution learning task

Given an i.i.d. sample generated from an
unknown target distribution P, output a
distribution P̂ that is close to the target P.



Possible assumptions on the distribution P underlying
the data

X Gaussians

X Mixtures of simpler distributions

X Graphical models

X Neural networks

X No assumption!

Each assumption defines a class of distributions F .
Today, F will be mixtures of Gaussians.
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Mixture of Gaussians

A mixture of k Gaussians in d dimensions has density∑k
i=1 wiN (µi , Σi)(x ), where wi ≥ 0 and

∑
wi = 1.

N (µ, Σ)(x ) = exp(−(x − µ)TΣ−1(x − µ)/2)(2π)−d/2 det(Σ)−1/2

Lots of applications, e.g.,

X Financial returns often behave differently in normal
situations and during crisis times.

X House prices in different areas.

X Whenever each data point belongs to one of some
number of different sources or categories, each of
them being almost a Gaussian.
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Application of distribution learning
Generating new data

1. Let’s say we want to learn to generate random handwritten
digits.

2. The training data is the MNIST database: 60,000
handwritten digits.

3. We feed this data into a distribution learning algorithm,
which learns a mixture of Gaussians.

4. Then we generate new data from the learned distribution.



Distribution learning in action

training data generated data

Pictures from Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni,
Arulkumaran, Shanahan (Imperial College London), January 2017



Efficiency of the algorithm

We would like to design an algorithm that

X requires as few input data as possible (sample
complexity)

X runs as fast as possible (computational complexity)

Today we focus on sample complexity (information
theoretic/statistical aspects of the problem).
The first step for designing an efficient algorithm.



Guarantee of the algorithm

Our algorithm should guarantee that with high
probability, output distribution is “close” to the
underlying distribution.

There are various common distance measures between
distributions. One important one is the total variation
distance: TV(P, P̂) := supE |P(E) − P̂(E)|.

Properties of total variation distance

1. Symmetric, lies in [0,1], scale-invariant.

2. TV(P, P̂) = 1
2

∫
|P(x ) − P̂(x )|dx = 1

2‖P− P̂‖1
3. If TV(P, P̂) ≤ ε, for all events E , P̂(E) approximates

P(E) within ε. So we get a uniform guarantee.



Distribution learning task
Our setup

Given an i.i.d. sample generated from an
unknown target distribution P belonging to a
known class F , output a distribution P̂ that is
close to the target P.
What is the smallest number of samples needed
to guarantee TV(P̂,P) ≤ ε with probability
99%? mF(ε).

Main problem

provide bounds for mF(ε) for various classes F .
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Main results
mixtures of Gaussians

Theorem (Ashtiani, Ben-David, M’17)

The sample complexity for learning mixtures
of k Gaussians in d dimensions within
distance ε is upper bounded by Õ(kd2/ε4).

X Improvement over previous upper bounds
� Õ(k4d4/ε2) (Karpinski and Macintyre’97)
� Õ(k3d2/ε4) (Diakonikolas, Kane, Stewart’17)

Theorem (Harvey, Liaw, M, Plan’18)

This sample complexity is lower bounded by
Ω̃(kd2/ε2).



Main results
mixtures of axis-aligned Gaussians

Theorem (Ashtiani, Ben-David, M’18)

Sample complexity for learning mixtures of k
axis-aligned Gaussians in d dimensions
within distance ε is bounded by Õ(kd/ε2).

axis-aligned Gaussian:
∑k

i=1 wiN (µi , Σi ), wi ≥ 0,
∑

wi = 1,

each Σi is a diagonal matrix.

X Tight bound (up to log factors): a matching lower bound
was proved in Suresh, Orlitsky, Acharya, Jafarpour’14.

X Improvement over known upper bounds
� Õ((k4d2 + k3d3)/ε2) (Karpinski and Macintyre’97)
� Õ(k9d/ε4) (Suresh, Orlitsky, Acharya, Jafarpour’14)
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Main results
mixtures of Gaussians

Theorem (Ashtiani, Ben-David, M’17)

The sample complexity for learning mixtures
of k Gaussians in d dimensions within
distance ε is upper bounded by Õ(kd2/ε4).

Now we discuss the main ideas ...



A generic bound for mixtures

Theorem (Ashtiani, Ben-David, M’17)

Assume that F has sample complexity mF(ε).
Then k-mix(F) has sample complexity

mk -mix(F)(ε) = O
(
k log(1+ k) ·mF(ε)

ε2

)
.

k -mix(F) is the class of k mixtures of members
of F .



High level overview of the generic mixture bound
two rounds of sampling

1. Build a finite set of “candidate” distributions based on the
1st sample, such that one of them is ε-close to target.

2. Choose the best candidate based on the 2nd sample.

We know how to learn a single component using mF (ε) samples.
In the case of mixtures, we don’t know which sample point
came from which component of mixture; but we can try “all”
possible cases (exhaustive search) to generate the candidates.
For choosing the best candidate:

Theorem (Devroye and Lugosi’01)

Given a finite set C of candidates, given O(log(|C|)/ε2)

additional samples from the target distribution, we can find
the candidate that is closest to the target.
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Algorithm

Target is
∑k

i=1 wiGi , with
∑

wi = 1, each Gi ∈ F
In words: try all possible ways of partitioning data into
components, and all possible mixture weights

Input: k , ε and an iid sample S of size kmF (ε)
0. Let Ŵ be an (ε/k)-cover for ∆k in `∞ distance.
1. C = ∅. (set of candidate distributions)
2. For each (ŵ1, . . . , ŵk ) ∈ Ŵ do:
3. For each possible partition of S into A1,A2, ...,Ak :
4. Provide Ai to the F-learner, let Ĝi be its output.
5. Add the candidate distribution

∑
i∈[k ] ŵiĜi to C.

6. Apply the algorithm for finite classes to C.

X |C | ≤ k kmF (ε) × (1/ε)k so log |C | ≤ (kmF (ε)) log k + k log(1/ε).

X Remains to prove that there is an ε-close candidate in C.
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From generic mixture bound to mixtures of Gaussians

Theorem (Ashtiani, Ben-David, M’17)

mk -mix(F)(ε) = O
(
k log k ·mF (ε)

ε2

)
.

Sample complexity of single Gaussians

The class of d-dimensional Gaussians has sample
complexity O(d2/ε2).

Theorem (Ashtiani, Ben-David, M’17)

By the generic mixture bound, the class of mixtures of
k Gaussians in Rd has sample complexity Õ(kd2/ε4).

Very recently, we showed a lower bound of Ω̃(kd2/ε2).



Mixtures of axis-aligned Gaussians

Theorem (Ashtiani, Ben-David, M’17)

mk -mix(F)(ε) = O
(
k log k ·mF (ε)

ε2

)
.

Sample complexity of single axis-aligned Gaussians

The class of d-dimensional axis-aligned Gaussians has
sample complexity O(d/ε2).

Theorem (Ashtiani, Ben-David, M’17)

By the generic mixture bound, the class of mixtures of
k axis-aligned Gaussians in Rd has sample complexity
Õ(kd/ε4).

We improve this to Õ(kd/ε2) in the next part!



Distribution learning via compression

Distribution decoder

A distribution decoder for F is a function J that takes a
finite sequence of data points, and outputs a member of F .

Distribution compression schemes

Class F admits τ-compression if there exists a decoder J
for F such that for any P ∈ F and any ε ∈ (0, 1), if S is a
large enough sample generated from P, then with
probability 99% there exists a sequence L of at most τ
points of S such that TV(J (L),P) ≤ ε.
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µ µ + σµ− σ

x1 x2

µ̂ = x1+x2
2

σ̂ = |x1−x2|
2

TV(N (µ̂, σ̂),N (µ, σ)) ≤ ε, so a single 1 dimensional Gaussian is
2-compressible.
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Distribution learning via compression

Compression implies learnability

If F admits τ-compression, then it can be learned using
Õ(τ/ε2) samples.

Compressing product distributions

If F admits τ-compression, then Fd admits
(dτ)-compression.

Compressing mixtures

If F admits τ-compression, then k -mix(F) admits
(kτ+ k log k)-compression.



Learning Mixtures of Axis-Aligned Gaussians

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit 2-compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over Rd admit 2d-compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over Rd admit
(2kd + k log k)-compression.

Learning mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over Rd can be
learned using Õ(kd/ε2) samples.

The first known tight result (up to logarithmic factors).



Review: Our main results

k is the number of mixture components
d is the dimension, ε is the error tolerance

Theorem (Ashtiani, Ben-David, M’17)

Sample complexity for learning mixtures of general
Gaussians is upper bounded by Õ(kd2/ε4).

Theorem (Harvey, Liaw, M, Plan’18)

Sample complexity for learning mixtures of general
Gaussians is lower bounded by Ω̃(kd2/ε2).

Theorem (Ashtiani, Ben-David, M’18)

Sample complexity for learning mixtures of axis-aligned
Gaussians is upper bounded by Õ(kd/ε2).
(matching lower bound is known).

Robustness: if the target has total variation distance δ to some
element in the class, our method generates P̂ with
TV(P̂,P) ≤ 3δ+ ε.



Future work

X For mixtures of Gaussians,
kd2/ε2 ≤ sample complexity ≤ kd2/ε4.
What is the correct bound? Since a mixture of k
Gaussians in d dimensions has kd2 parameters, we
conjecture that kd2/ε2 is the correct answer.

X Our algorithms are exponential time. Can we design
polynomial time algorithms with similar guarantees?



Future work

X Sample complexity of learn more general distribution
families, e.g. graphical models, neural networks.



Future work
Neural networks can generate real-looking images

Top: generated images using a distribution learning
method based on deep learning (generative adversarial

networks)
Bottom: training data

Picture from Karras, Aila, Laine, and Lehtinen (NVIDIA and Aalto
University), October 2017
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