On the Longest Paths in Random Apollonian Networks

Abbas Mehrabian amehrabi@uwaterloo.ca

University of Waterloo

Discrete Maths Research Group Monash University, Melbourne, Australia May 20th, 2013

Abbas (University of Waterloo)

Random Apollonian Networks

May 20th 1 / 40

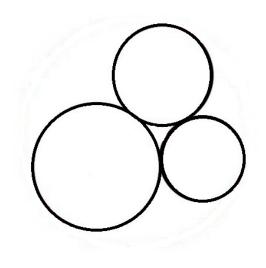
(日) (四) (日) (日) (日)

co-authors

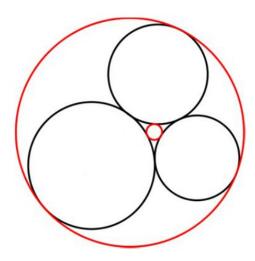
- Ehsan Ebrahimzadeh
- Linda Farczadi
- Jane Gao
- Cristiane Sato
- Nick Wormald
- Jonathan Zung

Pictures: Charalampos (Babis) Tsourakakis Paper: http://arxiv.org/abs/1303.5213

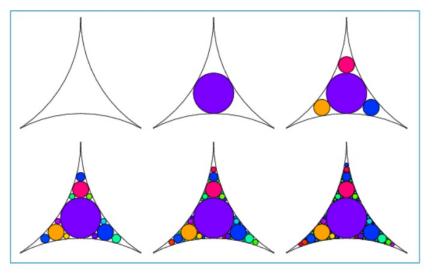
→ < ∃ → </p>



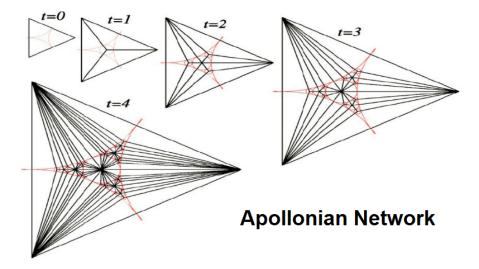
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ∽へ⊙

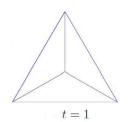


Apollonian Gasket

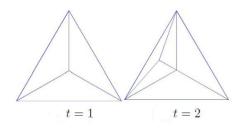


(日) (四) (문) (문)

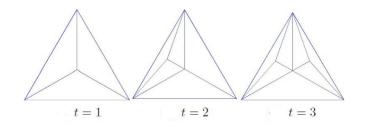
臣



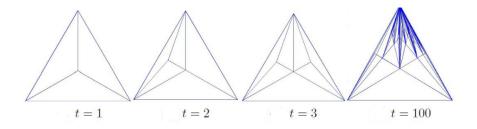
◆□▶ ◆□▶ ◆国▶ ◆国▶ 国 の�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで



・ロト ・御ト ・ヨト ・ヨト ヨー のへで

Random Apollonian Network

After subdividing t times,

- a random triangulated plane graph
- t + 3 vertices
- 3t + 3 edges
- 2t + 1 faces

called a Random Apollonian Network (RAN). Zhou, Yan, Wang, Physical Review (2005)

Motivation

Modelling real-world networks:

- The Internet
- The Web graph
- (Online) Social networks
- Brain neurons
- Protein interactions

э

Properties of Real-World Networks

Power-law degree distribution:

 $\mathbb{P}[\text{deg}(\text{a random vertex}) = k] = Ck^{-\beta}$

 Small-world phenomenon (six degrees of separation) : There is a short path connecting every pair of vertices.

Motivation

Known models include:

- Erdös-Renyi random graphs
- preferential attachment models
- Kronecker graphs
- Cooper-Frieze model
- Random surfer graphs
- Fabrikant-Koutsoupias-Papadimitriou model

<**A**₽ ► < **B** ►

Motivation

Known models include:

- Erdös-Renyi random graphs
- preferential attachment models
- Kronecker graphs
- Cooper-Frieze model
- Random surfer graphs
- Fabrikant-Koutsoupias-Papadimitriou model

RANs are an interesting model for generating random planar graphs.

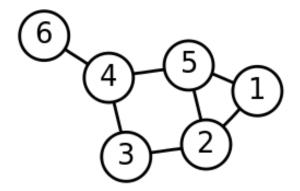
A (1) > A (1) > A

Known Results Degree sequence

n := number of vertices $Z_{k,n} :=$ number of vertices with degree k. Theorem (Frieze and Tsourakakis 2012) For every k = k(n) > 3. $\mathbb{E}\left[Z_{k,n}\right] = \Theta(nk^{-3}),$ and, $\mathbb{P}\left[\left|Z_{k,n}-\mathbb{E}\left[Z_{k,n}\right]\right|>10\sqrt{n\log n}\right]\to 0$

イロト イポト イヨト イヨト 二日

The Diameter of a Graph



Diameter = 3

Abbas (University of Waterloo)

イロト イポト イヨト イヨト

Known Results

Theorem (Albenque and Marckert 2008)

Distance between two random vertices $\rightarrow 0.55 \log n$.

Theorem (Frieze and Tsourakakis 2012)

 $\mathbb{P}\left[\mathsf{diameter} > 7.1 \log n\right] \to 0$

Abbas (University of Waterloo)

∃ >

Known Results

Theorem (Albenque and Marckert 2008)

Distance between two random vertices $\rightarrow 0.55 \log n$.

Theorem (Frieze and Tsourakakis 2012)

 $\mathbb{P}\left[\mathsf{diameter} > 7.1 \log n\right] \to 0$

Theorem (ELPANCJ'13+)

 $rac{{\sf diameter}}{\log n}
ightarrow c pprox 1.668$ in probability

Our Result on the Diameter

Theorem (ELPANCJ'13+)

$$f(x) := \frac{12x^3}{1-2x} - \frac{6x^3}{1-x},$$

y := unique solution to

$$x(x-1)f'(x) = f(x)\log f(x), x \in (0, 1/2),$$

 $c := (1-y^{-1})/\log f(y) \approx 1.668$

Then for every fixed $\varepsilon > 0$,

$$\mathbb{P}\left[(1-\varepsilon)c \log n \leq \mathsf{diameter} \leq (1+\varepsilon)c \log n\right] \to 1$$

Introduction

The Longest Path

The conjecture

Conjecture (Frieze and Tsourakakis 2012)

 $\mathbb{P}\left[\exists \text{ a path containing a positive fraction of vertices}
ight]
ightarrow 1$

Abbas (University of Waterloo)

Random Apollonian Networks

э May 20th 19 / 40

3.1

Introduction

The Longest Path

The conjecture

Conjecture (Frieze and Tsourakakis 2012)

 $\mathbb{P}\left[\exists \text{ a path containing a positive fraction of vertices}\right] \rightarrow 1$

Not true!

Abbas (University of Waterloo)

Random Apollonian Networks

▶ ▲ 돌 ▶ 돌 ∽ ೩ ୯ May 20th 19 / 40

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction

The Longest Path Our results

$$\begin{split} m &:= \text{number of faces} = 2n - 5\\ L_m &:= \text{length of the longest path}\\ \\ \text{Theorem (ELPANCJ'13+)}\\ (A)\\ &\exists \theta > 0 \ : \ \mathbb{P}\left[L_m < n/(\log n)^{\theta}\right] \to 1 \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

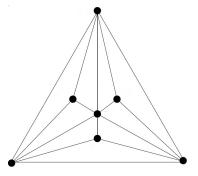
The Longest Path Our results

$$m := \text{number of faces} = 2n - 5$$

$$L_m := \text{length of the longest path}$$
Theorem (ELPANCJ'13+)
(A)
$$\exists \theta > 0 : \mathbb{P} \left[L_m < n/(\log n)^{\theta} \right] \rightarrow 1$$
(B)
$$L_m > m^{0.63}$$
(C)
$$\mathbb{E} \left[L_m \right] = \Omega \left(m^{0.88} \right)$$

イロト イヨト イヨト イヨト

(A) Upper Bound for Longest Path The Main Idea



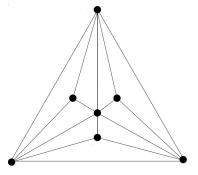
Claim: A simple path cannot contain internal vertices of all 9 regions.

э

イロト イポト イヨト イヨト

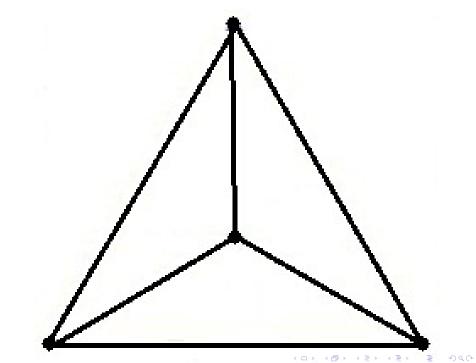
vertices Regions (□) (圖) (E) (E) æ

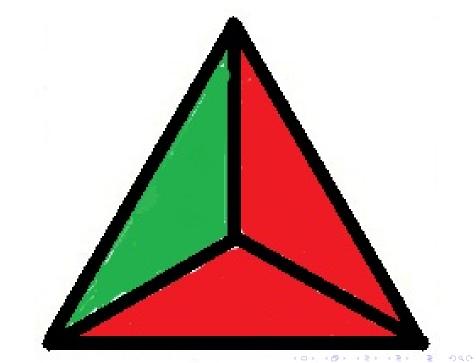
(A) Upper Bound for Longest Path The Main Idea



Claim: A simple path cannot contain internal vertices of all 9 regions.

イロト イポト イヨト イヨト





(A) Eggenberger-Pólya Urn

Theorem (Eggenberger and Pólya 1923)

Start: g green, r red balls. In each step:

• pick a random ball and return it to the urn;

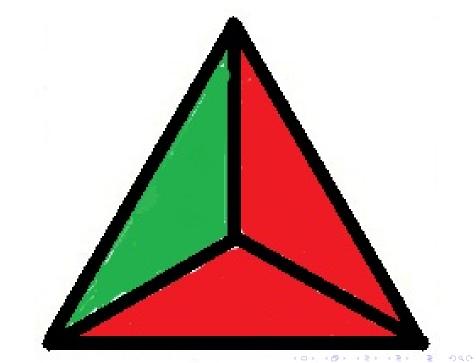
• add s balls of the same colour.

After n draws: g_n: green balls t_n: number of balls

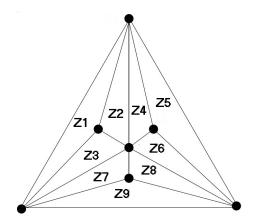
For any $\alpha \in [0,1]$

$$\lim_{n \to \infty} \mathbb{P}\left[\frac{g_n}{t_n} < \alpha\right] = \frac{\Gamma((g+r)/s)}{\Gamma(g/s)\Gamma(r/s)} \int_0^\alpha x^{\frac{g}{s}-1} (1-x)^{\frac{r}{s}-1} dx$$
$$= \mathbb{P}\left[Beta(g/s, r/s) < \alpha\right]$$

< 17 ▶



(A) Upper Bound for Longest Path



Corollary

$$\mathbb{P}\left[\frac{\min\{Z_1,\cdots,Z_9\}}{n}<\epsilon\right]<13\sqrt[4]{\epsilon}.$$

Abbas (University of Waterloo)

Random Apollonian Networks

(A) Upper Bound for Longest Path

Fix a small ϵ . We lose

$$n\left[\varepsilon + (1-\varepsilon)\varepsilon + (1-\varepsilon)^{2}\varepsilon + \dots + (1-\varepsilon)^{k}\varepsilon\right] = n\left[1 - (1-\varepsilon)^{k+1}\right]$$

vertices in any simple path.

Abbas (University of Waterloo)

< ロ > < 同 > < 回 > < 回 > < 回 > <

(A) Upper Bound for Longest Path

Fix a small ϵ . We lose

$$n\left[\varepsilon + (1-\varepsilon)\varepsilon + (1-\varepsilon)^2\varepsilon + \dots + (1-\varepsilon)^k\varepsilon\right] = n\left[1 - (1-\varepsilon)^{k+1}\right]$$

vertices in any simple path.

Theorem (ELPANCJ'13+) (A) $\exists \theta > 0$ such that

$$\mathbb{P}\left[L_m < n/(\log n)^{\theta}\right] \to 1$$

Abbas (University of Waterloo)

▶ ▲ 돌 ▶ 돌 ∽) ೩ (* May 20th 29 / 40

Lower Bounds for Longest Path

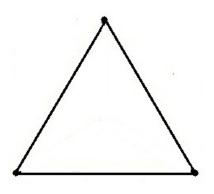
$$m := \text{number of faces} = 2n - 5$$

$$L_m := \text{length of the longest path}$$

$$\eta := \log 2 / \log 3 \approx 0.63$$
Theorem (ELPANCJ'13+)
(B)
$$L_m > m^{\eta}$$
(C)
$$\mathbb{E} [L_m] = \Omega (m^{0.88})$$

イロト イヨト イヨト イヨト

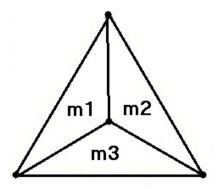
(B) Lower Bounds for Longest Path



Lemma

For any two boundary vertices, \exists a path of length > m^{η} connecting them not containing the third boundary vertex.

(B) Lower Bounds for Longest Path

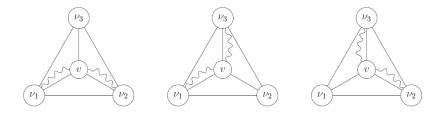


Assume that $m_1 \geq m_2 \geq m_3$

∃ →

Image: A matching of the second se

(B) Lower Bounds for Longest Path



$$L_m \ge m_1^{\eta} + m_2^{\eta} \ge 2\left(\frac{m}{3}\right)^{\eta} = m^{\eta}$$

since $m_1 \ge m_2 \ge m_3$ and $m_1 + m_2 + m_3 = m_3$

∃ →

(C) Lower Bounds for Longest Path

Finally, we sketch the proof of (C) !

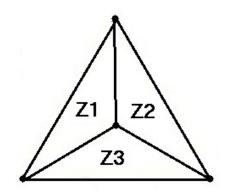
Abbas (University of Waterloo)

Random Apollonian Networks

3 May 20th 34 / 40

∃ →

(C) Lower Bounds for Longest Path



$$\mathbb{E}[L_m] \ge \mathbb{E}\left[Z_1^{0.88} + Z_2^{0.88} \middle| Z_1 \ge Z_2 \ge Z_3\right]$$

Abbas (University of Waterloo)

∃ ⊳

・ロト ・ 日 ・ ・ ヨ ・ ・

(C) Lower Bounds for Longest Path

$$\begin{split} \frac{\mathbb{E}\left[L_{m}\right]}{m^{0.88}} &\geq \mathbb{E}\left[\left(\frac{Z_{1}}{m}\right)^{0.88} + \left(\frac{Z_{2}}{m}\right)^{0.88} \middle| Z_{1} \geq Z_{2} \geq Z_{3}\right] \\ &= 6\sum_{s \geq t \geq 1-s-t} \mathbb{P}\left[\left(\frac{Z_{1}}{m}, \frac{Z_{2}}{m}\right) = (s, t)\right] (s^{0.88} + t^{0.88}) \\ &\to 6\int_{s \geq t \geq 1-s-t} f(s, t) (s^{0.88} + t^{0.88}) \mathrm{d}s \mathrm{d}t \geq 1 \end{split}$$

Abbas (University of Waterloo)

▶ ◀ 둘 ▶ 둘 ∽ ९... May 20th 36 / 40

イロト イ理ト イヨト イヨト

Open Problems The Longest Path

We showed $\exists \theta > 0$ such that

$$\mathbb{P}\left[L_m < m/(\log m)^{\theta}\right] \to 1$$

and

$$L_m > m^{0.63}$$

and

$$\mathbb{E}\left[L_m\right] = \Omega\left(m^{0.88}\right)$$

All these bounds can perhaps be improved. Concentration of L_m around its expected value?

イロト 不得下 イヨト イヨト

Open Problems Cheeger constant

Definition (Cheeger constant)

$$\min\left\{\frac{|E(S,V\setminus S)|}{|S|}:|S|\leq \frac{n}{2}\right\}$$

Abbas (University of Waterloo)

Random Apollonian Networks

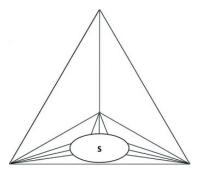
▶ ◀ 글 ▶ 글 ∽ ९ ୯ May 20th 38 / 40

イロト イヨト イヨト イヨト

Open Problems

Open Problems Cheeger constant

Frieze and Tsourakakis: maximum degree is $O(\sqrt{n})$.



Cheeger constant
$$\leq \frac{O(\sqrt{n})}{n/6} = O\left(\frac{1}{\sqrt{n}}\right)$$

Is this bound tight?

Abbas (University of Waterloo)

イロト イ団ト イヨト イヨト

Thanks for your attention!

Abbas (University of Waterloo)

▶ ◀ ≣ ▶ ≣ ∽ ९.여 May 20th 40 / 40

イロト イポト イヨト イヨト