
The quantum query complexity of

determining whether a graph is connected∗

Abbas Mehrabian†

Department of Combinatorics and Optimization

University of Waterloo

November 25, 2013

1 Introduction

We study the following algorithmic problem: given a graph, determine whether it is

connected or not. We will call this problem the connectivity problem for brevity. This

is a basic graph problem, and one can easily come up with an optimal algorithm based

on breadth-first or depth-first search. However, we look at this problem from a different

angle. First, we assume that the graph is not readily available to the algorithm, but the

algorithm has a black-box access to the graph. Namely, the algorithm cannot access the

graph directly, but can obtain information by asking questions about it. The format of

these queries (technical term for questions) will be described later on. In most articles

on algorithms, the objective is to come up with an algorithm with the shortest running

time. Our focus is different: here we aim to solve the connectivity problem by asking as

few queries as possible, hence the phrase “query complexity” in the title. Second, as also

evident from the title, our focus is on quantum algorithms for the connectivity problem.

In other words, we would like to know, quantitatively, how much advantage quantum

algorithms give us over classical algorithms for this particular problem.

∗This is the author’s project report for the course “CO 681: Introduction to Quantum Information

Processing,” Fall 2013.
†email address: amehrabi@uwaterloo.ca

1

We allow the algorithms to use randomness. This is unavoidable in most quantum

algorithms, as measurements of non-basis quantum states result in probabilistic outcomes.

We also tolerate a small amount of error: we require the algorithm to output the correct

answer with probability at least 2/3. Note that this probability involves the coin flips

and (quantum) measurements of the algorithm, and not the input distribution. In other

words, we require this probability of success for every input graph. The constant 2/3 here

is somewhat arbitrary and we could have used any constant greater than 1/2, without

changing the results. Also, it is easy to see that for any δ ∈ (0, 1), one can boost the

success probability to 1 − δ by repeating such an algorithm independently O(log(1/δ))

times, and outputting the most occurred answer.

We consider two models of black-box access to the input graph, the matrix model

and the array model. For both models we provide quantum algorithms whose query

complexities are optimal, up to constant factors. Next we describe these models and their

query formats. In this paper n always denotes the number of vertices of the input graph

G, and we assume that G is undirected and simple.

In the matrix model, the algorithm is initially given n. Assume the vertices of G are

numbered from 1 to n. A query of the algorithm is of the form (i, j), where 1 ≤ i < j ≤ n,

whose answer is 1 if vertices i and j are joined by an edge in G, and 0 otherwise. We

prove the following theorem for this model.

Theorem 1 ([2]). In the matrix model, there is a quantum algorithm with query com-

plexity O(n
√
n) for the connectivity problem.

The degree of a vertex is the number of its incident edges. In the array model, the

algorithm is initially given n and the degrees of all vertices. Let d1, d2, . . . , dn denote

the degrees of vertices 1, 2, . . . , n, respectively. Assume that for every i = 1, 2, . . . , n, the

neighbours of vertex i are ordered from 1 to di. This ordering is assumed to be fixed

throughout the execution of the algorithm. A query of the algorithms is of the form

(i,m), where 1 ≤ i ≤ n and 1 ≤ m ≤ di, whose answer is the index of the m-th neighbour

of vertex i (hence the answer is a number between 1 and n, inclusive). We prove the

following theorem for this model.

Theorem 2 ([2]). In the array model, there is a quantum algorithm with query complexity

O(n) for the connectivity problem.

For the classical (non-quantum) case, we prove the following theorems.

2

model matrix array

classical Θ(n2) Θ(n2)

quantum Θ(n
√
n) Θ(n)

Table 1: Query complexity of the connectivity problem in various settings.

Theorem 3 ([2]). In the matrix model, there is a classical algorithm with query complexity

O(n2) for the connectivity problem. Any classical algorithm for this problem in this model

has query complexity Ω(n2).

Theorem 4. In the array model, there is a classical algorithm with query complexity

O(n2) for the connectivity problem. Any classical algorithm for this problem in this model

has query complexity Ω(n2).

Theorems 1, 2 and 3 have been proved in [2]. We elaborate on their proofs and provide

more details. It is also shown in [2] that the algorithms given by Theorems 1 and 2 are

indeed tight up to constant factors. More formally, the authors have shown that any

quantum algorithm for the connectivity problem has query complexity Ω(n
√
n) in the

matrix model, and query complexity Ω(n) in the array model. Known results on the

query complexity of this problem in various settings are given in Table 1.

The authors of [2] also studied the quantum query complexity of three other prob-

lems, and provided lower and upper bounds that match up to logarithmic factors. These

problems are: (1) determining whether a directed graph is strongly connected, (2) finding

a minimum spanning tree of a graph, and (3) finding single source shortest paths in a

directed graph.

Theorem 4 is new to the best of my knowledge and can be considered as the contri-

bution of this article.

This article is organized as follows. Quantum algorithms for Theorems 1 and 2 are

presented in Section 2. Theorems 3 and 4 are proved in Section 3.

2 Quantum algorithms

In this section we prove Theorems 1 and 2 by presenting quantum algorithms. Grover [3]

presented an algorithm that given a domain of size N and black-box access to some

3

function F : {1, . . . , N} → {0, 1}, for which it is guaranteed that there exists some y with

F (y) = 1, finds such a y in expected time O(
√
N). A black-box access to the function

F means that the only way the algorithm can get information about F is by evaluating

F on elements in the domain. The main quantum tool used in both algorithms of this

section is amplitude amplification, which is a generalization of Grover’s search algorithm.

The following result, whose proof we omit, has been proved in [1] (we use the wording

of [2]).

Theorem 5 (The Search Algorithm [1]). Let F : {1, . . . , N} → {0, 1} be arbitrary,

A = {y : F (y) = 1}, and a = |A|. There is a quantum algorithm that is given black-box

access to F , and does the following.

1. If a > 0, the algorithm outputs a random element in A asking an expected number

of 0.9
√

N/a queries.

2. If a = 0, the algorithm does not halt.

Note that the algorithm does not need to know what a is.

In this section this algorithm will be called the search algorithm.

2.1 Algorithm for the matrix model

Let us denote the input graph by G, and recall that n denotes the number of vertices of G.

Suppose that for some function g(n), we present an algorithm A that if G is connected,

outputs YES after asking at most g(n) queries on average; and does not halt if G is not

connected. Consider the algorithm B which does the following: given input graph G, it

runs A on G, and waits until A has asked 3g(n) queries. If A outputs YES by then, B
also outputs YES, claiming that G is connected. Otherwise, i.e. if A has not halted by

then, then B outputs NO, claiming that G is not connected. We claim that B has error

probability at most 1/3. In fact, two cases are possible:

1. If G is not connected, then A does not halt, hence B outputs NO with probability

1. The error probability is 0 in this case.

2. If G is connected, then the expected number of queries A asks before answering YES

is at most g(n). Hence by Markov’s inequality, with probability at least 2/3, A asks

at most 3g(n) queries, and outputs YES before asking the (3g(n) + 1)-th query. If

4

this is the case, then B outputs YES. Therefore, in this case the error probability is

at most 1/3.

In the following we present an algorithm that if G is connected, outputs YES after

asking O(n
√
n) queries on average; and does not halt if G is not connected. By the

discussion above, this can be used to design an algorithm that has (deterministic) query

complexity O(n
√
n), and errs with probability at most 1/3.

By a piece in G, we mean a set of vertices that induce a connected subgraph of G.

Let V (G) denote the vertex set of G. The algorithm maintains a partition of V (G) into

pieces, i.e. a set S of disjoint pieces, such that every vertex is contained in at least one of

the pieces. Given two pieces P and Q and an edge e joining a vertex of P and a vertex

of Q, by merging P and Q using e we mean deleting pieces P and Q from S and adding

the piece P ∪ Q to S. Note that after such an operation, S is still a partition of V (G)

into pieces.

The algorithm starts with the finest possible partition, putting each vertex into a dis-

tinct piece. In each iteration, using the search algorithm it finds an edge whose endpoints

lie in distinct pieces, and uses that edge to merge the corresponding pieces. If G is not

connected, then the algorithm does not halt, because at some point it cannot find an

appropriate edge to merge two pieces. If G is connected, then since the number of pieces

is initially n and decreases by 1 in each iteration, after n− 1 iterations all vertices will lie

in the same piece. The algorithm halts and outputs YES once all pieces are merged into

one.

We now analyze the query complexity of the given algorithm in the connected case.

Consider an iteration in which there are k pieces, where 2 ≤ k ≤ n, and the algorithm

searches for an edge between distinct pieces. Since G is connected, there are at least k−1

such edges. Every such edge is of the form {i, j}, with 1 ≤ i < j ≤ n. In the matrix

model, the algorithm can ask whether {i, j} is an edge in G using a single query. Hence

the domain size is
(

n

2

)

. Thus the expected number of queries needed to find a desirable

edge using the search algorithm is at most 0.9
√

(

n

2

)

/(k − 1), which is O
(

√

n2/k
)

. Since

k runs between n and 2, by linearity of expectation, the expected total number of queries

is

n
∑

k=2

O
(

√

n2/k
)

= O

(

n
n
∑

k=2

1√
k

)

≤ O

(

n

∫ n

x=1

1√
x

)

= O
(

n
[

2
√
n− 2

√
1
])

= O
(

n
√
n
)

,

completing the proof of Theorem 1.

5

2.2 Algorithm for the array model

By the discussion in the beginning of Section 2.1, to prove Theorem 2 it is enough to

present an algorithm that if G is connected, outputs YES after asking O(n) queries on

average; and does not halt if G is not connected.

The algorithm is similar to that of Section 2.1, in that it also maintains a partition of

V (G) into pieces, and in each iteration finds an edge merging two distinct pieces. However,

to get a linear average query complexity, our approach should be more delicate, both in

selecting the initial set of pieces, and in finding an appropriate edge for merging.

We define the total degree of a piece P , written t(P), as the sum of degrees of vertices

in P . The following result, whose proof will be presented later on, will be used for building

the initial piece set.

Lemma 6 ([2]). There is a deterministic classical algorithm that asks O(n) queries and

partitions V (G) into several pieces in such a way that for each piece P , its total degree is

less than |P |2.

The algorithm has two phases. In Phase (1), we use Lemma 6 to partition V (G)

into pieces asking O(n) queries. In Phase (2), we merge the pieces iteratively: in each

iteration, we choose a piece P with minimum total degree, use the search algorithm to

find an edge with one endpoint in P and the other one outside P , and then merge two

pieces using this edge. We stop and output YES once all pieces are merged into one.

It is clear that if G is not connected, then the algorithm will not halt. The following

lemma implies that if G is connected, then in Phase (2) the algorithm asks O(n) queries

on average, thus proving Theorem 2. The proof presented here is new, and simpler than

the original proof in [2].

Lemma 7 ([2]). Denote by {P1, P2, . . . , Pk} the partition of V (G) into pieces after Phase

(1). If G is connected, then the expected query complexity of Phase (2) is

O
(

√

t(P1) +
√

t(P2) + · · ·+
√

t(Pk)
)

≤ O(n) .

Proof. The inequality
√

t(P1) +
√

t(P2) + · · · +
√

t(Pk) < n holds since by Lemma 6,
√

t(Pj) < |Pj| for each initial piece Pj , and moreover, the pieces form a partition of

V (G).

Assume the input graph G is connected. Using induction on k, we prove that the

6

expected query complexity of Phase (2) is not more than 2

k
∑

s=1

√

t(Ps). This is clear if

k = 1, so let us assume k > 1.

Assume that Pi is a piece with minimum total degree, where 1 ≤ i ≤ k. In the first

iteration, we search for an edge with exactly one endpoint in Pi. Recall that for a vertex

j, dj denotes the degree of j. Hence we are indeed searching for a pair (j,m) with j ∈ Pi,

1 ≤ m ≤ dj, such that the m-th neighbour of vertex j is not in Pi. In the array model,

the m-th neighbour of vertex j can be determined by asking a single query. Hence the

domain size is
∑

j∈Pi

dj = t(Pi), and there is at least one desirable edge since the graph

is connected. Hence the first iteration is completed after asking an average of at most

0.9
√

t(Pi) queries.

Suppose that in the first iteration pieces Pi and Pr are merged, where r ∈ {1, . . . , n} \
{i}. Then by the inductive hypothesis, the expected query complexity of the remaining

iterations is at most

2









∑

1≤s≤k
s 6=i,r

√

t(Ps) +
√

t(Pi) + t(Pr)









.

By the linearity of expectation, to prove the inductive step we just need to show

0.9
√

t(Pi) + 2









∑

1≤s≤k
s 6=i,r

√

t(Ps) +
√

t(Pi) + t(Pr)









≤ 2

k
∑

s=1

√

t(Ps) . (1)

Cancelling the common terms, this is equivalent to

2
√

t(Pi) + t(Pr) ≤ 1.1
√

t(Pi) + 2
√

t(Pr) .

Squaring both sides, this is equivalent to

4t(Pi) + 4t(Pr) ≤ 1.21t(Pi) + 4t(Pr) + 4.4
√

t(Pi)t(Pr) ,

which follows from t(Pi) ≤ t(Pr). Hence (1) is proved, and this completes the proof of

the inductive step and that of the lemma. �

Finally, we prove Lemma 6.

Proof of Lemma 6. Algorithm 1 shown on the next page does the job. Initially, there is

no piece and all vertices are uncovered, i.e. not contained in any piece. In every iteration,

7

the algorithm either builds a new piece, or adds a group of vertices to an existing piece.

The algorithm repeats this until all vertices are covered.

Algorithm 1 Partition V (G) into pieces with small total degrees

1: Start with no piece and all vertices uncovered.

2: while there exist uncovered vertices do

3: Let u be an uncovered vertex with maximum degree.

4: Go through neighbours of u one by one, inserting them into a buffer B:

5: if a covered neighbour v is encountered then

6: add {u}∪B to the piece containing v and mark them as covered; jump to Line 2.

7: else if all neighbours of u are uncovered then

8: Let u and its neighbours form a new piece and mark them as covered; jump to

Line 2.

9: end if

10: end while

It is clear that Algorithm 1 is deterministic and classical, and that it outputs a partition

of V (G) into pieces. We claim that its query complexity is not more than 2n. Line 4 is the

only place in Algorithm 1 where queries are asked. Every vertex, while it is uncovered,

is the answer of at most one query, since in that very iteration it will be put into some

piece. The algorithm has n iterations at most, and in each iteration at most one covered

vertex is the answer of a query, since as soon as such a vertex is encountered (Line 5), a

group of vertices are covered and the iteration finishes. Hence the total query complexity

of the algorithm is not more than 2n, which is O(n).

It remains to show that when Algorithm 1 is done, all generated pieces have small total

degrees. We show that, indeed, throughout the execution of the algorithm each piece P

has total degree less than |P |2. Changes in pieces occur in two places: in Line 6, where a

group of vertices is added to an already-present piece, and in Line 8, where a new piece

is created. We study these cases separately, starting with the latter case. Consider an

iteration of Algorithm 1. Let u be as in the algorithm, and let d denote the degree of u.

Case 1. In Line 8 of Algorithm 1, a new piece is created, containing u and its neighbours.

The new piece contains d+ 1 vertices. By the choice of u in Line 3, each neighbour of u

has degree at most d, and u has exactly d neighbours, so the total degree of the new piece

is not more than d + d × d, which is less than (d + 1)2. Observe that when this piece is

created, every uncovered vertex has degree at most d. During the algorithm the size of a

8

piece never decreases. Hence the following claim holds.

Claim. Throughout the execution of Algorithm 1, the size of every piece is greater than

the degree of every uncovered vertex.

Case 2. In Line 6 of Algorithm 1, vertices in {u} ∪ B are added to the piece containing

v. We assume v /∈ B. Let P denote the piece containing v, and let b = |B|. Before the

start of this iteration u was uncovered, so by the claim above we have |P | > d. Also, by

the choice of u in Line 3, each vertex in B has degree at most d, so t(B) ≤ bd. Finally,

piece P has already been created, so t(P) < |P |2. Consequently, we find that the total

degree of the new piece P ∪ {u} ∪ B is

t(P ∪ {u} ∪ B) = t(P) + d+ t(B)

≤ t(P) + d+ db

= t(P) + d(1 + b)

< |P |2 + d(1 + b)

< |P |2 + |P |(1 + b)

< (|P |+ 1 + b)2

= |P ∪ {u} ∪ B|2 ,

and this concludes the proof of the lemma. �

3 Classical lower bounds

In this section we prove Theorems 3 and 4. Given a graph G with e edges, it is easy to

determine whether G is connected by performing a depth-first search on G. The time

complexity of this algorithm is O(n2) in the matrix model and O(e) in the array model.

Since asking every query takes a unit time step, the time complexity is an upper bound

for the query complexity, and the upper bound in Theorem 3 follows. The upper bound

in Theorem 4 follows from the fact that every graph has at most n(n − 1)/2 = O(n2)

edges.

Proof of the lower bound in Theorem 3. Assume that n is even, say n = 2m, and define

two graphs G1 and G2 as follows. The graph G1 has all edges of the form {k, k + 1} for

k = 1, 2, . . . , m− 2, m− 1, m+ 1, m+ 2, . . . , n− 1. In graph theoretic terms, The graph

G1 consists of two paths, one passing through vertices 1, 2, . . . , m in this order, and the

9

4

3

2

1

8

7

6

5

G1

4

3

2

1

8

7

6

5

G2

Figure 1: Illustration of the construction in the proof of the lower bound of Theorem 3.

other one passing through vertices m + 1, m + 2, . . . , n in this order. Clearly G1 is not

connected. The graph G2 is obtained from G1 by adding an edge joining a random vertex

of {1, 2, . . . , m} and a random vertex of {m + 1, . . . , n}. Clearly G2 is connected. An

illustration with n = 8 is depicted in Figure 1.

We claim that any classical algorithm that distinguishes between G1 and G2 with

probability at least 2/3 has query complexity Ω(n2) in the matrix model. Let A =

{1, . . . , m}, B = {m + 1, . . . , n}, and let {a, b} denote the extra edge of G2, with a ∈ A

and b ∈ B (we have a = 2 and b = 8 in Figure 1). Then there is exactly one query

whose answer is different in the two graphs, namely (a, b). The algorithm must ask this

query to distinguish between G1 and G2 with probability more than a half (i.e. better

than a random guess). Let us call the pair (a, b) the identifying pair. Since a is randomly

chosen in A and b is randomly chosen in B, any pair in A× B is equally likely to be the

identifying pair. Thus any classical algorithm needs to ask Ω(|A × B|) = Ω(n2) queries

to find the identifying pair with (at least) constant probability and distinguish between

G1 and G2 with probability more than a half. �

Proof of the lower bound in Theorem 4. Assume that n is even and greater than 4, and

let m = n/2. Define two graphs H1 and H2 as follows. The graph H1 has all edges of the

form {i, j} for 1 ≤ i < j ≤ m, and all edges of the form {i, j} for m + 1 ≤ i < j ≤ n,

and has no other edges. In graph theoretic terms, H1 consists of two complete graphs,

one on vertices {1, . . . , m} and the other one on vertices {m + 1, . . . , n}. Clearly H1 is

not connected. The graph H2 is obtained from H1 as follows. Choose a pair (a, b) with

1 ≤ a < b ≤ m uniformly at random, delete the edges {a, b} and {m + a,m + b}, and
then add the edges {a, b+m} and {b, a +m}. An illustration with n = 8, (a, b) = (1, 3)

is depicted in Figure 2. Clearly H2 is connected.

10

4

3

2

1

8

7

6

5

H1

4

3

2

1

8

7

6

5

H2

vertex neighbours

1 2 4 3

2 1 3 4

3 4 2 1

4 3 1 2

5 7 8 6

6 5 7 8

7 8 5 6

8 7 6 5

vertex neighbours

1 2 4 7

2 1 3 4

3 4 2 5

4 3 1 2

5 3 8 6

6 5 7 8

7 8 1 6

8 7 6 5

M1 M2

Figure 2: Illustration of the construction in the proof of the lower bound of Theorem 4.

11

We claim that any classical algorithm that distinguishes between H1 and H2 with

probability at least 2/3 has query complexity Ω(n2) in the array model. For i = 1, 2,

define an n × (m − 1) matrix Mi corresponding to Hi as follows. The j-th row of Mi

is a list of neighbours of vertex j. See Figure 2 for an example. Notice that a classical

algorithm with every query in fact reads the value of the corresponding matrix at a

particular entry.

Suppose a classical algorithm is given the graph Hp for an unknown p ∈ {1, 2}, and
must determine whether p is 1 or 2. Note that the matrices M1 and M2 differ in exactly

four entries. These entries are bolded in Figure 2. The algorithm must ask the value ofMp

at one or more of these special entries to distinguish between H1 and H2 with probability

more than a half (i.e. better than a random guess). Although these four entries are not

independently chosen, the crucial observation is that each of the two “top” special entries

is chosen uniformly at random from the “top-half” of Mp. Similarly, each of the two

bottom special entries is chosen uniformly at random from the bottom-half of Mp. The

number of entries of Mp is n × (m − 1) = Ω(n2), so the size of each half is Ω(n2) as

well. Thus any classical algorithm needs to ask Ω(n2) queries to find a special entry with

(at least) constant probability and distinguish between H1 and H2 with probability more

than a half. �

References

[1] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quan-

tum searching. Fortschritte der Physik, 46(4-5):493–505, 1998.

[2] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query

complexity of some graph problems. SIAM J. Comput., 35(6):1310–1328, 2006.

[3] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-

ceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing

(Philadelphia, PA, 1996), pages 212–219, New York, 1996. ACM.

12

