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Game De�nition

De�nition (The Game of Cops and Robber)

Let G be a graph and s be a positive integer.

There is a set of cops and a robber.

In the beginning,

First, each cop chooses a starting vertex.

Then, the robber chooses a starting vertex.

In each round,

First, each cop chooses to stay or go to an adjacent vertex.

Then, the robber chooses to stay, or move along a cop-free

path of length ≤ s.

The cops capture the robber if, at some moment, a cop is at the

same vertex with the robber.

Think of s as the speed of the robber.
Abbas Cops and Robber Game
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Some Remarks/Assumptions About the Game

1 This is a perfect-information game: the players see each other.

2 More than one cops can be at the same vertex.

3 The robber cannot jump over a cop.

4 The moves are deterministic (no randomness).

5 When describing a strategy for the cops, we assume the robber

is clever; and vice versa.
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Cop Number

De�nition

The minimum number of cops that are needed to capture

the (clever) robber is denoted by cs(G ).

Example

For every s, if G is the complete graph, then cs(G ) = 1.

For every s, if G is a path, then cs(G ) = 1.

For every s, if G is a cycle with > 3 vertices, then cs(G ) = 2.

If G is the 4× 8 grid, then c1(G ) = 2.

If G is the 4× 4 grid, then c3(G ) > 2.

If G is the m ×m grid, then c2m(G ) = m.
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Some Known Results
for s = 1

The game was de�ned independently by Quilliot'78 and

Nowakowski and Winkler'83.

If G is planar, then c1(G ) ≤ 3. [Aigner and Fromme'84]

If G is chordal, then c1(G ) = 1. [Quilliot'86]

If G has no cycle with less than g vertices, then

c1(G ) > (δ− 1)g/8. [Frankl'87]

If G is a d -dimensional grid,

then c1(G ) = dd+1
2 e. [Neufeld and Nowakowski'98]

If G has no cycle with more than m vertices,

then c1(G ) ≤ dm/2e. [Joret, Kami«ski, and Theis'10]
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Known Results
for general s

For every �xed s, computing cs(G ) is NP-hard in general,

but is in P when G is an interval graph.

[Fomin, Golovach, Kratochvíl'08]

When s > 1, there is no constant upper bound

for cs(G ) when G is a planar graphs. [Nisse and Suchan'08]

In my thesis, I further studied this game, especially the case s > 1.

Abbas Cops and Robber Game



Introduction
Robber With Finite Speed

In�nitely Fast Robber
Open Problems

Game de�nition
Known results

Known Results
for general s

For every �xed s, computing cs(G ) is NP-hard in general,

but is in P when G is an interval graph.

[Fomin, Golovach, Kratochvíl'08]

When s > 1, there is no constant upper bound

for cs(G ) when G is a planar graphs. [Nisse and Suchan'08]

In my thesis, I further studied this game, especially the case s > 1.

Abbas Cops and Robber Game



Introduction
Robber With Finite Speed

In�nitely Fast Robber
Open Problems

Game de�nition
Known results

Notation

G the graph of the game, which is simple and

connected.

n the number of vertices of G .

s is the speed of the robber.
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Meyniel's Conjecture, 1987

For every graph G on n vertices,

c1(G ) = O(
√
n)

The best known bound is

c1(G ) ≤ n2−(1−o(1))
√

log2 n = n1−o(1)

[Lu and Peng'09, Scott and Sudakov'10]

There exist graphs with c1(G ) = Ω(
√
n).

For general s:

For every �xed s, there exist graphs with

cs(G ) = Ω
(
ns−3/s−2

)
. [Frieze, Krivelevich, Loh'11]

We will show there exist graphs with cs(G ) = Ω
(
ns/s+1

)
.
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Controlling a Path

De�nition

The cops control a vertex if there is a cop at that vertex or at an

adjacent vertex.

The cops control a path if they control some vertex of it.
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Maximum Cop Number of Connected Graphs
When s ∈ {2, 4}

Lemma

Let G be d-regular with girth > 2s + 2. Then cs(G ) = Ω(d s).

Proof.

Vertex r is safe if ∃X ⊆ V , |X | = (d − 1)s/2, such that

∀x ∈ X , ∃(r , x)-path of length s not controlled by the cops:

r

X
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Maximum Cop Number of Connected Graphs
When s ∈ {2, 4}

Lemma

Let G be d-regular with girth > 2s + 2. Then cs(G ) = Ω(d s).

Theorem

Let s ∈ {2, 4} be �xed. For every n, there exists a graph on n

vertices with cs(G ) = Ω
(
ns/s+1

)
.

Proof.

s = 2 There exist d -regular graphs on ≤ 2d3 vertices with

girth 7. [Lazebnik, Ustimenko, Woldar'97]

s = 4 There exist d -regular graphs on ≤ 2d5 vertices with

girth 12. [Araujo, González, Montellano-Ballesteros,

Serra'07]
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Maximum Cop Number of Connected Graphs
For general s

Lemma

Let G be d-regular bipartite graph with diameter larger than s,

such that

1 If u and v are vertices of distance ≤ s + 1, there are O(1)

distinct shortest (u, v)-paths.

2 For every vertex u and subset A of vertices, there exist Ω(d s)

vertices x of distance s from u, where any shortest (u, x)-path

avoids A.

Then cs(G ) = Ω(d s).
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For general s

Theorem

Let s be �xed. For every n, there exists a graph on n vertices with

cs(G ) = Ω
(
ns/s+1

)
.

Proof.

For d large enough, there exist Cayley graphs on O(d s+1) vertices

satisfying the conditions of the lemma.

Remark: This result was proved jointly with Noga Alon.
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A Generalization of Meyniel's Conjecture

Theorem

Let s be �xed. For every n, there exists a graph on n vertices with

cs(G ) = Ω
(
ns/s+1

)
.

Conjecture

For every graph G on n vertices, cs(G ) = O
(
ns/s+1

)
.

[Meyniel's Conjecture, 1987]

For every graph G on n vertices, c1(G ) = O(
√
n).
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In�nitely Fast Robber

De�nition

Let G be a connected graph on n vertices. Then

c∞(G ) = cn(G )

And we call c∞(G ) the cop number of G .

If the robber has speed n,

we say the robber is in�nitely fast.
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Known Results
for in�nitely fast robber

Computing c∞(G ) is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

For every n, there exists a graph on n vertices with

c∞(G ) = Θ (n). [Frieze, Krivelevich, Loh'11]

For the rest of the talk, we will assume the robber is in�nitely fast.
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An Obvious Bound For The Cop Number

De�nition

Set X ⊆ V (G ) is a dominating set if every vertex is either in X or

adjacent to a vertex in X .

The domination number of graph G is the minimum size of a

dominating set of G .

Proposition

The cop number ≤ the domination number.

Proof.

The cops start at a dominating set. They will capture the robber in

the �rst move.
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The Treewidth of a Graph

De�nition

Let G be a graph, T be a tree, and {Wt : t ∈ V (T )} be a family of

subsets of V (G ), called the bags.

The pair (T ,W ) is a tree decomposition of G if it satis�es:

(i) ∪t∈V (T)Wt = V (G ).

(ii) Forall uv ∈ E (G ), there is a bag containing both u and v .

(iii) Forall v ∈ V (G ) the set of bags containing v induces a subtree of T

The width of (T ,W ) is the maximum size of a bag, minus 1.

The treewidth of G , written tw(G ), is the minimum number w such that

G has a tree decomposition having width w .

Treewidth quanti�es how much is G similar to a tree.

for example, a tree has treewidth 1.
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The Relation Between Cop Number and Treewidth

Proposition

For any G ,

c∞(G ) ≤ tw(G ) + 1
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Helicopter Cops and Robber Game

De�nition (Helicopter Cops and Robber Game)

There is a set of cops and a robber.

It is a continuous-time game.

At any moment, the robber is at a vertex.

At any moment, each cop is either

standing at a vertex, or

in a helicopter.

The cops want to land via a helicopter on the robber's vertex.

The robber can see the helicopter approaching its landing

spot, and may run along a cop-free path to a new vertex.

In a complete graph, n cops are needed.

In a path, 2 cops are needed.
Abbas Cops and Robber Game
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A Lower Bound for Cop Number
Using helicopter cops and robber Game

Theorem (Seymour and Thomas'93)

Exactly tw(G ) + 1 cops are needed to capture the robber in the

Helicopter Cops and Robber game.

Theorem

For every graph G with maximum degree ∆,

tw(G ) + 1 ≤ c∞(G )(∆+ 1)

Punchline: If the robber is able to predict the movement of the

cops, the number of required cops is at most multiplied by ∆+ 1.
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The m-Dimensional Hypercube

De�nition

The m-dimensional hypercube, or the m-cube, has vertex set

{0, 1}m with two vertices being adjacent if they di�er in exactly one

coordinate.

Example

1-cube 2-cube 3-cube
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The Cop Number of The m-dimensional Hypercube

Theorem (from previous slides)

For every graph G with treewidth tw and maximum degree ∆,

tw + 1

∆+ 1
≤ c∞(G )

Corollary

If G is the m-dimensional hypercube with n = 2m vertices, then

η1n

m
√
m
≤ c∞(G ) ≤ η2n

m

Proof.

tw(G ) = Θ(n/
√
m) [Sunil Chandran, Kavitha'06], ∆ = m, and

domination number = O(n/m).
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Interval Graphs

De�nition

Consider a set of closed intervals on the real line. Put a vertex for

each interval, and join two vertices if their corresponding intervals

intersect. The result is an interval graph.

Abbas Cops and Robber Game



Introduction
Robber With Finite Speed

In�nitely Fast Robber
Open Problems

Relation with treewidth
Interval graphs
Chordal graphs
Expander graphs and random graphs

Known Results
for interval graphs

For every �xed �nite s, computing cs(G ) is NP-hard

when G is a general graph.

If G is an interval graph, then

cs(G ) ≤ 5s − 1

Leads to a polynomial algorithm for �xed �nite s.

[Fomin, Golovach, Kratochvíl'08]

For s = ∞, the complexity for interval graphs is open.

We give a 3-approximation algorithm.
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A Path Decomposition of a Graph

De�nition

Let G be a graph, m be a positive integer, and {Wi : 1 ≤ i ≤ m} be

a family of subsets of V (G ), called the bags. The family {Wi } is a

path decomposition of G if it satis�es:

(i) ∪1≤i≤mWi = V (G ).

(ii) For every uv ∈ E (G ), there is a bag containing both u and v .

(iii) For every v ∈ V (G ), v is contained in a consecutive set of

bags.

Fact: Every interval graph G has a path decomposition, in which

every bag induces a clique in G .
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3-Approximation For Interval Graphs

De�nition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k − 1 vertices of G dominate H.

Let M be the maximum number s. t. G has an M-wide subgraph.

Lemma

M ≤ c∞(G ) ≤ 3M

Proof (lower bound).

Assume H be M-wide, and there are < M cops in the game. The robber

stays in H all the time. In every round, there is an uncontrolled vertex in

H, and M disjoint paths to go there.
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3-Approximation For Interval Graphs

Lemma

If M is the maximum number s. t. G has an M-wide subgraph,

M ≤ c∞(G ) ≤ 3M

Proof (upper bound).

For each subgraph H of G , at least one of the following holds:

(i) H has a cut set with M vertices.

(ii) There are M vertices of G that dominate H.

Invariant: Two teams keep the robber in the �interval subgraph.�
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3-Approximation For Interval Graphs

De�nition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k − 1 vertices of G dominate H.

Let M be the maximum number s. t. G has an M-wide subgraph.

Lemma

It is possible to calculate M in polynomial time.

Proof.

The number of interval subgraphs is O(n2).

Each of them is an interval graph, and its dominating number and

connectivity can be found in polynomial time.
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3-Approximation For Interval Graphs

Let M be the maximum number s. t. G has an M-wide subgraph.

M ≤ c∞(G ) ≤ 3M

and it is possible to calculate M in polynomial time. Thus,

Theorem

There is a polynomial time 3-approximation algorithm for �nding

the cop number of an interval graph.
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Maximum Cop Number of Interval Graphs

Theorem

Let G be an interval graph. No subgraph of G is (
√
5n + 3)-wide.

Hence

c∞(G ) = O(
√
n)

The theorem is asymptotically tight:

K3m

1 2 . . . m

The above graph is
(√

n
3

)
-wide.
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Chordal Graphs

De�nition

Graph G is chordal if it does not have an induced cycle with more

than 3 vertices.

Example

chordal not chordal

Fact: Every interval graph is chordal.
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Maximum Cop Number of Chordal Graphs

As we saw, the cop number of an interval graph is O(
√
n).

What about the cop number of a chordal graph?

Next we show there are chordal graphs with cop number Ω
(

n
log n

)
.
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Accessible Sets

De�nition

A subset X ⊆ V (G ) is called accessible if

c∞(G ) ≥ |X |, and

if there are |X |− 1 cops in the game, then there exists a

strategy for the robber, in which the robber has access to X in

every round. That is, in every round, the cops are not

separating the robber from X .

Example

X1

G1

X2

G2

Abbas Cops and Robber Game
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Construction of Chordal Graphs With Large Cop Number

X is accessible in this graph:

X1

G1

X2

G2K4 K4

X

K4
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The Maximum Cop Number of Chordal Graphs

Theorem

There exist chordal graphs with cop number Ω
(

n
log n

)
.

Proof.

Let g(m) be the minimum size of a graph with an accessible subset

of m vertices. One can build a graph with an accessible subset of

2m vertices by using two graphs with accessible subsets of m

vertices, and 3 copies of K2m. Hence we have

g(2m) ≤ 2g(m) + 3× 2m

so g(m) = O(m logm). Thus there are chordal graphs on

O(m logm) vertices with cop number ≥ m.
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The Closed Neighbourhood of a Subset

De�nition

Let S ⊆ V (G ). The (closed) neighbourhood of S , written N(S), is

the set of vertices that are in S or have a neighbour in S .

Example

S1 S2
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The Large Component Lemma

Lemma

Assume that for every subset S of vertices of size ≤ m, G − N(S)

has a connected component of size > n/2. Then c∞(G ) > m.

Proof.

Let there be m cops. We give an escaping strategy for robber:

Invariant: Robber in largest component of G − N(S), S = cops' position

N(S)

C

N(S ′) C ′

Abbas Cops and Robber Game
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The Large Component Lemma

Lemma

Assume that for every subset S of vertices of size ≤ m, G − N(S)

has a connected component of size > n/2. Then c∞(G ) > m.

Corollary

Let c = c∞(G ). There exists a subset S of size ≤ c such that

G − N(S) has no component of size > n/2.
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Vertex Expansion

De�nition

Let G be a graph. The vertex expansion of G , ι(G ), is the

following quantity:

ι(G ) = min
|S |≤n/2

|N(S) \ S |

|S |
.

Example

S1

ι(G1) = 2/3

S2

ι(G2) = 1/3

Abbas Cops and Robber Game
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Lower Bound for Expander Graphs

Theorem

c∞(G ) ≥ ιn

4(∆+ 1)

Proof.

Let c = c∞(G ). There exists a subset S of size ≤ c such that G − N(S)

has no component of size > n/2. Clearly N(S) ≤ c(∆+ 1). Let

C1, . . . ,Cm be the components of G − N(S).

If |C1|+ · · ·+ |Cm| ≥ n/4, as each Ci has size ≤ n/2, one can pick some

of the Ci 's such that their union U has n/4 ≤ |U | ≤ n/2. Set U has at

least ι|U | neighbours outside, so

c(∆+ 1) ≥ |N(S)| ≥ ι|U | ≥ ιn/4
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The Erdös-Rényi Random Graph

De�nition

Let n be a positive integer and p be a real number in [0, 1]. The

Erdös-Rényi random graph G(n, p) is a random labelled graph on n

vertices such that each edge appears in G(n, p) independently and

with probability p. For a function p : N → [0, 1] and a graph

property A, we say G(n, p) asymptotically almost surely (a.a.s.)

satis�es A, if we have

lim
n→∞Pr [G(n, p(n)) satis�es A] = 1
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Lower Bounds for Random Graphs

Theorem (from previous slides)

c∞(G ) ≥ ι n

4(∆+ 1)

Theorem

If np ≥ 20 ln n, then a.a.s. ι(G(n, p)) ≥ 10−3.

Corollary

If np ≥ 20 ln n, then a.a.s. c∞(G(n, p)) = Ω
(
1
p

)
.
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Upper Bounds for Random Graphs

Corollary (from previous slides)

If np ≥ 20 ln n, then a.a.s. c∞(G(n, p)) = Ω
(
1
p

)
.

Theorem

If np > 2 ln n, then a.a.s. the domination number of G(n, p) is
O
(
log(np)

p

)
. [Alon, Spencer'92]

Corollary

If np > 2 ln n, then a.a.s.

c∞(G(n, p)) = O

(
log(np)

p

)
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Tighter Bounds for Denser Random Graphs

Theorem

If np = nα+o(1), where 1/2 < α < 1, then a.a.s

c∞(G(n, p)) = Θ
(
log n

p

)
If np = n1−o(1) then a.a.s

c∞(G(n, p)) = (1+ o(1))
log n

log 1

1−p

Proof.

Use bounds on domination number for upper bounds,

and results for the �slow robber� version (proved by Bonato, and Praªat,

and Wang'07) for the lower bounds.
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Edge Expansion

De�nition

For S ⊆ V (G ), let ∂S denote the set of edges with exactly one

endpoint in S . Then the edge expansion of G , written ιe(G ), is

de�ned as:

ιe(G ) = min
|S |≤n/2

|∂S |

|S |

Example

S1

ιe(G1) = 1

S2

ιe(G2) = 1/3
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Asymptotic Cop Number of Random Regular Graphs

Theorem

c∞(G ) ≥ ιen

2∆2

Corollary

Fix d ≥ 3. With probability → 1 as n → ∞, a random d-regular

labelled graph G on n vertices has c∞(G ) = Θ(n).

Proof.

A.a.s. ιe(G ) ≥ d/2−
√
d ln 2 [Bollobás ′88], so

c∞(G ) ≥ d − 2
√
d ln 2

4d2
n
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Results Not Mentioned Here

1 Characterization of graphs with cop number one, O(n2)

algorithm

2 Results on Cartesian products of graphs

3 The same-speed variation
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1. If the robber has �nite speed s, we proved that there exist

graphs with

cs(G ) = Ω
(
ns/s+1

)
We conjecture that this bound is tight, that is,

cs(G ) = O
(
ns/s+1

)
This seems to be di�cult: even if s = 1, the best known upper

bound is

c1(G ) ≤ n1−o(1)
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2. We proved that for every G ,

tw(G ) + 1

∆+ 1
≤ c∞(G ) ≤ tw(G ) + 1

Using this we showed that if G is the m-dimensional

hypercube with n = 2m vertices, then

η1n

m
√
m
≤ c∞(G ) ≤ η2n

m

Can we eliminate this
√
m factor?

3. We proved that �nding the cop number of an interval graph is

3-approximable. Is this problem polynomial-time solvable?

Does a better approximation algorithm exist?
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4. We proved that there are chordal graphs with

c∞(G ) = Ω(n/ log n). Is this bound tight? Do there exist

chordal graphs with c∞(G ) = Θ(n)?

5. When np ≥ 20 ln n, we proved that a.a.s.

k1
p
≤ c∞(G(n, p)) ≤ k2 log(np)

p

Can we eliminate this log(np) factor?
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Thank You!

Any Questions?
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