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Abstract

The so-called ‘small-world phenomenon’, observed in many real-world networks, is that
there is a short path between any two nodes of a network, whose length is much smaller
that the network’s size, typically growing as a logarithmic function. Several mathematical
models have been defined for social networks, the WWW, etc., and this phenomenon
translates to proving that such models have a small diameter. In the first part of this thesis,
we rigorously analyze the diameters of several random graph classes that are introduced
specifically to model complex networks, verifying whether this phenomenon occurs in them.

In Chapter 3 we develop a versatile technique for proving upper bounds for diameters of
evolving random graph models, which is based on defining a coupling between these models
and variants of random recursive trees. Using this technique we prove, for the first time,
logarithmic upper bounds for the diameters of seven well known models. This technique
gives unified simple proofs for known results, provides lots of new ones, and will help in
proving many of the forthcoming network models are small-world. Perhaps, for any given
model, one can come up with an ad hoc argument that the diameter is O(log n), but it is
interesting that a unified technique works for such a wide variety of models, and our first
major contribution is introducing such a technique.

In Chapter 4 we estimate the diameter of random Apollonian networks, a class of
random planar graphs. We also give lower and upper bounds for the length of their longest
paths. In Chapter 5 we study the diameter of another random graph model, called the
random surfer Web-graph model. We find logarithmic upper bounds for the diameter,
which are almost tight in the special case when the growing graph is a tree. Although
the two models are quite different, surprisingly the same engine is used for proving these
results, namely the powerful technique of Broutin and Devroye (Large deviations for the
weighted height of an extended class of trees, Algorithmica 2006) for analyzing weighted
heights of random trees, which we have adapted and applied to the two random graph
models. Our second major contribution is demonstrating the flexibility of this technique
via providing two significant applications.

In the second part of the thesis, we study rumour spreading in networks. Suppose that
initially a node has a piece of information and wants to spread it to all nodes in a network
quickly. The problem of designing an efficient protocol performing this task is a funda-
mental one in distributed computing and has applications in maintenance of replicated
databases, broadcasting algorithms, analyzing news propagation is social networks and the
spread of viruses on the Internet. Given a rumour spreading protocol, its spread time is
the time it takes for the rumour to spread in the whole graph.
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In Chapter 6 we prove several tight lower and upper bounds for the spread times of two
well known randomized rumour spreading protocols, namely the synchronous push&pull
protocol and the asynchronous push&pull protocol. In particular, we show the average
spread time in both protocols is always at most linear. In Chapter 7 we study the perfor-
mance of the synchronous push&pull protocol on random k-trees. We show that a.a.s. after
a polylogarithmic amount of time, 99 percent of the nodes are informed, but to inform all
vertices, a polynomial amount of time is required. Our third majoc contribution is giv-
ing analytical proofs for two experimentally verified statements: firstly, the asynchronous
push&pull protocol is typically faster than its synchronous variant, and secondly, it takes
considerably more time to inform the last 1 percent of the vertices in a social network
than the first 99 percent. We hope that our work on the asynchronous push&pull protocol
attracts attention to this fascinating model.
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Chapter 1

Introduction

A point to point communication network can be modelled as an undirected graph: the
nodes represent the processors and the links represent communication channels between
them. Consider the ‘broadcasting problem’: a single processor wants to broadcast a piece
of information to all other processors in the network. A natural solution is the ‘flooding’
algorithm: each process sends the piece of information to all of its neighbours. The number
of rounds it takes for all processors to learn the information corresponds to the diameter of
the network graph. In the first part of this thesis (Chapters 3 to 5) we study this parameter
in several real-world network models. More details can be found in Section 1.1.

A caveat of the flooding algorithm is that it puts a heavy load on the links. To reduce
this load, suppose we enforce the constraint that each processor can send messages to at
most one of its neighbours in each round. How quickly can we spread the information
in such a setting? In the second part (Chapters 6 and 7) we address this question for
two randomized rumour spreading protocols. More details can be found in Section 1.2.
Preliminaries appear in Chapter 2, and Chapter 8 articulates the main contributions of
the thesis and also contains further research directions. Parts of this thesis are based on
joint work with various people and appear in papers, as elaborated in Section 1.3.

1.1 The small-world phenomenon

‘Small-world phenomenon’ refers to a striking pattern observed in many real-world graphs:
most pairs of vertices are connected by a path whose length is considerably smaller than
the size of the graph. Travers and Milgram [116] in 1969 conducted an experiment in which

1



participants were asked to reach a target person by sending a chain letter. The average
length of all completed chains was found to be 6.2, an amazingly small number, hence the
phrase ‘six degrees of separation.’ The Webgraph is a directed graph whose vertices are
the static web pages,1 and there is an edge joining two vertices if there is a hyperlink in the
first page pointing to the second page. Broder, Kumar, Maghoul, Raghavan, Rajagopalan,
Stata, Tomkins, and Wiener [26] in 1999 crawled about 200 million web pages and found
that the expected shortest-directed-path distance between two random web pages (when
a path exists at all) is 16.18; this figure is 6.83 in the corresponding underlying undirected
graph.

Backstrom, Boldi, Rosa, Ugander, and Vigna [8] studied the Facebook graph in May
2011, which had about 721 million vertices. The vertices of this graph are people, and two
of them are joined by an edge if they are friends on Facebook. The diameter of the giant
component of this graph was found to be 41, and the average distance between reachable
pairs was found to be around 4.74. For other examples, see, e.g., Tables 1 and 2 in [4],
Table 8.1 in [105] or Table 4 in [95].

Due to the ever growing interest in social networks, the Webgraph, biological networks,
etc., in recent years a great deal of research has been built around studying mathematical
properties of real world networks (see, e.g., the books [22, 30, 35, 56]). Another fascinating
observation on many real-world graphs is that their degree sequences are heavy-tailed and
almost obey a power law. Namely, for each positive integer k, the fraction of vertices having
degree k is almost proportional to k−β for some fixed exponent β. As Erdős-Rényi random
graphs do not satisfy this property, scholars have defined lots of models recently, aiming at
capturing the aforementioned and other properties of real-world graphs (see, e.g., Bonato
and Chung [23] or Chakrabarti and Faloutsos [30, Part II] and the references therein). Lots
of mathematical models have been defined so far, yet very few rigorously analyzed.

The diameter of an undirected graph is the maximum shortest-path distance between
any two vertices. It is a well known metric quantifying how ‘small-world’ the graph is;
informally speaking, it measures how quickly one can get from one ‘end’ of the graph to
the other. The diameter is related to various processes, e.g. it is within a constant factor
of the memory complexity of the depth-first search algorithm. Also, it is a natural lower
bound for the mixing time of any random walk ([93, Section 7.1.2]) and the broadcast
time of the graph ([76, Section 3]). Another well studied metric is the average diameter
of a graph, which is the expected value of the shortest-path distance between two random
vertices. Despite the fact that these are two of the most studied parameters of a network,

1A static web page is one that is delivered to the user exactly as stored, in contrast to dynamic web
pages which are generated by a web application.
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for several models introduced in the literature, the degree sequence is proved to be power-
law, but no sublinear upper bound for the diameter or average diameter is known.

In the first part of this thesis, we rigorously analyze the properties of some random
graph classes that are introduced specifically to model real-world networks. In particular
we study their diameters to verify whether the small-world phenomenon occurs in them.
In mathematical terms, this translates into verifying whether these models have small di-
ameter. Roughly speaking, we say a graph is ‘small-world’ if its diameter has a logarithmic
growth. Note that since diameter is an upper bound for the average diameter, all upper
bounds we prove for diameter automatically carry over to the average diameter.

In some articles, e.g. [23], when it is said that a graph is small-world, it is also implied
that it has a large clustering coefficient, namely that if two vertices have a common neigh-
bour, then they are more likely to be adjacent. In this thesis however, we are not concerned
about the clustering coefficients of graphs. Also, we do not discuss the algorithmic aspects
of the small-world phenomenon, which are discussed by Kleinberg [85].

All models we consider are probabilistic: due to the complexity of real-world graphs,
probabilistic modelling seems inevitable. Consequently, in the analysis we mostly use
probabilistic tools (Chapter 2 reviews the required probabilistic preliminaries). Our results
hold asymptotically almost surely (a.a.s.), meaning that the probability that they are true
approaches 1 as the number of vertices goes to infinity. We study evolving models (also
called on-line or dynamic models) only, i.e. the graph changes over time according to
pre-defined probabilistic rules, and we are interested in the long-term structure of this
evolving graph. Evolving models seem more appropriate in applications in which the
network naturally evolves in time, e.g. the Webgraph. All models studied in this thesis are
growing models, i.e. in discrete time-steps new vertices and edges appear in the graph, but
no deletion occurs.

Some of the models we study generate undirected graphs while others generate directed
ones. For directed graphs, since there is no guarantee that there is always a directed path
between two given vertices, there is a question of how to define the diameter. We take the
approach of [92] and ignore the edge directions when calculating the diameter. In other
words, we define the diameter of directed graph as that of its underlying undirected graph.

In this thesis we work with (weakly) connected graphs only, so the diameter and av-
erage diameter are well defined. In citing previous work, when we talk about the diam-
eter/average diameter of a disconnected graph, we mean the maximum/average distance
between any two vertices in the same connected component.

3



1.1.1 Previous work

Surprisingly few results are known about the diameters of evolving random graph models,
see, e.g., Table 8.2 from the recent monograph [30], or [29, Table III], or the table in [21,
p. 162]: each cited table contains a summary of known results on the diameter and other
properties of several real-world network models. Chung and Lu [34] defined an evolving
(online) and a non-evolving (offline) model. They state that ‘The online model is obviously
much harder to analyze than the offline model’, and hence analyze the former by coupling
it with the latter, which had been analyzed before. The difficulty of analyzing evolving
models over non-evolving ones arises perhaps from the dependencies between edges in the
former models.

Barabási and Albert [9] in 1999 introduced one of the first evolving models for real-
world networks, sometimes known as the preferential attachment model. Their model can
be roughly described as follows (see [20] for a formal definition). We start with a fixed
small graph, and in each time-step a new vertex appears and is joined to a fixed number of
old vertices, where the probability of joining to each old vertex is proportional to its degree.
The term ‘preferential attachment’ here refers to the property that a new vertex prefers
attaching to high-degree vertices rather than low-degree ones. This preferential attachment
naturally leads to a power-law degree sequence and was perhaps the first explanation for
the power-law properties of real-world networks. Their work inspired a lot of research and
many models were introduced based on this scheme. A generalization of the Barabási-
Albert model is the linear preference model, in which the probability of joining the new
vertex to a given old vertex is proportional to a linear function of its degree. This evolving
model has attracted the most attention; a logarithmic upper bound has been proved for
its diameter, and sharper results are known in various special cases, see Remark 3.20 for
details. When the new vertex is joined to exactly one vertex in the existing graph (so
the resulting evolving graph is always a tree), a general technique based on branching
processes is developed by Bhamidi [13], using which he proved the diameter of a variety
of preferential attachment trees is a.a.s Θ(log n). (In this chapter n always denotes the
number of vertices in the graph.)

An important non-evolving model that has been studied extensively is the random
graph model with given expected degrees. (A more general version was studied by Bollobás,
Janson and Riordan [18] under the name ‘inhomogenous random graphs.’) Given positive
numbers w1, w2, . . . , wn satisfying

∑
wk ≥ max{w2

k}, we build a random graph G = G(w)
as follows. The vertices are numbered 1 to n, and each pair {i, j} is joined by an edge
independently of other pairs and with probability wiwj/

∑
wk. So, the expected degree

of vertex i is wi; that is, the sequence (wk) determines the graph’s expected degrees. We
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can now sample the wk’s according to a power law distribution with exponent β and study
the resulting ‘power law random graph.’ We call this model the Chung-Lu model with
exponent β. Let y =

∑
w2
k/
∑
wk. In 2001, Chung and Lu [33] introduced this model

and proved that for β > 3, a.a.s. the average diameter is Θ(log n/ log y) and the diameter
is Θ(log n), whereas for 2 < β < 3, a.a.s. the average diameter is O(log log n) and the
diameter is Θ(log n).

Other evolving models whose diameters have been studied in the literature include
the Fabrikant-Koutsoupias-Papadimitriou model [11], protean graphs [112], the geometric
preferential attachment model [66, 94], and the spatial preferred attachment model [40].
See [18, Section 14] and [117] for collections of results on diameters of non-evolving models.

1.1.2 Chapter 3

There are dozens of research papers in which models for complex networks have been
defined and it is shown that these models satisfy the properties of real-world networks,
using either experimental analysis or so-called mean-field theory (many fewer works provide
rigorous mathematical proofs for their claims). A typical paper focuses on one model or a
family of models with some parameter. In Chapter 3 we develop a versatile technique for
establishing a.a.s. upper bounds for diameters of a wide range of random graph models.
We demonstrate the technique by rigorously proving logarithmic upper bounds for the
diameters of several well known models, which are perhaps the most-cited ones among
those for which no nontrivial upper bound is known for the diameter.

A somewhat general undirected model is the Cooper-Frieze model, which evolves as
follows: in each step, either a new vertex is born and edges are added from it to the
existing graph, or edges are added between the existing vertices. The number of added
edges is a bounded random variable. One endpoint of each added edge is either the new
vertex, or a uniformly random vertex, or a vertex sampled according to the degrees. The
other endpoint is either a uniformly random vertex or a vertex sampled according to the
degrees. This model contains many other undirected ones as subcases. In Section 3.4 we
prove that a.a.s. the Cooper-Frieze model has logarithmic diameter.

Our technique is based on defining a coupling between random graphs and variants of
random recursive trees. An important new idea is to use a well known fact to bound the
diameter: this fact is that to sample vertices proportional to their degrees, we can choose
a random endpoint of a random edge. Many of the models introduced in the literature
use this kind of sampling, and we employ this fact to relate them to (variants of) random
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recursive trees. A more detailed yet informal description appears in the beginning of
Chapter 3.

Our approach gives logarithmic upper bounds that are perhaps not tight, but on the
positive side, it is applicable to a broad variety of models, including those incorporating
preferential attachment. Another advantage of our technique is simplicity: all proofs in
this chapter are elementary and fairly short, and the only probabilistic tools needed are
couplings and Chernoff bounds for concentration of binomial random variables. The third
advantage of our technique is that the constant factor it gives (hidden in the O(log n)
notion) is typically small: for all the models studied here, the constant is at most 20.

From a wider perspective, it would be appealing to have a mathematical theory for
characterizing those evolving random graphs which have logarithmic diameters. Chapter 3
is a fundamental step in building this theory. The technique developed there gives unified
simple proofs for known results, provides lots of new ones, and will help in proving many
of the forthcoming network models are small-world. We hope this theory will be developed
further to cover other network models, e.g. spatial models [80], as well.

The results of this chapter shed light on why the small-world phenomenon is observed
in so many real-world graphs. At their core, our arguments are based on the fact that in all
considered models, there is a sort of ‘rough uniformity’ for the (random) destination of each
new link. Thus, we may expect that for any growing network in which the endpoints of new
links are chosen according to a probability distribution that is ‘not too biased,’ i.e. does
not greatly favour some vertices over others, the diameter grows at most logarithmically.
We believe this is the primary reason that most real-world graphs are small-world.

1.1.3 Chapter 4

Despite the great amount of work on models generating graphs with power law degree
sequences, a considerably smaller amount of work has focused on generative models for
planar graphs. In Chapter 4 we study a popular random graph model for generating
planar graphs with power law degree sequences, which is defined as follows. Start with a
triangle embedded in the plane. In each step, choose a bounded face uniformly at random,
add a vertex inside that face and join it to the vertices on the face. After n − 3 steps,
we obtain a (random) triangulated plane graph with n vertices, which is called a Random
Apollonian Network (RAN). See Figure 1.1 for an illustration.

In [3] it was shown that a.a.s. the average diameter of a RAN is asymptotic to η1 log n,
where η1 = 6/11 ≈ 0.545. Frieze and Tsourakakis [70] showed that the diameter of a
RAN is a.a.s. at most η2 log n, where η2 ≈ 7.081 is the unique solution greater than 1
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Figure 1.1: the construction of an instance of a RAN with seven vertices

of exp (1/x) = 3e/x, and asked: what is the diameter of a typical RAN? We prove that
a.a.s. the diameter of a RAN is asymptotic to c log n, where c ≈ 1.668 is the solution of an
explicit equation.

This result has an interesting story: it was proved independently and simultaneously
by three groups who presented it obliviously at the same conference (Random Structures
and Algorithms, Poland, August 2013)! The three proofs are quite different. Our proof
has appeared in [57] (see [41, Theorem 2] and [87, Theorem 2.2] for the other proofs).

We also study the length of longest simple paths in RANs. Let Lm be a random variable
denoting the number of vertices in a longest path in a RAN with m faces (and (m+ 5)/2
vertices). In [57] we showed there exists a fixed δ > 0 such that P

[
Lm < m/(logm)δ

]
→ 1.

Recently, Cooper and Frieze [39] improved this by showing that for every constant c < 2/3,
we have P [Lm ≤ m exp(− logcm)] → 1, and conjectured there exists a fixed δ < 1 such
that P

[
Lm ≤ mδ

]
→ 1. In Chapter 4 we confirm this conjecture by proving that a.a.s.

Lm < m0.99999996.

Regarding lower bounds, we show that Lm ≥ mlog 2/ log 3, and that E [Lm] = Ω (n0.88).

1.1.4 Chapter 5

Recall that the Webgraph is a directed graph whose vertices are the static web pages,
and there is an edge joining two vertices if there is a hyperlink in the first page pointing
to the second page. As mentioned before, Barabási and Albert [9] introduced one of the
first models for the Webgraph, in which the main idea is that a new web page prefers to
link to web pages that have been cited more. Pandurangan, Raghavan and Upfal [108]
introduced the PageRank-based selection model for the Webgraph, in which the main idea
is that a new web page prefers to link to web pages that have higher PageRanks (see
Section 2.6 for the definition of PageRank). Blum, Chan, and Rwebangira [16] introduced
a random-surfer model for the Webgraph, in which the links of a new web page are chosen
by doing independent random walks that start from random web pages and whose lengths
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are geometric random variables. Chebolu and Melsted [31] showed that under certain
conditions, the previous two models are equivalent. See Chapter 5 for details.

The diameter of the Barabási -Albert model was analyzed by Bollobás and Riordan [20].
Previous work on the PageRank-based selection and random-surfer models has focused
on their degree distributions. In Chapter 5 we give logarithmic upper bounds for their
diameters. We also give close lower and upper bounds in the special case d = 1, namely
when the generated graph is (almost) a tree. It turns out that the key parameter in this
case is the height of the generated random tree. The model is parametrized by p ∈ (0, 1).
We find the a.a.s. asymptotic value of the height for all p ∈ [0.21, 1], and for p ∈ (0, 0.21)
we provide logarithmic lower and upper bounds.

We remark that although the models studied in this chapter are quite different from
RANs, surprisingly the same engine is used for proving these results, namely the technique
of Broutin and Devroye [27]. Our two applications of this technique demonstrates its
flexibility.

1.2 Randomized rumour spreading

Randomized rumour spreading is an important primitive for information dissemination in
networks and has numerous applications in network science, ranging from spreading infor-
mation in the WWW and Twitter to spreading viruses and diffusion of ideas in human
communities. A well studied rumour spreading protocol is the (synchronous) push&pull
protocol, introduced by Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swine-
hart, and Terry [45] and popularized by Karp, Schindelhauer, Shenker, and Vöcking [82].
Suppose that one node in a network is aware of a piece of information, the ‘rumour’, and
wants to spread it to all nodes quickly. The protocol proceeds in rounds. In each round,
every informed node contacts a random neighbour and sends the rumour to it (‘pushes’ the
rumour), and every uninformed node contacts a random neighbour and gets the rumour if
the neighbour knows it (‘pulls’ the rumour).

A point to point communication network can be modelled as an undirected graph: the
nodes represent the processors and the links represent communication channels between
them. Studying rumour spreading has several applications to distributed computing in such
networks, of which we mention just two. The first is in broadcasting algorithms: a single
processor wants to broadcast a piece of information to all other processors in the network
(see [76] for a survey). There are at least four advantages to the push&pull protocol:
it puts much less load on the edges than naive flooding, it is simple (each node makes

8



a simple local decision in each round; no knowledge of the global topology is needed;
no state is maintained), scalable (the protocol is independent of the size of network: it
does not grow more complex as the network grows) and robust (the protocol tolerates
random node/link failures without the use of error recovery mechanisms, see [62]). A
second application comes from the maintenance of databases replicated at many sites, e.g.,
yellow pages, name servers, or server directories. There are updates injected at various
nodes, and these updates must propagate to all nodes in the network. In each round, a
processor communicates with a random neighbour and they share any new information, so
that eventually all copies of the database converge to the same contents. See [45] for details.
Other than the aforementioned applications, rumour spreading protocols have successfully
been applied in various contexts such as resource discovery [75], distributed averaging [24],
data aggregation [83], and the spread of computer viruses [12]. A discussion of these and
other applications can be found in Keshav [84].

In the second part of the thesis we study two randomized rumour spreading protocols,
namely the synchronous push&pull protocol and the asynchronous push&pull protocol.
We investigate their spread times on various graphs. Given a graph and a starting vertex,
the spread time of a certain protocol is the time it takes for the rumour to spread in the
whole graph, i.e. the time difference between the moment the protocol is initiated and
the moment when everyone learns the rumour. This parameter is directly related to the
diameter of the graph, the topic of the first part: if the diameter is large, the rumour takes
a lot of time to spread. Specifically, the spread time of the synchronous variant is at least
the diameter divided by two. In the second part we only consider simple, undirected and
connected graphs.

For the synchronous push&pull protocol, it turned out that the spread time is closely
related to the expansion profile of the graph. Let Φ(G) and α(G) denote the conductance
and the vertex expansion of a graph G, respectively (see Section 7.2 for the definitions).
After a series of results by various scholars, Giakkoupis [73, 74] showed the spread time
is O (min{Φ(G)−1 · log n, α(G)−1 · log ∆(G) · log n}). This protocol has recently been used
to model news propagation in social networks. Doerr, Fouz, and Friedrich [48] proved an
upper bound of O(log n) for the spread time on Barabási-Albert graphs, and Fountoulakis,
Panagiotou, and Sauerwald [69] proved the same upper bound (up to constant factors)
for the spread time on Chung-Lu graphs. It is known that a.a.s. Barabási-Albert graphs
and Chung-Lu graphs have conductance Ω(1) (see [36, 103]). So it is not surprising that
rumours spread fast on these graphs.

All the above results assumed a synchronized model, i.e. all nodes take action simul-
taneously at discrete time steps. In many applications and certainly in real-world social
networks, this assumption is not very plausible. Boyd, Ghosh, Prabhakar, and Shah [24]
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proposed an asynchronous time model with a continuous time line. Each node has its own
independent clock that rings at the times of a rate 1 Poisson process. The protocol now
specifies for every node what to do when its own clock rings. The rumour spreading prob-
lem in the asynchronous time model has so far received less attention. Rumour spreading
protocols in this model turn out to be closely related to Richardson’s model for the spread
of a disease [55] and to first-passage percolation [77] with edges having i.i.d. exponential
weights. The main difference is that in rumour spreading protocols each vertex contacts
one neighbour at a time. So, for instance in the push protocol, the net communication
rate outwards from a vertex is fixed, and hence the rate that the vertex passes the ru-
mour to any one given neighbour is inversely proportional to its degree (the push&pull
protocol is a bit more complicated). Hence, the degrees of vertices play a crucial role not
seen in Richardson’s model or first-passage percolation. However, on regular graphs, the
asynchronous push&pull protocol, Richardson’s model, and first-passage percolation are
essentially the same process, assuming appropriate parameters are chosen. In this sense,
Fill and Pemantle [64] and Bollobás and Kohayakawa [19] showed that a.a.s. the spread
time of the asynchronous push&pull protocol is Θ(log n) on the hypercube graph. Jan-
son [78] and Amini, Draief and Lelarge [5] showed the same results (up to constant factors)
for the complete graph and for random regular graphs, respectively. These bounds match
the same order of magnitude as in the synchronized case. Doerr, Fouz, Friedrich [50] ex-
perimentally compared the spread time in the two time models. They state that ‘Our
experiments show that the asynchronous model is faster on all graph classes [considered
here].’ However, a general relationship between the spread times of the two variants has
not been proved theoretically.

1.2.1 Chapter 6

In Chapter 6 we answer a fundamental question about the asynchronous push&pull proto-
col: what are the minimum and maximum spread times on an n-vertex graph? Our proof
techniques yield new results on the well studied synchronous version as well. We prove that
in either version, the average spread time is at most linear even if only the pull operation
is used. As the path graph admits linear spread time, this upper bound is asymptotically
best possible, up to the constant factor.

The notion of ‘guaranteed spread time’ is defined in Chapter 6: this is the smallest
number t such that once t units of time have passed, with probability at least 1− 1/n all
vertices are informed. We show that in both time models the guaranteed spread time is
within a logarithmic factor of the average spread time, so it is O(n log n). In the asyn-
chronous version, in contrast to the synchronous version, both the average and guaranteed
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spread times are Ω(log n) on any graph. We give examples of graphs illustrating that these
bounds are best possible up to constant factors.

We also compare the spread times of the two versions on the same graph, and prove the
first theoretical relationships between their guaranteed spread times. Firstly, in all graphs
the guaranteed spread time in the asynchronous version is within an O(log n) factor of that
in the synchronous version. Hence, polylogarithmic upper bounds for the synchronous
variant automatically produce similar bounds for the asynchronous one. Next, we find
examples of graphs whose asynchronous spread times are logarithmic, but the synchronous
versions are polynomially large. Finally, we show for any graph that the ratio of the
synchronous spread time to the asynchronous spread time is O

(
n2/3

)
.

Previous work on the asynchronous push&pull protocol has focused on special graphs.
This thesis is the first systematic study of this protocol on all graphs. We believe this
protocol is fascinating and is quite different from its synchronous variant, in the sense that
different techniques are required for analyzing it, and the spread times of the two versions
can be quite different. Our work makes significant progress on better understanding of this
protocol, and will hopefully inspire further research on this problem. Some explicit open
problems have been mentioned in Chapter 8.

1.2.2 Chapter 7

In Chapter 7 we study the performance of the synchronous push&pull protocol on two
random graph classes. The first one is the class of random k-trees, generated as follows:
initially we have a complete graph on k vertices. In every step a new vertex is born, a
random k-clique of the current graph is chosen, and the new vertex is joined to all vertices
of the k-clique. (A k-clique in a graph is a complete subgraph of size k.) See Figure 1.2
for an illustration with k = 2.

We remark that this process is different from the random k-tree process defined by
Cooper and Uehara [43] which was further studied in [41].

As in the preferential attachment scheme, the random k-tree process enjoys a ‘the rich
get richer’ effect. Think of the number of k-cliques containing any vertex v as the ‘wealth’
of v (note that this quantity is linearly related to deg(v)). Then, the probability that the
new vertex attaches to v is proportional to the wealth of v, and if this happens, the wealth
of v increases by k − 1. On the other hand, random k-trees have much larger clustering
coefficients than preferential attachment graphs, as all neighbours of each new vertex are
joined to each other. It is well-known that real-world networks tend to have large clustering
coefficients (see, e.g., [118, Table 1]).
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Figure 1.2: the construction of an instance of a random 2-tree with 13 vertices (last few
steps are not shown.)

Gao [71] proved that a.a.s. the degree sequence of a random k-tree asymptotically
follows a power law distribution with exponent 2 + 1

k−1
. In Chapter 3 we show that a.a.s.

its diameter is O(log n). We also show (in Section 7.2) that its clustering coefficient is at
least 1/2, as opposed to Barabási-Albert graphs and Chung-Lu graphs, whose clustering
coefficients are o(1) a.a.s. As per these properties, random k-trees may serve as more
realistic models for real-world networks.

On the other hand, in Section 7.2 we prove that a.a.s. a random k-tree has conductance
O
(
log n · n−1/k

)
and vertex expansion O(k/n). Therefore we cannot resort to existing

results linking the spread time to expansion properties to show rumours spread fast in these
graphs. Another interesting structural property of a random k-tree is its treewidth. Roughly
speaking, the treewidth of a graph measures its similarity to a tree: the treewidth of a tree
is 1, and if the treewidth of a graph is small, it is ‘tree-like’ (see [86] for a comprehensive
survey). Gao [72] proved that many random graph models, including Erdős-Rényi random
graphs with expected degree ω(log n) and preferential attachment graphs with out-degree
greater than 11, have treewidth Θ(n), whereas all random k-trees have treewidth k by
construction.

In conclusion, distinguishing features of random k-trees, such as high clustering co-
efficient, bad expansion (polynomially small conductance) and tree-like structure (small
treewidth), inspired us to study randomized rumour spreading on this unexplored random
environment.

In Chapter 7 we prove that when k ≥ 2 is fixed, if initially a random vertex is aware of
the rumour, then a.a.s. after O

(
(log n)1+3/k

)
rounds of the synchronous push&pull proto-

col, the rumour propagates to n − o(n) vertices. Since random k-trees have polynomially
small conductance, vertex expansion O(1/n) and constant treewidth, these results demon-
strate that push&pull can be efficient even on poorly connected networks.

On the negative side, we prove that a.a.s. the protocol needs at least Ω
(
n1/(5k)

)
rounds
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to inform all vertices. Our results imply that after just a polylogarithmic amount of
time has passed, 99 percent of the vertices are informed, however, to inform each and
every vertex polynomially many rounds are required. This exponential dichotomy between
time needed for informing almost all and all vertices is a striking phenomenon and the
main message of this chapter is to present a natural class of random graphs in which this
phenomenon can be observed. In fact, in applications such as viral marketing and voting,
it is more appealing to inform 99 percent of the vertices very quickly instead of waiting
a long time until everyone gets informed. For such applications, our upper bound implies
that push&pull can be effective even on poorly connected graphs.

A closely related class of graphs is that of random k-Apollonian networks, which gener-
alize random Apollonian networks mentioned in Section 1.1.3. Their construction is very
similar to that of random k-trees, with just one difference: if a k-clique is chosen in a
certain round, it will never be chosen again. It is known that a.a.s. a random k-Apollonian
network exhibits a power law degree distribution and large clustering coefficient [104, 120]
and has logarithmic diameter (a proof appears in Section 3.5). Our technique for proving
the upper bound for random k-trees successfully carries over to random k-Apollonian net-
works with no difficulty. We show that when k ≥ 3 is fixed, if initially a random vertex is
aware of the rumour, then a.a.s. after O

(
(log n)1+3/k

)
rounds, the rumour propagates to

n− o(n) vertices.

1.3 Summary of main new results

This section contains a list of main new results proved in this thesis. An informal descrip-
tion of our major contributions can be found in Chapter 8.

1. In Chapter 3 we prove that a.a.s. the diameter of graphs generated by each of the
following models is O(log n): the forest fire model (Theorem 3.5), the copying model
(Theorem 3.8), the PageRank-based selection model (Theorem 3.12), the Aiello-
Chung-Lu models (Theorems 3.18 and 3.27), the generalized linear preference model
(Theorem 3.22), directed scale-free graphs (Theorem 3.32), and the Cooper-Frieze
model (Theorem 3.34). These results appear in the submitted preprint [98].

2. In Theorem 3.24 we prove for the preferential attachment model with random ini-
tial degrees in the case that the initial degrees’ distribution has an exponential de-
cay, that, a.a.s. the diameter is O(log3 n). This result appears in the submitted
preprint [98].
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3. In Theorem 4.1 we prove that a.a.s. the diameter of a random Apollonian network
is asymptotic to c log n, where c ≈ 1.668 is the solution of an explicit equation.
This result was proved in collaboration with Ebrahimzadeh, Farczadi, Gao, Sato,
Wormald, and Zung, and has appeared in [57].

4. In Theorem 4.2 we show that a random Apollonian network always has a cycle and
a path of length n0.63, and that the expected length of its longest cycles and paths is
Ω (n0.88). These results were proved in collaboration with Ebrahimzadeh, Farczadi,
Gao, Sato, Wormald, and Zung, and have appeared in [57].

5. In Theorem 4.4 we prove that a.a.s. a random Apollonian network does not contain
a path of length n0.99999996. This result was proved in collaboration with Collevecchio
and Wormald, and appears in the submitted preprint [37].

6. In Theorem 5.2 we show that a.a.s. the diameter of the random-surfer Webgraph
model with parameters p and d is at most 8ep(log n)/p. In Theorem 5.8 we show
the same conclusion holds for the PageRank-based selection Webgraph model. These
results were proved in collaboration with Wormald and appear in the submitted
manuscript [101], an extended abstract of which has been published [102].

7. In Theorems 5.3 and 5.4, we determine the a.a.s. asymptotic value of the height and
diameter of a random surfer tree with parameter p in the regime p > 0.21. When
p ≤ 0.21, we provide logarithmic lower and upper bounds. The same conclusions
apply to the PageRank-based selection Webgraph model with β = 0 and d = 1.
These results were proved in collaboration with Wormald, appear in the submitted
manuscript [101], an extended abstract of which has been published [102].

8. In Theorem 6.3 we prove the following bounds for any connected graph G:

(1− 1/n) wasta(G) ≤ gsta(G) ≤ ewasta(G) log n ,

wasta(G) = Ω(log n) and wasta(G) = O(n) ,

gsta(G) = Ω(log n) and gsta(G) = O(n log n) .

Here, wasta and gsta denote the ‘worst-case average spread time’ and ‘guaranteed
spread time’ of the asynchronous push&pull protocol, respectively. Moreover, we
show these bounds are asymptotically best possible, up to the constant factors. These
results were proved in collaboration with Acan, Collevecchio, and Wormald, and
appear in the submitted preprint [1].
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9. In Theorem 6.4 we show the following hold for any connected graph G:

(1− 1/n) wasts(G) ≤ gsts(G) ≤ ewasts(G) log n ,

wasts(G) = O(n), and gsts(G) = O(n log n) .

Here, wasts and gsts denote the ‘worst-case average spread time’ and ‘guaranteed
spread time’ of the synchronous push&pull protocol, respectively. Moreover, we show
these bounds are asymptotically best possible, up to the constant factors. These
results were proved in collaboration with Acan, Collevecchio, and Wormald, and
appear in the submitted preprint [1].

10. In Corollary 6.9 we prove that for any connected graph G we have

gsts(G)

gsta(G)
= Ω(1/ log n) and

gsts(G)

gsta(G)
= O

(
n2/3

)
,

and the left-hand bound is asymptotically best possible, up to the constant factor.
Moreover, we find infinitely many graphs for which this ratio is Ω

(
n1/3(log n)−4/3

)
.

These results were proved in collaboration with Acan, Collevecchio, and Wormald,
and appear in the submitted preprint [1].

11. In Theorem 7.3 we show that if initially a random vertex of a random k-tree with fixed
k ≥ 2 knows a rumour, then a.a.s. after O

(
(log n)1+3/k

)
rounds of the synchronous

push&pull protocol, n−o(n) vertices will learn the rumour. In Theorem 7.6 we show
the same conclusion holds in a random k-Apollonian network with k ≥ 3. These
results were proved in collaboration with Pourmiri, and appear in the submitted
manuscript [99], an extended abstract of which has been published [100].

12. In Theorem 7.5 we show that a.a.s. the spread time of the synchronous push&pull
protocol on a random k-tree with k ≥ 2 is at least n1/(5k). This result was proved in
collaboration with Pourmiri, appears in the submitted manuscript [99], an extended
abstract of which has been published [100].
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Chapter 2

Preliminaries

2.1 Notation and terminology

X All logarithms are in the natural base.

X N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }, and [n] = {1, 2, . . . , n}.

X X
d
=Y means X and Y have the same distribution.

X X
s

≤Y means X is stochastically smaller than Y , or X is stochastically dominated by
Y , that is, for any constant t,

P [X ≥ t] ≤ P [Y ≥ t] .

X A sequence of events (A1, A2, . . . ) is said to happen asymptotically almost surely
(a.a.s.) if P [An] approaches 1 as n goes to infinity. In most cases the indexing is
implicit and clear from the context and we just say A happens a.a.s. In some cases
the events are indexed by a continuous index, which is usually time.

X For two functions f(n) and g(n) we write f ∼ g if

lim
n→∞

f(n)

g(n)
= 1 .
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X For a random variable X = X(n) and a function f(n), we say X is a.a.s. asymptotic
to f(n) (and write a.a.s. X ∼ f(n)) if for every fixed ε > 0,

lim
n→∞

P [f(n)(1− ε) ≤ X ≤ f(n)(1 + ε)] = 1 .

X We write a.a.s. X = o
(
f(n)

)
if for every constant ε > 0,

lim
n→∞

P [X ≤ εf(n)] = 1 .

X We write a.a.s. X = O
(
f(n)

)
if there exists a constant C such that

lim
n→∞

P [X ≤ Cf(n)] = 1 .

X ∆(G) denotes the maximum degree of graph G.

X In this thesis graphs and trees are finite, simple and undirected, unless specified
otherwise.

X The distance (also called the shortest-path distance) between two vertices is the num-
ber of edges in the shortest path connecting them. If the graph is directed, the
direction of edges is ignored when calculating the distance.

X The diameter of a graph is the maximum distance between any two vertices. We will
work with (weakly) connected graphs only, so the diameter is always well defined.

X The degree of a vertex is the number of its incident edges (where a loop is counted
twice) and is denoted by deg(·).

X A leaf in a graph is a vertex of degree 1.

X In some chapters we work with rooted graphs/trees, in which there is a designated
vertex called the root. The depth of a vertex is its distance to the root, and the height
of a graph/tree is the maximum depth of its vertices.

X In a rooted tree, a vertex u is a descendant of v if the unique path connecting u to the
root passes through v. The set of descendants of v is sometimes called its offspring.
If u is a descendant of v, then v is an ancestor of u.

X In a rooted tree, vertex p is the parent of vertex v if p is the unique neighbour of v
that is closest to the root. Note that any non-root vertex has a unique parent.
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2.2 Probability distributions

Definition 2.1 (Binomial distribution). Let Bin(n, p) denote a binomial random variable
with parameters n and p; namely for every integer k ∈ {0, 1, . . . , n},

P [Bin(n, p) = k] =

(
n

k

)
pk(1− p)n−k .

Definition 2.2 (Geometric distribution). Let Geo(p) ∈ {0, 1, 2, . . . } denote a geometric
random variable with parameter p; namely for every k ∈ N0, P [Geo(p) = k] = (1− p)kp.

Definition 2.3 (Exponential distribution). Denote by Exp(λ) an exponential random
variable with parameter (or rate) λ and mean 1/λ, namely for any x ≥ 0,

P [Exp(λ) ≥ x] = exp(−λx) .

We next define two continuous distributions that appear naturally in studying urn
models.

Definition 2.4 (Gamma function). Let Γ(t) =
∫∞

0
xt−1e−xdx.

Definition 2.5 (Beta distribution). Let α, β > 0. A Beta(α, β) random variable is sup-
ported on (0, 1) and its density function is

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1 (1− x)β−1 for x ∈ (0, 1) .

Definition 2.6 (Dirichlet distribution). Let α1, α2, . . . , αn be positive numbers. The
Dirichlet(α1, α2, . . . αn) distribution has support on the set{

(x1, x2, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n, and
n∑
i=1

xi = 1
}
,

and its density at point (x1, x2, . . . , xn) equals

Γ
(∑n

i=1 αi

)
∏n

i=1 Γ(αi)

n∏
j=1

x
αj−1
j .

It is known that if the vector (X1, X2, . . . , Xn) is distributed as Dirichlet(α1, α2, . . . , αn),
then the marginal distribution of Xi is Beta(αi,

∑
j 6=i αj), see, e.g., [81, Section 2.7]. Dirich-

let distribution is indeed the multivariate generalization of beta distribution.
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2.3 Eggenberger-Pólya urn models

Urn models are important probabilistic objects and naturally appear in the analysis of ran-
dom (k-)Apollonian networks and random k-trees (Chapters 4 and 6), which are evolving
random graphs with reinforcement.

In this section we give some definitions and review some relevant results. See Johnson
and Kotz [81] for a general introduction, and Mahmoud [96] for a more recent survey.

Definition 2.7 (Eggenberger-Pólya urn). Start with w0 white and b0 black balls in the
urn. In every step a ball is drawn from the urn uniformly at random, the ball is returned
to the urn, and s balls of the same color are added to the urn. Let Urn(w0, b0, s, n) denote
the number of white balls right after n draws.

In Chapter 7 we will consider more complicated urns, see Definition 7.9.

The following result is due to Eggenberger and Pólya [58] (see, e.g., Mahmoud [96,
Theorem 5.1.2]).

Theorem 2.8 (limiting distribution in Eggenberger-Pólya urns [58]). For any α ∈ [0, 1]
we have

lim
n→∞

P
[

Urn(a, b, s, n)

sn
< α

]
=P

[
Beta

(
w

s
,
b

s

)
< α

]
=

Γ((w + b)/s)

Γ(w/s)Γ(b/s)

α∫
0

x
w
s
−1(1−x)

b
s
−1dx.

The following proposition follows from de Finetti’s theorem, the fact that distinct draws
from an Eggenberger-Pólya urn are exchangeable, and Theorem 2.8; see, e.g., [81, page 181].

Proposition 2.9. Let X = Beta(w/s, b/s). Then

Urn(w, b, s, n)
d
=w + s · Bin(n,X) .

This proposition gives an alternative useful way to generate a random variable dis-
tributed as Urn(w, b, s, n).

Theorem 2.8 can be generalized to get the joint distribution for the proportion of balls
of each colour: the following theorem is due to Athreya [7] (see also [81, page 378]).

Theorem 2.10 (limiting joint distribution in multicolour Eggenberger-Pólya urns [7]).
Consider an urn with k different colours. Suppose that initially there are ci > 0 balls of
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colour i ∈ [k]. In every step a ball is drawn from the urn uniformly at random, the ball is
returned to the urn, and s balls of the same colour are added to the urn. For i ∈ [k] and
n ∈ N, let Xi,n denote the number of balls of colour i after n draws. Then we have the
‘weak’ convergence(

X1,n

sn
,
X2,n

sn
, . . . ,

Xk,n

sn

)
−→ Dirichlet

(c1

s
,
c2

s
, . . . ,

ck
s

)
as n→∞, which means that for any fixed A ⊆ Rk, as n→∞ we have

P
[(

X1,n

sn
,
X2,n

sn
, . . . ,

Xk,n

sn

)
∈ A

]
→ P

[
Dirichlet

(c1

s
,
c2

s
, . . . ,

ck
s

)
∈ A

]
.

2.4 Properties of the exponential distribution

Basic properties of the exponential distribution, which have been used in the analysis of
the asynchronous push&pull protocol in Chapter 6, are reviewed here. The poissonization
technique, which has been used in Chapters 4 and 5 to analyze the height of random trees
is also skimmed.

Proposition 2.11. Let X1, . . . , Xk be independent exponential random variables with rates
λ1, . . . , λk. Then

min{X1, . . . , Xk}
d
= Exp(λ1 + · · ·+ λk) .

Proof. For any t ≥ 0,

P [min{X1, . . . , Xk} > t] =
∏
i∈[k]

P [Xi > t] =
∏
i∈[k]

e−tλi = e−t(
∑
i∈[k] λi) . �

Proposition 2.12. Let k > 0. If X
d
= Exp(λ) then kX

d
= Exp(λ/k).

Proof. For any t ≥ 0,

P [kX > t] = P [X > t/k] = e−λt/k . �

Proposition 2.13. Let U be a uniform random variable on (0, 1). Then − logUi
d
= Exp(1).
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Proof. For any t ≥ 0,

P [− logUi ≥ t] = P
[
Ui ≤ e−t

]
= e−t . �

An important property of the exponential distribution is the so-called memorylessness.

Proposition 2.14 (memorylessness of the exponential distribution). Let X
d
= Exp(λ) for

an arbitrary λ > 0. For any s > t > 0 we have

P [X > s|X > t] = P [X > s− t] .

Proof.

P [X > s|X > t] =
P [X > s,X > t]

P [X > t]
=
eλs

eλt
= eλs−λt = P [X > s− t] . �

If we think of X as a ‘waiting time’ for an event to happen, then the memorylessness
property says that if we have waited for some time and the event has not happened, the
additional time we need to wait is again a random variable with the same distribution, i.e.
it does not matter how long we have already waited; the random variable has ‘forgotten’
how much we have already waited.

Definition 2.15 (Poisson clock). Let λ > 0 and let X1, X2, . . . be i.i.d. Exp(λ) random
variables. A Poisson clock with rate (or parameter) λ is a clock that rings at times
X1, X1 + X2, X1 + X2 + X3, . . . . The associated Poisson process is the list of points
{X1, X1 +X2, X1 +X2 +X3, . . . }.

Memorylessness of the exponential distribution carries over to the Poisson clock. Sup-
pose we start a Poisson clock at time 0. Then, for any fixed t > 0, if we listen to the
clock from time t onwards, the clock would work as a Poisson clock started from t. In
other words, we can imagine that the clock has been ‘restarted’ at time t, and it ‘forgets’
what it has done between 0 and t. This is a ‘Markovian’ property: the future behaviour is
independent of the past! (In fact, it is also independent of the present.)

This is formalized in the following proposition, whose proof is omitted, and can be
found in basic textbooks on probability, e.g., Ross [113, Section 5.3.3].
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Proposition 2.16 (memorylessness of the Poisson clock). Let P = {X1, X2, . . . } be a
Poisson process on [0,∞), and let τ be a ‘stopping time’. That is, to determine if τ = t,
we need only know the set P ∩ [0, t]. Let Nτ be the smallest index such that XNτ > τ . Then

{XNτ − τ,XNτ+1 − τ,XNτ+2 − τ, . . . }

is also a Poisson process with the same rate as P.

Two important examples of stopping times are: (1) any fixed time t, and (2) the first
time we hear the ith ring, for any fixed i ∈ N.

Using Proposition 2.16 we can give a short proof for the following proposition.

Proposition 2.17. Let X1, X2, . . . , Xn be i.i.d. Exp(λ) random variables. Then we have
E [max{X1, . . . , Xn}] ∼ (log n)/λ.

Proof. Let Y = max{X1, . . . , Xn}. Consider n Poisson clocks with rate λ that start working
at time 0. Then Y is the first time that all clocks have rung. By Proposition 2.11, the
expected time until we hear a ring is 1/(nλ). At this point, we can ignore the corresponding
clock and wait for the rest of clocks to ring. By memorylessness of the Poisson process, we
may assume that the clocks are restarted. Since we have n − 1 clocks now, the expected
waiting time to hear the second ring is 1/λ(n−1). Continuing similarly and using linearity
of expectation, we find

E [Y ] =
n−1∑
i=0

1

λ(n− i)
∼ (log n)/λ . �

Another nice property of Poisson clocks is that, many Poisson clocks work together as
one, in the following sense: assume we have k Poisson clocks with rates λ1, λ2, . . . , λk. We
start them at the same time, and put them in a black box so that we cannot see them but
can hear them. Whenever any of the clocks ring, we hear it, but we do not know which
one has rung. It is known that the collection of rings we hear corresponds to a Poisson
process with rate λ = λ1 + λ2 + · · ·+ λk. Moreover, if we hear a ring, then the probability
that it was actually the ith clock, equals λi/λ (note that, almost surely no two clocks ring
at exactly the same time).

Conversely, suppose we have one Poisson clock with rate λ = λ1+λ2+· · ·+λk. Whenever
it rings, we independently perform one of k possible actions, action i with probability λi/λ.
Then, for each i ∈ [k], the times when action i was performed is itself a Poisson process
with rate λi. For proofs of all these facts, see, e.g., [113, Section 5.3.4].
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2.4.1 Poissonization

Poissonization is a way of ‘embedding a discrete-time process into a continuous-time pro-
cess’, which sometimes helps in getting rid of annoying dependencies, and works because
of the memorylessness properties of Poisson processes. We illustrate this technique by an
example, which has been used in Chapters 4 and 5.

Let d ∈ N, and suppose that we have a random d-ary tree growing as follows: initially
it has only one vertex, the root. In every time-step i = 1, 2, . . . , a leaf is chosen uniformly
at random and gives birth to d new children, so the total number of vertices increases by
d, and the total number of leaves increases by d − 1. We continue this process for a long
time, and suppose we are interested in the structure of the tree when it has n vertices.

A major difficulty here is that the branches of the tree are dependent, since the total
number of vertices is n. Consider instead a continuous time process that proceeds as
follows. At time t = 0 the root is born. With every vertex v is associated an independent
Poisson clock with rate 1 when it is born. The first time that the clock rings, v dies and
gives birth to d new children. Note that there is no dependence between branches here.
Moreover, we have the nice property that at any moment you look at the process, the
next leaf to die is a uniformly random one! This is because of the memorylessness of the
Poisson process: whenever a vertex gives birth to d new children, d new Poisson clocks are
created, and the existing Poisson clocks ‘forget’ how much they have already waited, i.e. we
can imagine they are ‘restarted.’ Hence we have a collection of Poisson clocks with equal
rate competing with each other, and so the clock which rings first is a uniformly random
one. An inductive argument gives that if we condition on this continuous-time tree to have
n vertices, its distribution is exactly like an n-vertex discrete-time tree described above.
Also, the independence between branches here makes it much easier to analyze.

A caveat here is that the first model is parametrized by the number of vertices n,
whereas the second model is parametrized by time t. How are these two parameters
related? This question was answered by Broutin and Devroye [27, Proposition 2].

Proposition 2.18. Let N(t) denote the number of vertices at time t of the continuous-time
d-ary tree process. Then a.a.s. as t→∞ we have

logN(t) ∼ dt .

Remark 2.19. Proposition 2 in [27] in fact states a stronger statement, that is,

P
[

lim
t→∞

logN(t)

t
= d

]
= 1 .
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2.5 Large deviation inequalities

Some standard concentration inequalities are proved here, which are used in various places,
in particular in Chapter 5.

Theorem 2.20 (Cramér’s Theorem). Let X1, X2, . . . be i.i.d., and let

I(z) = sup{zt− logE
[
etX1

]
: t ∈ R}.

For any a > E [X1] we have

P [X1 + · · ·+Xn ≥ an] = exp (−I(a)n± o(n)) ,

and for any a < E [X1] we have

P [X1 + · · ·+Xn ≤ an] = exp (−I(a)n± o(n)) .

Proof. See [46, Theorem I.4]. �

The following three results follow easily from Cramér’s Theorem. We provide proofs
for completeness.

Lemma 2.21 (Cramér’s Theorem for exponential random variables). Define the function
Υ : (0,∞)→ R as

Υ(x) =

{
x− 1− log(x) if 0 < x ≤ 1

0 if 1 < x .

Let E1, E2, . . . , Em be independent exponential random variables with parameter 1. For any
fixed x > 0, as m→∞ we have

exp (−Υ(x)m− o(m)) ≤ P [E1 + E2 + · · ·+ Em ≤ xm] ≤ exp(−Υ(x)m) .

Proof. We first prove the upper bound. If x > 1 then exp(−Υ(x)m) = 1, so we may
assume that 0 < x ≤ 1. Let θ = 1− 1/x. Then we have

E [exp(θE1)] =

∫ ∞
0

eθxe−xdx =
1

1− θ
.
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Using Markov’s inequality and independence we get

P [E1 + E2 + · · ·+ Em ≤ xm] = P [exp(θE1 + · · ·+ θEm) ≥ exp(θxm)]

≤ E [exp(θE1 + · · ·+ θEm)] / exp(θxm)

= E [exp(θE1)]E [exp(θE2)] . . .E [exp(θEm)] / exp(θxm)

= (1− θ)−m exp(−θxm) = exp(−Υ(x)m) .

We now prove the lower bound. If x > 1, then the result follows from Markov’s inequality,
so we may assume that 0 < x ≤ 1. Let I(x) = sup{λx − log(E

[
eλE1

]
) : λ ≤ 0}. Since

E
[
eλE1

]
= 1/(1−λ) for all λ < 1, the supremum here occurs at λ = 1−1/x, which implies

I(x) = Υ(x). Then Cramér’s Theorem (Theorem 2.20) gives

P [E1 + E2 + · · ·+ Em ≤ xm] = exp(−I(x)m+ o(m)) = exp(−Υ(x)m+ o(m)) ,

as required. �

Lemma 2.22. Define the function f : (−∞, 1]→ R as

f(x) = (2− x)2−xp(1− p)1−x(1− x)x−1 .

Let Z1, Z2, . . . , Zm be independent 1 + Geo(p) random variables, and let κ ≥ 1/p. Then we
have

P [Z1 + Z2 + · · ·+ Zm ≥ κm] ≤ f(2− κ)m .

Proof. Let θ satisfy

eθ =
κ− 1

κ(1− p)
.

We have

E [exp(θZ1)] =
∞∑
k=1

p(1− p)k−1eθk =
peθ

1− eθ(1− p)
.

Thus using Markov’s inequality and independence we have

P [Z1 + Z2 + · · ·+ Zm ≥ κm] = P [exp(θZ1 + · · ·+ θZm) ≥ exp(θκm)]

≤ E [exp(θZ1 + · · ·+ θZm)] / exp(θκm)

= E [exp(θZ1)]E [exp(θZ2)] · · ·E [exp(θZm)] / exp(θκm)

=

(
peθ−θκ

1− eθ(1− p)

)m
= f(2− κ)m . �
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Lemma 2.23. Let B1, . . . , Bn be independent Beta(1/2, 1) random variables. For any
β > 0 we have

P

(
n∏
i=1

Bi ≤ βn

)
≤
(
e log(1/β)

√
β

2

)n
.

Proof. If β ≥ e−2 then the right-hand side is at least 1, so we may assume that 0 < β < e−2.
Let λ = −1/2− 1/ log β ∈ (−1/2, 0). We have

E[Bλ
1 ] =

Γ(3/2)

Γ(1/2)Γ(1)

∫ 1

0

xλx−1/2dx =
1

2λ+ 1
.

Hence by Markov’s inequality and since the Bi are independent,

P

(
n∏
i=1

Bi ≤ βn

)
= P

(
n∏
i=1

Bλ
i ≥ βλn

)

≤
n∏
i=1

E
[
Bλ

1

]
βλ

=

(
1

βλ(2λ+ 1)

)n
=

(
e log(1/β)

√
β

2

)n
. �

2.6 PageRank

To analyze the diameter of the PageRank-based selection model (in Chapters 3 and 5), we
will need a simple result regarding the PageRank distribution, which is proved here. We
start by defining the PageRank distribution.

Definition 2.24 (PageRank). Let p ∈ (0, 1] and let G be a directed graph possibly with
loops and multiple edges. PageRank with restart probability p is a probability distribution
over V (G), which is the stationary distribution of the following random walk. In each step,
with probability p we jump to a vertex chosen uniformly at random, and with probability
1− p we walk to a random out-neighbour of the current vertex.

Since p > 0 in the above definition, the random walk is aperiodic and irreducible (see,
e.g., [113, Section 4] for standard Markov chain definitions). It is known that the station-
ary distribution of a finite, irreducible, aperiodic Markov chain is unique (see, e.g., [113,
Theorem 4.1]) so PageRank is well defined.
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It follows from Definition 2.24 that PageRank is the unique probability distribution
πp : V (G)→ [0, 1] that satisfies

πp(v) =
p

|V (G)|
+ (1− p)

∑
u∈V (G)

πp(u) ·#(uv)

out-deg(u)
, (2.1)

where #(uv) denotes the number of copies of the directed edge uv in the graph (which is
zero if there is no edge from u to v), and out-deg(u) denotes the out-degree of u.

PageRank is used as a ranking mechanism in Google [25]. More details and applications
can be found in [91].

It will be convenient to have an ‘algorithmic’ definition for PageRank, namely, a way
to sample from the PageRank distribution. This is achieved by the following proposition.

Proposition 2.25. If we sample a vertex uniformly and perform a simple random walk of
length Geo(p) starting from the sampled vertex, the last vertex of the walk has PageRank
distribution with restart probability p.

Proof. This was first observed in [31]. Let τ ∈ [0, 1]V (G) denote the probability distribution
of the last vertex, let P denote the probability transition matrix of the simple random walk

on G, and let σ =
[
1/|V (G)|, 1/|V (G)|, . . . , 1/|V (G)|

]T
be the uniform distribution. Then

we have

τ =
∞∑
k=0

(
(1− p)kp

)
Pkσ = pσ + (1− p)P

(
∞∑
k=1

(1− p)k−1pPk−1σ

)
= pσ + (1− p)Pτ .

Comparing with (2.1), we find that τ = πp, as required. �

2.7 Miscellaneous

Chernoff bounds. Let X
d
= Bin(n, p). We refer to the following inequalities, valid for

every ε ≥ 0, as the lower tail and upper tail Chernoff bounds, respectively. See McDi-
armid [97, Theorem 2.3] for proofs.

P [X ≤ (1− ε)E [X]] ≤ exp(−ε2E [X] /2) . (2.2)

P [X ≥ (1 + ε)E [X]] ≤ exp

(
− ε2E [X]

2 + 2ε/3

)
. (2.3)

As noted in [97], these inequalities are true also if X is a sum of arbitrary but independent
indicator random variables.
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Stirling’s approximation. We will use the following bounds for n!, known as Stirling’s
approximation (see Feller [63, equation 9.15 in Chapter II]):

√
2πn(n/e)n < n! < 3

√
n(n/e)n ∀n ∈ N . (2.4)

Galton-Watson branching process. Let Z be an N0-valued random variable. A
Galton-Watson branching process starts with one particle born at time 0. Whenever a
particle is born, say at time i, at time i+ 1 it gives birth to a random number of children
and dies. The number of children of each particle is distributed as Z and these numbers
are independent. An important quantity of interest is the probability of extinction. It is
known that if E [Z] < 1 this probability is 1, and if E [Z] > 1, this probability is smaller
than 1, see, e.g., [63, Section XII.4].

Couplings. Suppose we are investigating an unknown random object X that somehow
resembles a better-known random object Z, and we would like to infer properties of X from
properties of Z. The trouble might be that X and Z are defined on disjoint probability
spaces. One way is to define a third random object Y (which can be equal to X or Z)
and first generate Y , and then generate random objects with the desired distributions of
X and Z given Y . We say that X and Z are ‘coupled’ using a common Y . In this way, X
and Z are essentially generated on the same probability space. Of course, this generation
should be valid, i.e. if one only looks at X generated this way, she should see ‘the real’ X,
as if it were generated individually. If a valid coupling is built, then properties of Z can
perhaps be translated to those of X, achieving our goal.
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Chapter 3

Versatile technique for proving upper
bounds

In this chapter1 we present a versatile technique for establishing upper bounds for diameters
of random graph models, and demonstrate it by proving logarithmic upper bounds for the
diameters of a variety of models, including the following well known ones: the forest
fire model [92], the copying model [89], the PageRank-based selection model [108], the
Aiello-Chung-Lu models [2], the generalized linear preference model [28], directed scale-
free graphs [17], the Cooper-Frieze model [38], and random k-trees [71]. This means that
in each of these models, with probability close to 1, for every pair (u, v) of vertices there
exists a very short (u, v)-path, a path connecting u and v whose length is logarithmic
in the number of vertices. These results automatically imply logarithmic upper bounds
for average diameters of these models. We also prove polylogarithmic upper bounds for
the diameter of the preferential attachment model with random initial degrees [44] in the
case that the initial degrees’ distribution has an exponential decay. Prior to this work no
sublinear upper bound was known even for the average diameter of any of these models.
(This claim can quickly be verified by looking at Table 8.2 from the recent monograph [30],
or [29, Table III], or the table in [21, p. 162]: each cited table contains a summary of known
results on the diameter and other properties of several real-world network models.)

We study evolving models only (also called on-line or dynamic models), i.e. the graph
changes over time according to pre-defined probabilistic rules, and we are interested in the
long-term structure of this evolving graph. We assume that in discrete time-steps new
vertices and edges appear in the graph, but no deletion occurs. The goal is to show that

1The contents of this chapter appear in the submitted preprint [98].
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the evolving graph at time n has diameter O(log n) a.a.s. In all models considered here,
the Chernoff bounds imply that the number of vertices at time n is Θ(n) a.a.s., hence we
will conclude that a.a.s. the evolving graph has diameter O(log n) when it has n vertices.

In this chapter we are concerned with upper bounds only and no lower bound for the
diameter is proved. However, we believe that for all models considered, at least in the
special case when the evolving graph is always a tree, the diameter is Θ(log n).

Chung and Lu [34] used couplings with a non-evolving random graph model to prove
that the diameter of a certain growth-deletion model is Θ(log n). On the one hand, their
model is more flexible than the models we consider, as they allow vertex and edge deletions,
but on the other hand, their result holds for graphs with at least ω(n log n) edges whereas
our results cover graphs with O(n) edges, too. Moreover, their proof is quite technical and
uses general martingale inequalities. See Remark 3.21 for details.

Our technique and chapter outline

Let us now informally explain our technique. In this chapter when we write a certain
graph/tree has a logarithmic diameter/height, we mean its diameter/height has a logarith-
mic upper bound. An important object in this chapter is a random recursive tree, defined
as follows: there exists a single node at time 0, and in every time-step t = 1, 2, . . . , a new
node is born and is joined to a uniformly random node of the current tree. It is known
that when this tree has n nodes, a.a.s. its height is Θ(log n) [111]. Our technique consists
of two main steps: first, we build a coupling between our evolving random graph and some
variant of a random recursive tree in such a way that the diameter of the graph is not
more than four times the height of the tree, and then we prove that a.a.s. the tree has
a logarithmic height. The second step is usually straightforward (see Lemma 3.3 for an
example) and the tricky part is defining the ‘coupled’ tree. Let us give some examples.

To distinguish between a vertex of the graph and that of the tree, the latter is referred
to as a ‘node’. For models studied in Section 3.1, namely the forest fire model [92], the
copying model [89], and the PageRank-based selection model [108], the coupled tree is a
random recursive tree with weighted edges, which has the same node set as the vertex
set of the graph. Let us assume that the initial graph has one vertex, so the tree starts
with a single node corresponding to this initial vertex. These models evolve as follows:
in every time-step a new vertex, say v, is born and is joined to some random vertices,
say w1, . . . , wd, in the existing graph in such a way that for each j, vertex wj has a short
distance to a uniformly random vertex xj of the existing graph. In other words, wj can be
obtained by doing a (possibly random) walk with a short length starting from a uniformly
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Figure 3.1: in the original graph (left), a new vertex v is born and is joined to some random
vertices, say w1, w2 and w3, in such a way that for each j, vertex wj has distance δj to
a uniformly random vertex xj. Each shortest (wj, xj)-path has length δj and is depicted
as a curly line. In the coupled tree (right), a new node v is born and is joined only to
node x1, and the weight of vx1 is the distance between v and x1 in the graph, i.e. δ1 + 1.
We do not need the nodes w2, w3, x2, x3 for the coupling; but they have been depicted for
completeness.

random vertex xj. We let the coupled tree evolve as follows: a new node v is born and
is joined to node x1 in the existing tree, and the weight of the edge vx1 in the tree is set
to be the distance between v and x1 in the graph, see Figure 3.1. Then by induction, the
distance in the graph between the initial vertex and v is at most the weighted distance in
the tree between the initial node and node v. Moreover, by construction, the tree evolves
as a weighted random recursive tree. Finally, examining the distribution of the weights
carefully, we prove that a.a.s. the obtained evolving tree has a logarithmic weighted height.

We remark that in the argument outlined above, we may ignore the other neighbours
w2, . . . , wd of the new vertex; only the first edge vw1 is effectively used for bounding the
diameter. This is a repeating phenomenon in our arguments. An interesting implication
is that we can quickly and locally build a spanning tree with logarithmic diameter as the
graph evolves. This might have algorithmic applications.

In Section 3.2 we study models that incorporate preferential attachment. As a simple
example, consider the following evolving rule: in every time-step, a vertex is chosen using
preferential attachment, i.e. the probability of choosing a specific vertex is proportional
to its degree, then a new vertex is born and is joined to the chosen vertex. It is easy to
observe that sampling a vertex using preferential attachment can be done by choosing a
uniformly random endpoint of a uniformly random edge. Using this sampling procedure,
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v

we e

vw

Figure 3.2: in the original graph (left), an edge e is sampled uniformly, a random endpoint
w is chosen, and a new vertex v is born and is joined to w. In the coupled edge-tree (right),
a new node vw is born and is joined to a uniformly random node e.

the evolving rule can be re-stated as follows: in every time-step, an edge e is sampled
uniformly at random, then a random endpoint w of e is chosen, then a new vertex v is
born and is joined to w. One of the main novel ideas in this chapter is introducing edge
trees and employing them in this context. An edge tree is a tree whose nodes correspond
to the edges of the evolving graph. We couple the evolving graph with an edge tree,
and let the edge tree evolve as follows: in the corresponding time-step a new node vw is
born and is joined to a uniformly random node e, see Figure 3.2. Clearly, the edge tree
indeed grows like a random recursive tree as the graph evolves, hence its height can be
easily bounded. Moreover, the constructed coupling implies that the graph’s diameter is
at most four times the tree’s height, so we conclude that a.a.s. the graph has logarithmic
diameter. Theorem 3.15 formalizes and generalizes this idea and illustrates the crux of our
technique. This theorem states that Model 3.13, a generic model based on the preferential
attachment scheme, has logarithmic diameter; the Aiello-Chung-Lu models [2] and the
generalized linear preference model [28] are then proved to be special cases of this model.

In the generalized linear preference model, the probability of choosing a specific vertex
is proportional to a linear function, say ax+ b, of the vertex’s degree x. Assuming a and b
are even positive integers, we handle this by putting a parallel edges corresponding to each
edge, and putting b/2 loops at each vertex. Then choosing a uniformly random endpoint
of a uniformly random edge in the new graph corresponds to sampling according to the
linear function of the degrees in the old graph. See Theorem 3.22 for details. At the end
of Section 3.2, we also analyze the ‘preferential attachment with random initial degrees’
model [44], and show that if the initial degrees’ distribution has an exponential decay, then
a.a.s. the generated graph has a polylogarithmic diameter. This is straightforward to prove
using the machinery developed, see Theorem 3.24.

In Section 3.3 we study the ‘directed scale-free graphs’ [17]. Recall that the diameter of
a directed graph is defined as that of the underlying undirected graph (we follow [92] in this
regard). When generating a graph using this model, one may sample vertices according
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to linear functions of either out-degrees or in-degrees, and the two functions have different
constant terms. To cope with this, we introduce ‘headless’ and ‘tailless’ edges. These are
dummy edges in the graph that do not play any role in connecting the vertices, but they
appear in the tree and their job is just to adjust the selection probabilities. Details can
be found in Theorem 3.30, which states that a generalized version of directed scale-free
graphs has logarithmic diameter.

In Section 3.4 we study the Cooper-Frieze model [38], which is the most general evolving
model known to have a power-law degree sequence. In this model, the neighbours of a new
vertex can be chosen either according to degrees or uniformly at random. For dealing
with this intricacy, we couple with a tree having two types of nodes: some correspond to
the vertices, and the others correspond to the edges of the graph. A multi-typed random
recursive tree is obtained, in which at every time-step a new node is born and is joined to
a node chosen uniformly at random from all nodes of a certain type. We prove that a.a.s
this tree has a logarithmic height, and by using the coupling’s definition we conclude that
a.a.s the Cooper-Frieze model has a logarithmic diameter (see Theorem 3.34). For this
model, proving that the tree has logarithmic height is actually the harder step.

Finally, in Section 3.5 we prove logarithmic upper bounds for two further models:
random k-trees [71] and random k-Apollonian networks [119]. For the latter, it is already
known that a.a.s. the diameter is O(log n), but our approach gives a shorter proof.

Open problem 3.1. Develop a mathematical theory for characterizing those evolving
random graphs which have logarithmic diameters. As a specific question, further develop
this technique to cover other network models, e.g. growth-deletion models, accelerated
network growth models, and spatial models.

The proof technique we introduce in this chapter could be a fundamental step in building
this theory.

Open problem 3.2. Prove nontrivial lower bounds for the diameter of any of the models
studied in this chapter.

We include some definitions here. In this chapter, graphs may have parallel edges and
loops (note that adding these does not change the diameter). All graphs considered are
finite and rooted, i.e. there is a special vertex which is called the root. The depth of a vertex
is its distance to the root, and the height of a graph is the maximum depth of its vertices.
Clearly the diameter is at most twice the height, and we always bound the diameter by
bounding the height. The depth of vertex v in graph G is denoted by depth(v,G).
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A growing graph is a sequence (Gt)
∞
t=0 of random graphs such that Gt is a subgraph of

Gt+1 for all t ∈ N0. We always assume that G0 has size O(1). A growing tree is defined
similarly. This sequence can be thought of as a graph ‘growing’ as time passes, and Gt is
the state of the graph at time t. We write informal sentences such as ‘at time t, a new
vertex is born and is joined to a random vertex of the existing graph,’ which formally
means ‘Gt is obtained from Gt−1 by adding a new vertex and joining it to a random vertex
of Gt−1.’

Alternative approach for proving logarithmic diameters

In this section we mention a heuristic for proving logarithmic diameters for certain random
graph models, which is due to Cooper, Frieze, and Uehara [41].

Suppose we start with a single vertex v0 and in step t, where 1 ≤ t ≤ n, a new vertex
vt is born and is joined to some of the vertices in the existing graph. Suppose that there
exists a fixed p > 0 such that for each 1 ≤ t ≤ n, in step t vertex vt is joined to some vj
with j ≤ t/2 with probability at least p. Then heuristically, we expect the diameter of the
resulting graph to be O(log n): consider the shortest (vn, v0)-path vn = vn0 , vn1 , vn2 , . . . , v0.
Then for each i, with probability at least p, we would have ni+1 ≤ ni/2. Informally we
are ‘building’ a path to the root, and in each step our ‘index’ is halved with probability at
least p, and so we expect that, with high probability after a logarithmic number of steps
our index becomes 0, which means we have reached the root.

To make this rigorous, however, we want the halving to happen with a reasonable
probability and regardless of what we have exposed from the path so far. In other words,
we need that for each 1 ≤ t ≤ n, regardless of any information we may have about steps
t + 1, t + 2, . . . , n, vertex vt is joined to some vj with j ≤ t/2 with probability at least
p. It is not straightforward to verify this condition in the models we consider, especially
for those where there are steps in which edges are also added within the existing vertices
(handling the revelation of information gets tricky).

Let us elaborate an example that demonstrates it is not easy to see for which models
this heuristic gives a rigorous proof. Consider the following evolving random tree, which
we call Model X. Start with a single vertex v0. In every time-step t = 1, 2, 3, . . . , a new
vertex vt appears and flips a fair coin: if it is heads, vt is joined to v0, otherwise it is joined
to the vertex furthest from v0. In this model, the diameter increases by 1 in each step with
probability half, hence it would be around n/2 when there are n vertices, which is clearly
not logarithmic. However, the model has the property that for each 1 ≤ t ≤ n, vertex vt
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is joined to some vj with j ≤ t/2 with probability at least 1/2, so the heuristic suggests
that the diameter is logarithmic.

Nevertheless, the required condition can be shown to hold for the plain preferential
attachment model and a variation of random k-trees (see [41, Lemma 4]), which leads to a
rigorous proof based on this approach for showing these models have logarithmic diameters.
This approach tends to give larger constants than that of this chapter. For instance, the
upper bound given using the proof in [41, Lemma 4]) for the diameter of a random k-tree
is 600 log n, whereas in Theorem 3.36 we give an upper bound of 2e log n+O(1).

3.1 Basic technique

The general approach in this chapter is to reduce the problem to proving that a certain
variant of a random recursive tree has logarithmic height, and then use a variant of the
following lemma, which exemplifies proving such a tree has logarithmic height. We will use
a simple inequality. Let y1, . . . , ym be positive numbers, and assume h ∈ [m] and h > 1.
Then observe that ∑

1≤t1<···<th≤m

(
h∏
k=1

ytk

)
<

1

h!

(
m∑
i=1

yi

)h

. (3.1)

Note that the sum in the left-hand-side is over all h-tuples (t1, t2, . . . , th) satisfying 1 ≤
t1 < · · · < th ≤ m. Let us briefly explain why (3.1) holds. When the right-hand-side is
expanded, for each such h-tuple, the product

∏h
k=1 ytk is generated precisely h! times, since

there are h ways to choose the bracket containing yt1 , h − 1 ways to choose the bracket
containing yt2 , etc. Moreover, in the expansion we have terms such as yh1 , which do not
appear in the left-hand-side, hence the inequality is strict.

The argument in the proof below is inspired by a proof in Frieze and Tsourakakis [70].

Lemma 3.3. Let (at)t∈N be a sequence of positive integers. Consider a growing tree (Tt)t∈N0

as follows. T0 is arbitrary. At each time-step t ∈ N, a random vector (W1,W2, . . . ,Wat) ∈
V (Tt−1)at is chosen in such a way that for each i ∈ [at] and each v ∈ V (Tt−1), the marginal
probability P [Wi = v] equals |V (Tt−1)|−1. In other words, each Wi is a uniformly random
node of Tt−1; however, the Wi’s may be correlated. Then at new nodes v1, . . . , vat are born
and vi is joined to Wi for each i ∈ [at]. Let ` = `(n), u = u(n) be positive integers such that
` ≤ at ≤ u for all t ∈ [n]. Then the height of Tn is a.a.s. at most (u/`)e log n+ 2ue+O(1).

Proof. Let n0 = |V (T0)|. For a given integer h = h(n), let us bound the probability
that Tn has a node at depth exactly h + n0. Given a sequence 1 ≤ t1 < t2 < · · · <
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th ≤ n, the probability that there exists a path wvt1vt2 · · · vth in Tn with w ∈ V (T0) and
vt1 , vt2 , . . . , vth /∈ V (T0) such that vtj is born at time tj is at most

n0u
h

h∏
k=1

1

n0 + ` · (tk − 1)
,

since there are n0 choices for w, at most uh choices for (vt1 , . . . , vth) given (t1, . . . , th), and
for each k = 1, 2, . . . , h, when vtk is born, there are at least n0 + ` · (tk − 1) nodes available
for it to join to. By the union bound and (3.1), the probability that Tn has a node at depth
h+ n0 is at most

n0u
h

∑
1≤t1<···<th≤n

(
h∏
k=1

1

n0 + ` · (tk − 1)

)
<
n0u

h

h!

(
n−1∑
j=0

1

n0 + `j

)h

< n0

(
ue

h
·
(

log n

`
+ 2

))h/√
2πh ,

where for the second inequality we have used Stirling’s approximation (2.4) for h! and the
inequality

1 +
1

2
+

1

3
+ · · ·+ 1

n− 1
< 1 + log n .

Putting h ≥ (u/`)e log n + 2ue makes this probability o(1). Hence a.a.s. the height of Tn
is at most (u/`)e log n+ 2ue+ n0, as required. �

The first model we study is the basic forest fire model of Leskovec, Kleinberg, and
Faloutsos [92, Section 4.2.1]. We prove an a.a.s. logarithmic upper bound using an easy
application of Lemma 3.3.

Model 3.4. Let p, q ∈ [0, 1] be arbitrary. Build a growing directed graph as follows. G0 is
an arbitrary weakly connected directed graph. At each time-step t ∈ N, a new vertex v is
born and edges are created from it to the existing graph using the following process.

1. All vertices are marked ‘unvisited.’ An ambassador vertex W is sampled uniformly
from the existing graph.

2. Vertex v is joined to W and W is marked as ‘visited.’

3. Independently generate two random variables X = Geo(p) and Y = Geo(q). Ran-
domly select X unvisited out-neighbours and Y unvisited in-neighbours of W . If not
enough unvisited in-neighbours or out-neighbours are available, select as many as
possible. Let W1, . . . ,WZ denote these vertices.
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4. Vertex v is joined to W1, . . . ,WZ , then apply steps 2–4 recursively to each of the
vertices W1, . . . ,WZ .

Theorem 3.5. Consider (Gt)t∈N0 generated by Model 3.4. A.a.s. for every vertex v of Gn

there exists a directed path of length at most e log n+O(1) connecting v to some vertex of
G0. In particular, a.a.s. the diameter of Gn is at most 2e log n+O(1).

Remark 3.6. In the original paper [92] where this model was defined, the authors conjecture
that the diameter actually decreases as n goes to infinity, however no analytical result is
proved.

Proof. We define a growing tree (Tt)t∈N0 in such a way that Tt is a spanning tree of Gt for
all t ∈ N0: T0 is an arbitrary spanning tree of G0. For every t ∈ N, if v is the vertex born
at time t and w is the corresponding ambassador vertex, then v is joined only to w in Tt.
By Lemma 3.3, a.a.s. the height of Tn is at most e log n+O(1). �

We next study the linear growth copying model of Kumar, Raghavan, Rajagopalan,
Sivakumar, Tomkins, and Upfal [89, Section 2.1].

Model 3.7. Let p ∈ [0, 1] and d ∈ N. Build a growing directed graph in which every vertex
has out-degree d, and there is a fixed ordering of these d edges. G0 is an arbitrary weakly
connected directed graph with all vertices having out-degree d. In each time-step t ∈ N
a new vertex v is born and d outgoing edges from v to the existing graph are added, as
described below. An ambassador vertex W is sampled uniformly from the existing vertices.
For i ∈ [d], the head of the i-th outgoing edge of v is chosen as follows: with probability p,
it is a uniformly random vertex of the existing graph, and with probability 1− p it is the
head of the i-th outgoing edge of W , in which case we say v has copied the i-th outgoing
edge of W .

Theorem 3.8. A.a.s. the diameter of Gn defined in Model 3.7 is at most 4e log n+O(1).

Proof. We inductively define a growing tree (Tt)t∈N0 in such a way that the node set of
Tt equals the vertex set of Gt for all t. We prove by induction that for each v ∈ V (Gt),
depth(v,Gt) ≤ 2 depth(v, Tt). Let T0 be a breadth-first search tree of G0, rooted at the root
of G0. For each t ∈ N, let v be the vertex born at time t, and let w be the corresponding
ambassador vertex. We consider two cases:
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Case 1. v copies at least one outgoing edge of w. In this case, we join v to w in Tt.
Since v and w have distance 2 in Gt, depth(v,Gt) ≤ depth(w,Gt) + 2, so by the
induction hypothesis for w,

depth(v,Gt) ≤ depth(w,Gt) + 2 ≤ 2 depth(w, Tt) + 2 = 2 depth(v, Tt) ,

as required.

Case 2. v does not copy any outgoing edge of w. Let x denote the head of the first
outgoing edge of v. In this case, we join v to x in Tt. Using the induction hypothesis
for x,

depth(v,Gt) ≤ depth(x,Gt) + 1 ≤ 2 depth(x, Tt) + 1

< 2 depth(x, Tt) + 2 = 2 depth(v, Tt) ,

as required.

Notice that in either case, node v is joined to a uniformly random node of Tt−1. By
Lemma 3.3, a.a.s. the height of Tn is at most e log n+O(1), so a.a.s. the diameter of Gn is
at most 4e log n+O(1). �

3.1.1 Sampling neighbours using PageRank

In this section we study a model in which the neighbours of each new vertex are chosen
according to the PageRank distribution, which was defined in Section 2.6.

Model 3.9. Let pa, pb, pc be nonnegative numbers summing to 1, let q ∈ (0, 1] and d ∈ N.
Build a growing directed graph (Gt)t∈N0 in which every vertex has out-degree d. G0 is a
weakly connected directed graph with all vertices having out-degree d. In each time-step
t ∈ N, a new vertex is born and d outgoing edges from it to the existing graph are added.
The heads of the new edges are chosen independently. For choosing the head of each edge,
perform one of the following operations, independently of previous choices.

(a) With probability pa, the head is a vertex sampled uniformly from the existing graph.

(b) With probability pb, it is the head of an edge sampled uniformly from the existing
graph.

(c) With probability pc, it is a vertex sampled from the existing graph using the PageRank
distribution with restart probability q.
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Model 3.9 is defined by Pandurangan, Raghavan, and Upfal [108, Section 2]. They
call it the hybrid selection model. For the special case pb = 0, which is referred to as the
PageRank-based selection model, in Chapter 5 we show using a different argument that
a.a.s. the diameter is O(log n). For bounding the diameter of Model 3.9 we will need a
lemma.

Lemma 3.10. There exists a random variable L such that the head of each new edge in
Model 3.9 can be obtained by performing a simple random walk of length L in the existing

graph starting from a uniformly random vertex. Moreover, L
s

≤ 1 + Geo(q).

Proof. We claim that

L =


0 with probability pa ,

1 with probability pb ,

Geo(q) with probability pc .

If we sample a vertex uniformly and perform a random walk of length 1, then since all
vertices have the same out-degree, the last vertex of the walk is the head of a uniformly
random edge. By Proposition 2.25, if we sample a vertex uniformly and perform a random
walk of length Geo(q), the last vertex of the walk has PageRank distribution with restart
probability q, and this completes the proof. �

Definition 3.11 (weighted tree, weighted depth). A weighted tree is a tree with nonneg-
ative weights assigned to the edges. The weighted depth of a node v is defined as the sum
of the weights of the edges connecting v to the root.

Theorem 3.12. A.a.s. the diameter of Gn defined in Model 3.9 is at most 18(log n)/q.

Proof. We define a growing weighted tree (Tt)t∈N0 such that for all t, the node set of Tt
equals the vertex set of Gt. We prove by induction that the depth of each vertex in Gt is
at most its weighted depth in Tt. Let T0 be a breadth-first search tree of G0 rooted at the
root of G0, and let all edges of T0 have unit weights. Assume that when obtaining Gt from
Gt−1, the heads of the new edges are chosen using the procedure described in Lemma 3.10.
For every t ∈ N, if v is the vertex born at time t, and w and l are the first sampled vertex
and length of the first random walk taken, respectively, then v is joined only to w in Tt
and the weight of the edge vw is set to l + 1. Note that the edge weights are mutually
independent. Since the distance between v and w in Gt is at most l + 1, by induction the
weighted depth of v in Tt is at most the depth of v in Gt. We show that a.a.s. the weighted
height of Tn is at most 9 · log n/q, and this completes the proof.
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By Lemma 3.3, a.a.s. the (unweighted) height of Tn is less than 1.001e log n. We prove
that any given node at depth at most 1.001e log n of Tn has weighted depth at most
9(log n)/q with probability 1−o(1/n), and then the union bound completes the proof. Let
v be a node of Tn at depth h, where h ≤ 1.001e log n. By Lemma 3.10, the weighted depth
of v equals the sum of h independent random variables, each stochastically smaller than
2 + Geo(q). The probability that the sum of h independent random variables distributed
as 2+Geo(q) is greater than 9 log n/q equals the probability that the number of heads in a
sequence of 9(log n)/q−h independent biased coin flips, each having probability q of being
heads, is smaller than h. This probability is

P
[
Bin

(
9 log n

q
− h, q

)
< h

]
. (3.2)

Since h ≤ 1.001e log n,

µ :=

(
9 log n

q
− h
)
× q = 9 log n− hq > 6.27 log n ,

and
ε := 1− h/µ ≥ 0.566 ,

hence using the lower tail Chernoff bound (2.2) we infer that the probability in (3.2) is less
than exp (−0.5662 × 6.27(log n)/2) < n−1.004, as required. �

3.2 Incorporating preferential attachment: edge trees

In this section we study models incorporating preferential attachment. We first define a
model that has a lot of flexibility (Model 3.13) and prove it has logarithmic diameter. Then
we reduce Models 3.17, 3.19, and 3.26 to this model.

Model 3.13. Let (at, bt)t∈N be sequences of nonnegative integers. Consider a growing
undirected graph (Gt)t∈N0 as follows. G0 is an arbitrary connected graph with at least one
edge. At each time-step t ∈ N, Gt is obtained from Gt−1 by doing a vertex operation and
an edge operation, as defined below.

In a vertex operation, if at > 0, a new vertex is born and at edges are added in the
following manner: Sample an edge uniformly from Gt−1, choose one of its endpoints arbi-
trarily, and join it to the new vertex. For the other at − 1 new edges, one endpoint is the
new vertex, and the other endpoint is arbitrary (can be the new vertex as well). If at = 0
then do nothing in the vertex operation.
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Figure 3.3: the right graph is the line graph of the left graph.

In an edge operation, sample bt edges such that each is uniformly random, and choose
an arbitrary endpoint of each sampled edge. Then add bt new edges, joining the chosen
vertices to arbitrary vertices of Gt−1.

Definition 3.14 (line graph). The line graph of a graph H is a simple graph whose vertices
are the edges of H, and two edges are adjacent if they have a common endpoint.

See Figure 3.3 for an illustration.

A novel idea in this thesis is introducing edge trees: these are trees coupled with graphs
whose nodes correspond to the edges of the graph. The following theorem demonstrates
their usage.

Theorem 3.15. Let ` = `(n), u = u(n) ∈ N be such that ` ≤ at + bt ≤ u for every t ∈ [n].
A.a.s. the graph Gn generated by Model 3.13 has diameter at most 4e(u/`) log n+8eu+O(1).

Proof. We define the depth of an edge xy as 1 + min{depth(x), depth(y)}. We inductively
define a growing tree (Tt)t∈N0 such that for all t ∈ N0, V (Tt) = E(Gt) ∪ {ℵ}. Here ℵ
denotes the root of Tt, which has depth 0. We prove by induction that for all e ∈ E(Gt),
depth(e,Gt) ≤ 2 depth(e, Tt). Let H be the graph obtained from G0 by adding an edge
labelled ℵ incident to its root. Let T0 be a breadth-first tree of the line graph of H rooted
at ℵ. Note that depth(ℵ, T0) = 0 and depth(e, T0) = depth(e,G0) for every e ∈ E(G0) (see
Figure 3.4).

Given Tt−1, we define Tt and prove the inductive step. First, consider a vertex operation
with at > 0. Let v be the new vertex, e1 be the sampled edge, and w1 be the chosen endpoint
of e1. Notice that depth(v,Gt) ≤ depth(e1, Gt) + 1. In Tt, we join the at edges incident
with v to e1 (see Figure 3.5). For any such edge e we have

depth(e,Gt) ≤ depth(v,Gt) + 1 ≤ depth(e1, Gt) + 2 ≤ 2 depth(e1, Tt) + 2 = 2 depth(e, Tt),

where we have used the inductive hypothesis for e1 in the third inequality.
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Figure 3.4: the graphs G0 (left) and T0 (right) in the proof of Theorem 3.15
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Figure 3.5: in a vertex operation say with at = 3 (left), a new vertex v is born and
a uniformly random edge e1 is chosen. Then v is joined to an endpoint of e1 and two
arbitrary vertices. In the coupled edge-tree (right), the new edges are joined to e1.
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Figure 3.6: in an edge operation say with bt = 3 (left), three uniformly random edges e1, e2,
and e3 are sampled and an endpoint of each of them is joined to an arbitrary vertex. In
the coupled edge-tree (right), the new edges w1x1, w2x2, and w3x3 are joined to e1, e2, and
e3, respectively.

Second, consider an edge operation. Let e1, . . . , ebt be the sampled edges, and let
w1, w2, . . . , wbt be the chosen endpoints. For each j ∈ [bt], in Gt we join wj to some vertex
of Gt−1, say xj. In Tt, we join the new edge wjxj to ej (see Figure 3.6). We have

depth(wjxj, Gt) ≤ depth(wj, Gt) + 1 ≤ depth(ej, Gt) + 1

≤ 2 depth(ej, Tt) + 1 = 2 depth(wjxj, Tt)− 1 ,

where we have used the fact that wj is an endpoint of ej for the second inequality, and the
inductive hypothesis for ej for the third inequality.

Hence for all e ∈ E(Gt), depth(e,Gt) ≤ 2 depth(e, Tt). On the other hand, examining
the construction of (Tt)t∈N0 and using Lemma 3.3, we find that a.a.s. the height of Tn is
at most (u/`)e log n + 2ue + O(1). This implies that a.a.s. the diameter of Gn is at most
4(u/`)e log n+ 8ue+O(1). �

Definition 3.16 (the function ρδ). For an undirected graph G and a real number δ, we
define the function ρδ : V (G)→ R as

ρδ(v) =
deg(v) + δ∑

u∈V (G)(deg(u) + δ)
.

Here deg(v) denotes the degree of vertex v, and a loop is counted twice. Note that if
δ > −1 and G has no isolated vertices, then ρδ is a probability distribution.

Observe that to sample a vertex using ρ0, one can sample an edge uniformly and then
choose one of its endpoints uniformly. Most of our arguments are based on this crucial
fact, and this is the reason for introducing edge trees.
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Model 3.17. Let (xt)t∈N be a sequence of positive integers, and let (yt, zt)t∈N be sequences
of nonnegative integers. Consider a growing undirected graph (Gt)t∈N0 as follows. G0 is an
arbitrary connected graph with at least one edge. At each time-step t ∈ N, Gt is obtained
from Gt−1 by performing the following three operations.

1. Sample xt vertices N1, . . . , Nxt independently using ρ0.

2. Sample 2zt vertices W1,W
′
1,W2,W

′
2, . . . ,Wzt ,W

′
zt independently using ρ0.

3. Add a new vertex v and add the edges vN1, . . . , vNxt and W1W
′
1, . . . ,WztW

′
zt . Also

add yt loops at v.

Model 3.17 is a generalization of a model defined by Aiello, Chung, and Lu [2, Sec-
tion 2.1, Model D], which has bounded xt, yt, zt. The following theorem implies that a.a.s.
the latter model has diameter O(log n).

Theorem 3.18. Let ` = `(n), u = u(n) be positive integers such that xt > 0 and ` ≤
xt+yt+ zt ≤ u for all t ∈ N. A.a.s. the diameter of Gn generated by Model 3.17 is at most
4e(u/`) log n+ 8eu+O(1).

Proof. We claim that Model 3.17 is a special case of Model 3.13. Sampling a vertex using
ρ0 corresponds to choosing a random endpoint of a random edge. The three operations
of Model 3.17 correspond to applying a vertex operation with at = xt + yt and an edge
operation with bt = zt. By Theorem 3.15, a.a.s. the diameter ofGn is at most 4e(u/`) log n+
8eu+O(1). �

Next we analyze yet another model by reducing it to Model 3.13.

Model 3.19. Let δ ∈ (−1,∞), p ∈ [0, 1] and let (xt)t∈N be a sequence of positive integers.
Consider a growing undirected graph (Gt)t∈N0 as follows. G0 is an arbitrary connected
graph with at least one edge. At each time-step t ∈ N, apply exactly one of the following
operations: operation (a) with probability p and operation (b) with probability 1− p.

(a) Sample xt vertices independently using ρδ, then add a new vertex v and join it to the
sampled vertices.

(b) Sample 2xt vertices W1,W
′
1, . . . ,Wxt ,W

′
xt independently using ρδ, then add the edges

W1W
′
1, . . . ,WxtW

′
xt .
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Figure 3.7: an example graph Gt (left) and its corresponding Ĝt (right) with r = s = 1

Model 3.19 is a generalization of the generalized linear preference model of Bu and
Towsley [28], in which xt is a constant positive integer d for all t. Theorem 3.22 below
gives that if δ is rational and nonnegative then a.a.s. the generalized linear preference
model has diameter at most (4 + 2δ/d)e log n+O(1).

Remark 3.20. Model 3.19 with p = 1 and xt being a constant (independent of t and n) is
called the linear preference model, whose diameter has been studied extensively. Assume
that all vertices of the initial graph have degrees at least d and xt = d for all t, where
d ∈ N is fixed. If d = 1 and δ ≥ 0, Pittel [111] showed the diameter is Θ(log n). If d > 1
and δ ∈ (−d, 0), the diameter is Θ(log log n) as proved by Dommers, van der Hofstad, and
Hooghiemstra [51, 117]. If d > 1 and δ = 0, the diameter is Θ(log n/ log log n), see Bollobás
and Riordan [20]. Finally, if d > 1 and δ > 0, the diameter is Θ(log n) [51, 117].

Remark 3.21. Chung and Lu [34] studied a variation of Model 3.19 with the following
differences: the process is conditioned on generating a graph with no multiple edges or
loops; xt = d for all t, where d may depend on n; there are two additional operations: in
the first one, a uniformly random vertex is deleted, and in the second one, xt uniformly
random edges are deleted. They proved that if d > log1+Ω(1) n, then a.a.s. the evolving
graph has diameter Θ(log n), where n is the number of vertices.

Theorem 3.22. Suppose that δ = r/s, where r ∈ N0 and s ∈ N, and suppose that
` = `(n), u = u(n) ∈ N are such that ` ≤ xt ≤ u for all t. A.a.s. the diameter of Gn

generated by Model 3.19 is at most 4e(u/`+ δ/(2`)) log n+O(u).

Proof. For t ∈ N0, let Ĝt be the graph obtained from Gt by copying each edge 2s−1 times,
and adding r loops at each vertex (see Figure 3.7). So Ĝt has 2s|E(Gt)|+ r|V (Gt)| edges.

Note that the diameters of Gt and Ĝt are the same. We claim that (Ĝt)
∞
t=0 is a special case

of the growing graph generated by Model 3.13. First, sampling a vertex of Gt−1 using ρδ
corresponds to choosing a random endpoint of a random edge of Ĝt−1. Second, applying
operation (a) corresponds to applying only a vertex operation with at = 2sxt + r (in which
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2s edges are added from the new vertex to each of the sampled endpoints and r loops are
added at the new vertex). Third, applying operation (b) corresponds to applying only an
edge operation with bt = 2sxt. Note that, although these bt edges are not independent,
one endpoint of each of them is an endpoint of a uniformly random edge of Ĝt−1, so this
is indeed a valid edge operation as defined in Model 3.13. By Theorem 3.15, a.a.s the
diameter of Ĝn is at most 4e(u/` + δ/(2`)) log n + (16esu + 8er) + O(1), completing the
proof. �

We now analyze the preferential attachment with random initial degrees (PARID)
model of Deijfen, van den Esker, van der Hofstad, and Hooghiemstra [44, Section 1.1]
by reducing it to Model 3.19.

Model 3.23. Let δ be a constant and let {Xt : t ∈ N} be a sequence of i.i.d. N-valued
random variables such that with probability 1 we have Xt + δ > 0 for all t. Consider
a growing undirected graph (Gt)

∞
t=0 as follows. G0 is an arbitrary connected graph with

at least one edge. At each time-step t ∈ N, Gt is obtained from Gt−1 by sampling Xt

vertices N1, . . . , NXt independently using ρδ and adding one new vertex v and Xt new
edges vN1, . . . , vNXt .

Note that Xt is the (random) initial degree of the vertex born at time t. The following
theorem implies that if the initial degrees’ distribution in the PARID model has an expo-
nential decay (e.g. if it is the Poisson or the geometric distribution), and δ is positive and
rational, then a.a.s. the generated graph has a polylogarithmic diameter (the reason is we
can take, say, u = log2 n in the following theorem).

Theorem 3.24. Assume that δ is a positive rational number and that ` = `(n) and u =
u(n) are positive integers such that P [X1 /∈ [`, u]] = o(1/n). A.a.s. the diameter of Gn

generated by Model 3.23 is at most 4e(u/`+ δ/(2`)) log n+O(u).

Proof. Since P [X1 /∈ [`, u]] = o(1/n) and the Xi are i.i.d., a.a.s. we have ` ≤ Xt ≤ u for
all t ∈ [n]. The rest of the proof is the same as that of Theorem 3.22, where all operations
are of type (a). �

3.2.1 A directed model

In this section we study a directed analogue of Model 3.17, which is also a generalization
of a model of Aiello et al. [2]. Sampling probabilities in this model depend on vertices’
out-degrees and in-degrees, as defined below.
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Definition 3.25 (the functions ρoutδ and ρinδ ). For a directed graph G and a real number
δ, we define the functions ρoutδ , ρinδ : V (G)→ R as

ρoutδ (v) =
out-deg(v) + δ∑

u∈V (G)(out-deg(u) + δ)

and

ρinδ (v) =
in-deg(v) + δ∑

u∈V (G)(in-deg(u) + δ)
.

Here out-deg(v) and in-deg(v) denote the out-degree and the in-degree of vertex v, respec-
tively.

Note that in this section we will only work with the case δ = 0. The case δ 6= 0 will be
used in Section 3.3 in the definition of Model 3.31.

Model 3.26. Let {χt, γt, zt, qt : t ∈ N} be sequences of nonnegative integers satisfying
χt + γt > 0 for all t. Consider a growing directed graph (Gt)

∞
t=0 as follows. G0 is an

arbitrary weakly connected directed graph with at least one edge. At each time-step
t ∈ N, perform the following operations:

1. Sample χt vertices x1, . . . , xχt independently using ρout0 and γt vertices y1, . . . , yγt
independently using ρin0 .

2. Sample zt vertices w1, w2, . . . , wzt independently using ρout0 , and sample zt vertices
w′1, w

′
2, . . . , w

′
zt independently using ρin0 .

3. Add a new vertex v, and then add the directed edges w1w
′
1, . . . , wztw

′
zt , x1v, . . . , xχtv,

vy1, . . . , vyγt . Also add qt loops at v.

Model 3.26 generalizes [2, Section 2.1, Model C], which has bounded χt, γt, zt, qt. The
following theorem implies that a.a.s. the diameter of the latter model is O(log n).

Theorem 3.27. Let ` = `(n), u = u(n) be positive integers such that ` ≤ χt+γt+zt+qt ≤ u
for all t ∈ N. A.a.s. the diameter of Gn generated by Model 3.26 is at most 4e(u/`) log n+
8eu+O(1).

Proof. We claim that the underlying undirected graph of (Gt)
∞
t=0 generated by Model 3.26

is a special case of the growing graph generated by Model 3.13. Sampling a vertex using ρout0

and ρin0 correspond to choosing the tail and the head of a random edge, respectively. The
operations of Model 3.26 correspond to applying a vertex operation with at = χt + γt + qt
and an edge operation with bt = zt. By Theorem 3.15, a.a.s. the diameter of Gn is at most
4e(u/`) log n+ 8eu+O(1), as required. �
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g

Figure 3.8: a generalized directed graph: edge e is tailless, and edges f and g are headless.

3.3 Directed scale-free graphs: dummy edges

We study two directed models in this section. In contrast to the previous directed model
(Model 3.26), in models considered here, the constant term in the definition of attachment
probabilities (δ in Model 3.19) can be different for in-degrees and out-degrees. We handle
this issue by introducing dummy edges whose role is just to adjust the attachment proba-
bilities (similar to, but more complicated than, what we did in the proof of Theorem 3.22).
As in Section 3.2, we first define a general model (Model 3.29) with a lot of flexibility and
prove that a.a.s. it has a logarithmic diameter, and then reduce Model 3.31 (which is a
generalization of the so-called ‘directed scale-free graphs’) to that.

Definition 3.28 (Generalized directed graph). In a directed graph, each edge has a tail
and a head. A generalized directed graph is a directed graph some of whose edges do not
have a head or a tail. Edges of such a graph are of three type: tailless edges have a head
but do not have a tail, headless edges have a tail but do not have a head, and proper edges
have a tail and a head. A headed edge is one that is not headless, and a tailed edges is one
that is not tailless.

See Figure 3.8 for an example of a generalized directed graph.

The following model is a directed analogue of Model 3.13.

Model 3.29. Let (at, bt, ct, dt, ξt)t∈N be sequences of nonnegative integers. Consider a
growing generalized directed graph (Gt)

∞
t=0 as follows. G0 is an arbitrary weakly connected

generalized directed graph with at least one edge. At each time-step t ∈ N, Gt is obtained
from Gt−1 by performing a vertex operation and an edge operation, as defined below.

In a vertex operation, if at + bt > 0, a new vertex v is born and at + bt + ct + dt edges
are added in the following manner:

Case 1: If at > 0, sample a headed edge from Gt−1 uniformly and add a proper edge from
v to its head. Then add at− 1 new proper edges, tailed at v and headed at arbitrary
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vertices of Gt−1. Then bt proper edges are added, tailed at arbitrary vertices of Gt−1

and headed at v. Then ct headless edges tailed at v, and dt tailless edges headed at
v are added.

Case 2: If at = 0, sample a tailed edge from Gt−1 uniformly and add a proper edge from
its tail to v. Then bt − 1 new proper edges are added from arbitrary vertices of Gt−1

to v. Then ct headless edges tailed at v, and dt tailless edges headed at v are added.

If at + bt = 0, then do nothing in the vertex operation.

In an edge operation, sample ξt tailed edges from Gt−1 such that each is uniformly
random, then add ξt proper edges, joining the tails of the sampled edges to arbitrary
vertices of Gt−1.

Theorem 3.30. Let ` = `(n), u = u(n) ∈ N be such that ` ≤ at + bt + ξt and at + bt + ct +
dt + ξt ≤ u for every t ∈ N. A.a.s. the graph Gn generated by Model 3.29 has diameter at
most 4e(u/`) log n+ 8eu+O(1).

Proof. The argument is similar to that for Theorem 3.15. We define the depth of a headless
edge as one plus the depth of its tail, and the depth of a tailless edge as one plus the depth of
its head, and the depth of a proper edge uv as 1+min{depth(u), depth(v)}. We inductively
define a growing undirected tree (Tt)

∞
t=0 such that for all t ∈ N0, V (Tt) = E(Gt) ∪ {ℵ}.

Here ℵ denotes the root of Tt, which has depth 0. We prove by induction that for all
e ∈ E(Gt), depth(e,Gt) ≤ 2 depth(e, Tt). Let H be the graph obtained from the underlying
undirected graph of G0 by adding an edge labelled ℵ incident to its root. Let T0 be a
breadth-first tree of the line graph of H rooted at ℵ. Note that depth(ℵ, T0) = 0 and
depth(e, T0) = depth(e,G0) for every e ∈ E(G0) (recall Figure 3.4).

Given Tt−1, we define Tt and prove the inductive step. First, consider a vertex oper-
ation, Case 1. Let v be the new vertex and e1 be the sampled headed edge. Notice that
depth(v,Gt) ≤ depth(e1, Gt) + 1. In Tt, we join the at + bt + ct + dt new nodes (new edges
of Gt) to e1. For any such edge e we have

depth(e,Gt) ≤ depth(v,Gt) + 1 ≤ depth(e1, Gt) + 2 ≤ 2 depth(e1, Tt) + 2 = 2 depth(e, Tt),

where we have used the inductive hypothesis for e1 in the third inequality.

Second, consider a vertex operation, Case 2. Let v be the new vertex and let e1 be
the sampled tailed edge. Notice that depth(v,Gt) ≤ depth(e1, Gt) + 1. In Tt, we join the
bt + ct + dt new nodes (new edges of Gt) to e1. For any such edge e we have

depth(e,Gt) ≤ depth(v,Gt) + 1 ≤ depth(e1, Gt) + 2 ≤ 2 depth(e1, Tt) + 2 = 2 depth(e, Tt).
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Third, consider an edge operation. Let e1, . . . , eξt be the sampled tailed edges, and
denote by w1, w2, . . . , wξt their tails. For each j ∈ [ξt], in Gt we join wj to a vertex of Gt−1,
say xj. In Tt, we join the new node wjxj to ej. We have

depth(wjxj, Gt) ≤ depth(wj, Gt) + 1 ≤ depth(ej, Gt) + 1

≤ 2 depth(ej, Tt) + 1 = 2 depth(wjxj, Tt)− 1 ,

where we have used the fact that wj is incident with ej for the second inequality, and
the inductive hypothesis for ej for the third inequality. Hence for all e ∈ E(Gt), we have
depth(e,Gt) ≤ 2 depth(e, Tt), as required. To complete the proof, it suffices to show that
a.a.s. the height of Tn is at most (u/`)e log n+ 2ue+O(1).

The argument is similar to that for Lemma 3.3. Note that at any time t, graph Gt

has at least |V (T0)| + `t proper edges. Let n0 = |V (T0)|. For a given h = h(n), we
bound the probability that Tn has a node at depth exactly h + n0. Given a sequence
1 ≤ t1 < · · · < th ≤ n, the probability that there exists a path wvt1vt2 . . . vth in Tn with
w ∈ V (T0) and vt1 , vt2 , . . . , vth /∈ V (T0) such that vtj born at time tj is at most

n0u
h

h∏
k=1

1

n0 + ` · (tk − 1)
,

since there are n0 choices for w, at most uh choices for (vt1 , . . . , vth) given (t1, . . . , tn), and
for each k = 1, . . . , h, when vtk is born, there are at least n0 + ` · (tk − 1) nodes available
for it to join to (corresponding to the proper edges of Gtk−1). By the union bound, the
probability that Gn has a node at depth h+ n0 is at most

n0u
h

∑
1≤t1<t2<···<th≤n

(
h∏
k=1

1

n0 + ` · (tk − 1)

)
<
n0u

h

h!

(
n−1∑
j=0

1

n0 + `j

)h

< n0

(
ue

h
·
(

log n

`
+ 2

))h/√
2πh .

Putting h ≥ (u/`)e log n + 2ue makes this probability o(1). Hence a.a.s. the height of Tn
is less than (u/`)e log n+ 2ue+O(1), as required. �

The following model is a directed analogue of Model 3.19.

Model 3.31. Let pa, pb, pc be nonnegative numbers summing to 1, and let α, β ∈ [0,∞).
Let (xt)t∈N be a sequence of positive integers. Consider a growing directed graph (Gt)

∞
t=0
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Figure 3.9: an example graph Gt (left) and its corresponding Ĝt (right) with s = 2, r = 0,
and q = 1

as follows. G0 is an arbitrary weakly connected directed graph. At each time-step t ∈ N,
perform exactly one of the following three operations, with probabilities pa, pb, and pc,
respectively.

(a) Sample xt vertices from the existing graph, independently using ρinα . Then add a new
vertex and join it to the sampled vertices.

(b) Sample xt vertices from the existing graph, independently using ρoutβ . Then add a
new vertex and join the sampled vertices to it.

(c) Sample xt vertices w1, . . . , wxt independently using the probability distribution ρoutβ ,
and sample xt vertices w′1, . . . , w

′
xt independently using ρinα . Then add the edges

w1w
′
1, . . . , wxtw

′
xt .

Model 3.31 is a generalization of directed scale-free graphs of Bollobás, Borgs, Chayes,
and Riordan [17, Section 2], which has xt = 1 for all t. The following theorem implies that
if α and β are rational, then a.a.s. the diameter of the latter model is at most 4e(1 + α +
β) log n+O(1).

Theorem 3.32. Suppose that α = r/s and β = q/s with r, q ∈ N0 and s ∈ N. Also suppose
that ` = `(n), u = u(n) ∈ N are such that ` ≤ xt ≤ u for all t. A.a.s. the diameter of Gn

generated by Model 3.31 is at most 4e(u+ α + β) log n/`+O(u).

Proof. For t ∈ N0, let Ĝt be the generalized directed graph obtained from Gt by copying
each edge s − 1 times, adding r tailless edge at each vertex, and adding q headless edges
at each vertex (see Figure 3.9). So Ĝt has s|E(Gt)| + (r + q)|V (Gt)| edges. Note that

the diameters of Gt and Ĝt are the same. We claim that (Ĝt)
∞
t=0 is a special case of the

growing graph generated by Model 3.29. First, sampling a vertex of Gt using ρoutβ or ρinα
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correspond to choosing the tail or the head of a uniformly random tailed or headed edge
of Ĝt, respectively. Second, applying operation (a) corresponds to applying only a vertex
operation with at = sxt, bt = 0, ct = q, dt = r. Third, applying operation (b) corresponds
to applying only a vertex operation with at = 0, bt = sxt, ct = q, dt = r. Fourth, applying
operation (c) corresponds to applying only an edge operation with ξt = sxt. Note that
although the tails of these sxt edges are not independent, each tail is the tail of a uniformly
random tailed edge of Ĝt, hence this is a valid edge operation as defined in Model 3.29. By
Theorem 3.30, a.a.s the diameter of Ĝn is at most 4e(u+α+β) log n/`+8e(su+q+r)+O(1),
completing the proof. �

3.4 The Cooper-Frieze model: multi-typed edge trees

In this section we study an undirected model that combines uniform and preferential at-
tachment when choosing the neighbours of a new vertex.

Model 3.33. Let pa, . . . , pf be nonnegative numbers summing to 1 and satisfying pa+pb >
0, and let (xt)t∈N be a sequence of positive integers. Consider a growing undirected graph
(Gt)

∞
t=0 as follows. G0 is an arbitrary connected graph. At each time-step t ∈ N, perform

exactly one of the following six operations, with probabilities pa, . . . , pf and independently
of previous choices.

(a) xt vertices are sampled uniformly, then a new vertex is born and is joined to the
sampled vertices.

(b) xt vertices are sampled using ρ0, then a new vertex is born and is joined to the sampled
vertices.

(c) xt+1 vertices are sampled uniformly. Then xt edges are added joining the first sampled
vertex to the others.

(d) A vertex is sampled uniformly and xt vertices are sampled using ρ0. Then xt edges are
added joining the first sampled vertex to the others.

(e) A vertex is sampled using ρ0 and xt vertices are sampled uniformly. Then xt edges are
added joining the first sampled vertex to the others.

(f) xt + 1 vertices are sampled using ρ0. Then xt edges are added joining the first sampled
vertex to the others.
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Figure 3.10: the graphs G0 (left, rooted at z) and T0 (right) in the proof of Theorem 3.34

Note that each operation increases the number of edges by xt.

Model 3.33 is a generalization of a model defined by Cooper and Frieze [38, Section 2],
in which x1, x2, . . . are i.i.d. bounded random variables. The following theorem implies
that a.a.s. the diameter of the latter model is O(log n).

Theorem 3.34. Let q = pa + pb and let ` = `(n), u = u(n) be positive integers such
that ` ≤ xt ≤ u for all t. A.a.s. the diameter of Gn generated by Model 3.33 is at most
4(u/`+ 11/q)e log n+ 8eu+O(1).

Proof. As before, we define a growing tree whose height multiplied by 2 dominates the
height of the graph at any moment, and then we bound the tree’s height from above. The
main difference with Theorem 3.15 is that in some operations one may sample the vertices
of the graph uniformly. In a growing tree, when a new vertex v is born and is joined to a
vertex w of the existing tree, we say w is the parent of v, and that w is given birth to v.

We inductively define a growing tree (Tt)
∞
t=0 such that V (Tt) = V (Gt) ∪ E(Gt) for all

t, and we prove that depth(f,Gt) ≤ 2 depth(f, Tt) for each vertex or edge f of Gt. A
node of Tt is called a V-node or an E-node if it corresponds to a vertex or an edge of Gt,
respectively. We may assume T0 has been defined (for instance, we can build it by taking
a breadth-first search tree of G0 and joining all the E-nodes to its deepest V-node, see
Figure 3.10) and we describe the growth of Tt−1 to Tt corresponding to each operation.

(a) Let w be the first sampled vertex. In Tt we join all new nodes (corresponding to the
new vertex and the new edges in Gt) to w. In this case, a V-node of Tt−1 has been
sampled uniformly and has given birth to one V-node and xt E-nodes.
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(b) For sampling a vertex using ρ0, we sample a random edge and then choose a random
endpoint of it. Let e be the first sampled edge. In Tt we join all new nodes (corre-
sponding to the new vertex and the new edges in Gt) to e. In this case, an E-node of
Tt−1 has been sampled uniformly and is given birth to one V-node and xt E-nodes.

(c) and (d) Let w be the first sampled vertex. In Tt we join all new nodes (corresponding to the
new edges in Gt) to w. In this case, a V-node of Tt−1 has been sampled uniformly and
is given birth to xt E-nodes.

(e) and (f) For sampling a vertex using ρ0, we sample a random edge and then choose a random
endpoint of it. Let e be the first sampled edge. In Tt we join all new nodes (corre-
sponding to the new edges in Gt) to e. In this case, an E-node of Tt−1 has been sampled
uniformly and is given birth to xt E-nodes.

Similar to the proofs of Theorems 3.15 and 3.30, an inductive argument gives that
depth(f,Gt) ≤ 2 depth(f, Tt) for each vertex or edge f of Gt. Hence, showing that a.a.s.
the height of Tn is at most (u/`+ 11/q)e log n+ 2eu+O(1) completes the proof.

For t ∈ N0, let L(t) denote the number of V-nodes of Tt. Let n0 = |V (T0)| and
m0 = (9/q) log n. Note that L(t) = n0 + Bin(t, q). Using the lower tail Chernoff bound
(2.2) and the union bound, a.a.s we have L(t) ≥ tq/2 for all m0 ≤ t ≤ n. We condition on
an arbitrary vector (L(0), . . . , L(n)) = (g(0), . . . , g(n)) for which this event happens.

For a given integer h = h(n), we bound the probability that Tn has a vertex at depth
exactly n0 + h. Given a sequence 1 ≤ t1 < · · · < th ≤ n, the probability that there exists a
path wvt1vt2 . . . vth in Tn with w ∈ V (T0) and vt1 , vt2 , . . . , vth /∈ V (T0) such that vtj is born
at time tj is at most

n0

h∏
k=1

(
u

n0 + ` · (tk − 1)
+

1

g(tk − 1)

)
,

since there n0 choices for w and for each k = h, h − 1, . . . , 2, 1, if vtk wants to choose an
E-node as its parent, there are at least n0 + ` · (tk − 1) many E-nodes available for it to
join to, and at most u of them were born at time tk−1; and if vtk wants to choose a V-node
as its parent, there are at least g(tk − 1) many V-nodes available for it to join to, and at
most one of them was born at time tk−1. By the union bound and (3.1), the probability
that Tn has a vertex at depth h+ n0 is at most

n0

∑
1≤t1<···<th≤n

(
h∏
k=1

(
u

n0 + ` · (tk − 1)
+

1

g(tk − 1)

))
<
n0

h!

(
n−1∑
j=0

u

n0 + `j
+

n−1∑
j=0

1

g(j)

)h

.

(3.3)
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We have
n−1∑
j=0

u

n0 + `j
< u+

u

`

n−1∑
j=1

1

j
< u+ (u/`)(1 + log n) ,

and
n−1∑
j=0

1

g(j)
=

m0−1∑
j=0

1

g(j)
+

n−1∑
j=m0

1

g(j)
≤ m0 +

n−1∑
j=m0

2

qj
<

11

q
log n .

Setting h ≥ (u/` + 11/q)e log n + 2eu makes the right hand side of (3.3) become o(1), as
required. �

3.5 Further models

In this section we mention two closely related models for which we can easily prove logarith-
mic bounds using the technique developed in this chapter. Let k > 1 be a positive integer.
A random k-tree, defined by Gao [71], is built from a k-clique by applying the following
operation n times: in every time-step, a k-clique of the existing graph is chosen uniformly
at random, a new vertex is born and is joined to all vertices of the chosen k-clique. See
Figure 1.2 for an illustration with k = 2. (We remark that this process is different from
the random k-tree process defined by Cooper and Uehara [43] which was further studied
in [41].) Random k-Apollonian networks [119] have a similar construction, the only dif-
ference being that once a k-clique is chosen in some time-step, it will never be chosen in
the future. Cooper, Frieze and Uehara [41, Theorem 2] and independently, Kolossváry,
Komjáty and Vágó [87, Theorem 2.2] have recently proved that a.a.s. the diameter of a
random k-Apollonian network is asymptotic to ck log n for a given constant ck.

Here we prove that a.a.s. the diameter of a random k-tree is at most 2e log n + O(1),
and that a.a.s. the diameter of a random k-Apollonian network is at most 2ek log n/(k −
1) +O(1). For the proof for random k-Apollonian networks we need the following variant
of Lemma 3.3. For a tree T , denote its set of leaves by L(T ).

Lemma 3.35. Let (at)t∈N be a sequence of positive integers. Consider a growing tree (Tt)
∞
t=0

as follows. T0 is arbitrary. At each time-step t ∈ N, a random vector (W1,W2, . . . ,Wat) ∈
L(Tt−1)at is chosen in such a way that for each i ∈ [at] and each v ∈ L(Tt−1), the marginal
probability P [Wi = v] equals |L(Tt−1)|−1. In other words, each Wi is a uniformly random
leaf of Tt−1; however, the Wj’s may be correlated. Then at new nodes v1, . . . , vat are
born and vi is joined to Wi for each i ∈ [at]. Let ` = `(n) and u = u(n) be positive
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integers such that 1 < ` ≤ at ≤ u for all t ∈ [n]. Then the height of Tn is a.a.s. at most
ue log n/(`− 1) + 2ue+O(1).

Proof. Let n0 = |V (T0)|. For a given integer h = h(n), let us bound the probability that
Tn has a node at depth exactly h + n0. Given a sequence 1 ≤ t1 < t2 < · · · < th ≤ n, the
probability that there exists a path wvt1vt2 · · · vth in Tn with w ∈ V (T0) and vt1 , . . . , vtn /∈
V (T0) such that vtj is born at time tj is at most

n0u
h

h∏
k=1

1

n0 + (`− 1)(tk − 1)
,

since for each k = 1, 2, . . . , h, when vtk is born, there are at least n0 + (`− 1)(tk− 1) leaves
available for it to join to. By the union bound and (3.1), the probability that Tn has a
node at depth h+ n0 is at most

n0u
h

∑
1≤t1<···<th≤n

(
h∏
k=1

1

n0 + (`− 1)(tk − 1)

)
<
n0u

h

h!

(
n−1∑
j=0

1

n0 + (`− 1)j

)h

<

(
ue

h
·
(

log n

`− 1
+ 2

))h/√
2πh .

Putting h ≥ ue log n/(`− 1) + 2ue makes this probability o(1). Hence a.a.s. the height of
Tn is at most ue log n/(`− 1) + 2ue+ n0, as required. �

Theorem 3.36. A.a.s. the diameter of an (n+k)-vertex random k-tree is at most 2e log n+
O(1), and the diameter of an (n + k)-vertex random k-Apollonian network is at most
2ek log n/(k − 1) +O(1).

Proof. We define the depth of a k-clique as the maximum depth of its vertices. Let the
first k vertices have depth zero. We couple with a growing tree whose nodes corresponds
to the k-cliques of the growing graph. Whenever in the graph a new vertex is born and
is joined to the vertices of a k-clique, in the tree the chosen k-clique gives birth to k new
children. By induction, the graph’s height is always less than or equal to the tree’s height.

For the tree corresponding to a random k-tree, in every step a node is chosen uniformly
at random and gives birth to k new children, hence a.a.s. its height is bounded by e log n+
O(1) by Lemma 3.3. This gives an a.a.s. upper bound of 2e log n + O(1) for the diameter
of the corresponding graph.
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For the tree corresponding to a random k-Apollonian network, in every step a leaf is
chosen uniformly at random and gives birth to k new children, hence a.a.s. its height is
bounded by ek log n/(k − 1) + O(1) by Lemma 3.35. This gives an a.a.s. upper bound of
2ek log n/(k − 1) +O(1) for the diameter of the corresponding graph. �

The proof of Theorem 3.36 indeed implies the following more general results, which will
be used in Chapter 7.

Proposition 3.37. A.a.s. an (n+ k)-vertex random k-tree has the following property: let
uhuh−1 · · ·u0 be any path such that ui is born later than ui−1 for all i; then h ≤ e log n+O(1).

Proposition 3.38. A.a.s. an (n+k)-vertex random k-Apollonian network has the following
property: let uhuh−1 · · ·u0 be any path such that ui is born later than ui−1 for all i; then
h ≤ ek log n/(k − 1) +O(1).
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Chapter 4

Random Apollonian networks:
diameter and longest paths

We have already encountered ‘random k-Apollonian networks’ in Chapter 3, where we
proved an a.a.s. upper bound of 2ek log n/(k − 1) + O(1) for their diameter. In this
chapter1 we study random Apollonian networks, which are planar embeddings of ran-
dom 3-Apollonian networks. Historically, this subclass was defined first; and later it was
generalized to higher dimensions. Random Apollonian networks are a popular random
graph model for generating planar graphs with power law properties, and can be defined
as follows. Start with a triangle embedded in the plane. In each step, choose a bounded
face uniformly at random, add a vertex inside that face and join it to the vertices on the
face. We call this operation subdividing the face. In this chapter, we use the term ‘face’ to
refer to a bounded face, unless specified otherwise. After n− 3 steps, we have a (random)
triangulated plane graph with n vertices and 2n− 5 faces. This is called a Random Apol-
lonian Network (RAN) and we study its asymptotic properties, as its number of vertices
goes to infinity. The number of edges equals 3n− 6, and hence a RAN is a maximal plane
graph. See Figure 4.1 for an illustration.

The term ‘Apollonian network’ refers to a deterministic version of this process, formed
by subdividing all triangles the same number of times, which was first studied in [6, 53].
Andrade, Herrmann, Andrade, and Silva [6] studied power laws in the degree sequences of
these networks. Random Apollonian networks were defined by Zhou, Yan and Wang [120]

1This chapter is based on joint work with Collevecchio, Ebrahimzadeh, Farczadi, Gao, Sato, Wormald,
and Zung. Some of the results therein have already been published [57], and the rest appear in the
submitted preprint [37].
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Figure 4.1: a RAN with nine vertices

(see Zhang, Comellas, Fertin and Rong [119] for a generalization to higher dimensions),
where it was proved that the diameter of a RAN is a.a.s. O(log n). It was shown in [120, 104]
that RANs exhibit a power law degree distribution. The above proofs were non-rigorous
from a mathematical point of view. The average diameter of a RAN was shown to be
Θ(log n) by Albenque and Marckert [3]. The degree distribution, k largest degrees and k
largest eigenvalues of the adjacency matrix (for fixed k) and the diameter were studied by
Frieze and Tsourakakis [70].

In this chapter we continue this line of research by studying the asymptotic properties of
the longest (simple) paths and cycles in RANs and giving sharp estimates for the diameter
of a typical RAN. In Section 4.1 we prove the following result about the diameter.

Theorem 4.1. A.a.s. the diameter of a RAN on n vertices is asymptotic to c log n, with
c = (1− x̂−1)/ log h(x̂) ≈ 1.668, where

h(x) =
12x3

1− 2x
− 6x3

1− x
,

and x̂ ≈ 0.163 is the unique solution in the interval (0.1, 0.2) to

x(x− 1)h′(x) = h(x) log h(x) .

We give a high level sketch of the proof of Theorem 4.1. Using some graph theoretic
observations, we reduce the problem to estimating the height of a multi-typed random
tree. We embed this random tree into a continuous-time branching process using the idea
of poissonization (see Section 2.4 for more explanation on this). Broutin and Devroye [27]
have developed a powerful technique for analyzing the height of random trees. However,
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their theorem requires all vertices in the tree to be of the same type. Using a sneaky
coupling we ‘sandwich’ the height of our tree between the heights of two sequences of
complicated random trees. Using [27, Theorem 1] (see also Theorem 4.12) we can estimate
the height of these random trees. This theorem gives the height implicitly, as the solution
of an equation involving maximizing a certain function, and it takes some real analysis
arguments to solve the equation for our trees and giving lower and upper bounds for our
original multi-typed tree. More real analysis shows that, fortunately, the lower and upper
bounds converge as we refine our coupling, and the limit, which we find as the solution of
an implicit equation, is the answer we are seeking.

Let Lm and Cm be random variables denoting the number of vertices in a longest path
and a longest cycle in a RAN with m faces, respectively. In this chapter we also prove
lower bounds for Cm and E [Cm], which immediately yield lower bounds for Lm and E [Lm],
noting that Lm ≥ Cm always.

Theorem 4.2. For every positive integer m, the following statements are true.

(a) Lm ≥ Cm ≥ mlog 2/ log 3 + 2 .

(b) E [Lm] ≥ E [Cm] = Ω (m0.88) .

Remark 4.3. Using a rather involved argument, Chen and Yu [32, Corollary 3.5] have
shown that every 3-connected planar graph on n vertices has a cycle with at least nlog 2/ log 3

vertices. By Theorem 4.2(a), every n-vertex random Apollonian network has a cycle with
at least (2n−5)log 2/ log 3+2 vertices deterministically, which gives a slightly better result for
this subclass, having the same exponent but a larger constant. The example studied in [32,
Section 2] shows that the exponent log 2/ log 3 here is the best possible for a deterministic
lower bound.

The proof of Theorem 4.2 appears in Section 4.2. The deterministic bound follows
from a novel graph theoretic observation and simple induction. For the expected value,
we analyze the number of vertices in the triangles of a RAN by modelling the growth
of the RAN as a trichromatic Eggenberger-Pólya urn and using the known limiting joint
distribution of the proportion of balls of each colour in such an urn (see Theorem 2.10).

Regarding upper bounds, we prove the following result.

Theorem 4.4. Let δ = 1− 4× 10−8 = 0.99999996. A.a.s. as m→∞ we have Lm < mδ.

Open problem 4.5. There is gap between our lower bound in Theorem 4.2 and our upper
bound in Theorem 4.4. What is the typical order of magnitude of Lm? Is this variable
concentrated around its mean?
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Figure 4.2: the standard 2-subdivision of a triangle

We give a high-level sketch of the proof of Theorem 4.4, which appears in Section 4.3.
Using a novel graph theoretic observation, we show it is enough to prove that a.a.s. any
deficient subtree in an n-vertex random recursive ternary tree has less than nδ vertices,
for some fixed δ < 1. Here, a subtree is called deficient if any vertex has at most eight
grandchildren (out of the nine possible). The branch sizes in a random recursive ternary
tree are related to the number of balls of different colours in a trichromatic Eggenberger-
Pólya urn (see Section 2.3 for the definition). We use de Finetti’s theorem to represent these
numbers as mixtures of binomial and beta random variables (see Proposition 2.9), allowing
us to work in the realm of continuous random variables and consider infinite ternary trees,
making things more convenient. A few tricks and sharp concentration bounds for the
product of independent beta random variables (Lemma 2.23) complete the proof. The
calculations are delicate here, and they have to be so, since we essentially take the union
bound over an exponentially large set of objects: the set of vertices at a fixed depth of the
tree.

We include some definitions here. Let 4 be a triangle in a RAN. The standard 1-
subdivision of 4 is the set of three triangles obtained from subdividing 4 once. For k > 1,
the standard k-subdivision of 4 is the set of triangles obtained from subdividing each
triangle in the standard (k− 1)-subdivision of 4 exactly once. In Figure 4.2, the standard
2-subdivision of a triangle is illustrated.

Definition 4.6 (4-tree of a RAN). Let G be a RAN. We denote the vertices incident with
the unbounded face by ν1, ν2, ν3. We define a rooted tree T , called the 4-tree of G, as
follows. There is a one to one correspondence between the triangles in G and the nodes of
T . For every triangle 4 in G, we denote its corresponding node in T by n4. To build T ,
start with a single root node, which corresponds to the triangle ν1ν2ν3 of G. Wherever a
triangle 4 is subdivided into triangles 41, 42, and 43, generate three children n41 , n42 ,
and n43 for n4, and extend the correspondence in the natural manner. Note that this is
a ternary tree, with each node having either zero or three children, and has 3n− 8 nodes
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Figure 4.3: a RAN (left) and its corresponding 4-tree (right)

and 2n− 5 leaves when G has n vertices. We use the term ‘nodes’ for the vertices of T , so
that ‘vertices’ refer to the vertices of G. Note that the leaves of T correspond to the faces
of G. The depth of a node n4 is its distance to the root. The set of grandchildren of a
node is the set of children of its children. See Figure 4.3 for an illustration.

4.1 The diameter

In this section we prove Theorem 4.1. We first prove an important connection with
Eggenberger-Pólya urns (defined in Section 2.3).

Proposition 4.7. Consider a triangle 4 containing more than one face in a RAN, and
let 41,42,43 be the three triangles in its standard 1-subdivision. After k subdivisions of
4, the number of faces in 4i is distributed like Urn(1, 2, 2, k − 1) for i = 1, 2, 3.

Proof. We can analyze the number of faces inside 41 by modelling the process of building
the RAN as an Eggenberger-Pólya urn: after the first subdivision of 4, each of 41, 42,
and 43 contains exactly one face. We start with one white ball corresponding to the only
face in 41, and two black balls corresponding to the two faces in 42 and 43. In each
subsequent step, we choose a face uniformly at random, and subdivide it. If the face is in
41, then the number of faces in 41 increases by 2, and otherwise the number of faces not
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in 41 increases by 2. Thus after k subdivisions of 4, the number of faces in 41 has the
same distribution as the number of white balls in an Eggenberger-Pólya urn with w0 = 1,
b0 = 2, and reinforcement s = 2, after k − 1 draws, as required. �

Throughout this section let G be a RAN with n vertices, and recall that ν1, ν2, and ν3

denote the vertices incident with the unbounded face. For a vertex v of G, let τ(v) be the
minimum distance of v to the boundary, i.e.,

τ(v) = min{dist(v, ν1), dist(v, ν2), dist(v, ν3)} .

The radius of G is defined as the maximum of τ(v) over all vertices v.

Lemma 4.8. Let

h(x) =
12x3

1− 2x
− 6x3

1− x
,

and let x̂ be the unique solution in (0.1, 0.2) to

x(x− 1)h′(x) = h(x) log h(x) .

Finally, let

c =
1− x̂−1

log h(x̂)
≈ 1.668 .

Then the radius of G is a.a.s. asymptotic to c log n/2.

We first show that this lemma implies Theorem 4.1.

Proof of Theorem 4.1. Let diam(G) denote the diameter of G. Fix arbitrarily small ε, δ >
0. We show that with probability at least 1− 2δ we have

(1− ε)c log n ≤ diam(G) ≤ (1 + ε)c log n . (4.1)

We prove that each of the inequalities in (4.1) holds with probability at least 1 − δ and
then apply the union bound. Here and in the following, we assume n is sufficiently large.

For the upper bound, let R be the radius of G. Notice that the distance between any
vertex and ν1 is at most R + 1, so diam(G) ≤ 2R + 2. By Lemma 4.8, with probability
at least 1 − δ we have R ≤ (1 + ε/2)c log n/2. If this event happens, then diam(G) ≤
(1 + ε)c log n.
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We now articulate the proof for the lower bound, which is more involved. Let 41, 42,
and 43 be the three triangles in the standard 1-subdivision of the triangle ν1ν2ν3, and let
ni be the number of vertices on and inside 4i. By Proposition 4.7 we have

2ni − 5
d
= Urn(1, 2, 2, n− 4) for i = 1, 2, 3 . (4.2)

Let M be a positive integer sufficiently large that

P
[
ni
n
<

1

M

]
< δ/6 for i = 1, 2, 3 .

Such an M exists since (4.2) holds (see Theorem 2.8, the proportional distribution of balls
of a given colour in an Eggenberger-Pólya urn). Let A denote the event

min
{ni
n

: 1 ≤ i ≤ 3
}
≥ 1

M
.

By the union bound, P [A] ≥ 1 − δ/2. We condition on values (n1, n2, n3) such that A
happens. Note that we have log ni = log n−O(1) for each i.

For a triangle 4, V (4) denotes the three vertices of 4. Note that for i = 1, 2, 3, the
subgraph induced by vertices on and inside 4i is distributed as a RAN Gi with ni vertices.
Hence by Lemma 4.8 and the union bound, with probability at least 1− δ/2, the radius of
each of G1, G2 and G3 is at least (1− ε)c log n/2. Hence, with probability at least 1− δ/2
there exists u1 ∈ V (G1) with distance at least (1 − ε)c log n/2 to V (41), and also there
exists u2 ∈ V (G2) with distance at least (1− ε)c log n/2 to V (42). Since any (u1, u2)-path
must contain a vertex from V (41) and V (42) (see Figure 4.4), with probability at least
1− δ/2, there exists u1, u2 ∈ V (G) with distance at least 2(1− ε)c log n/2, which implies

P [diam(G) ≥ c(1− ε) log n] ≥ P [diam(G) ≥c(1− ε) log n|A]P [A] ≥ (1−δ/2)2 > 1−δ. �

The rest of this section is devoted to the proof of Lemma 4.8. Let T be the 4-tree of
G. We categorize the triangles in G into three types. Let 4 be a triangle in G with vertex
set {x, y, z}, and assume that τ(x) ≤ τ(y) ≤ τ(z). Since z and x are adjacent, we have
τ(z) ≤ τ(x) + 1. So, 4 can be categorized to be of one of the following types:

1. if τ(x) = τ(y) = τ(z), then say 4 is of type 1.

2. If τ(x) = τ(y) < τ(y) + 1 = τ(z), then say 4 is of type 2.
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u2

Figure 4.4: any (u1, u2)-path must contain a vertex from {ν1, ν2, a} and from {a, ν1, ν3}.

3. If τ(x) < τ(x) + 1 = τ(y) = τ(z), then say 4 is of type 3.

The type of a node of T is the same as the type of its corresponding triangle. The root
of T corresponds to the triangle ν1ν2ν3 and the following are easy to observe.

(a) The root is of type 1.

(b) A node of type 1 has three children of type 2.

(c) A node of type 2 has one child of type 2 and two children of type 3.

(d) A node of type 3 has two children of type 3 and one child of type 1.

See Figure 4.5. For a triangle 4, define τ(4) to be the minimum of τ(u) over all
u ∈ V (4). Observe that a node of type 1 or 2 has children with the same τ value as itself;
whereas for a node of type 3, the τ value of the type-1 child equals the τ value of the
parent plus one, and the two other children have the same τ value as the parent.

Let 4 and 4 be two triangles of type 1 such that n4 is an ancestor of n4 and there is
no node of type 1 in the unique path connecting them. Then, the internal vertices of the
path connecting n4 and n4 consists of a sequence of type-2 nodes and then a sequence
of type-3 nodes, hence we have τ(4) = τ(4) + 1 (see Figure 4.5). This determines τ
inductively: for every n4 ∈ V (T ), τ(4) is one less than the number of nodes of type 1
in the path from n4 to the root. We call τ(4) the auxiliary depth of node 4, and define
the auxiliary height of a tree T , written ah(T ), to be the maximum auxiliary depth of its
nodes. Note that the auxiliary height is always less than or equal to the height. Also, for a
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vertex v ∈ V (G), if 4 is the triangle that v subdivides, then τ(v) = τ(4)+1. We augment
the tree T by adding specification of the type of each node, and we abuse notation and call
the augmented tree the 4-tree of the RAN. Hence, the radius of the RAN is either ah(T )
or ah(T ) + 1.

Notice that instead of building T from the RAN G, we can think of the random T as
being generated in the following manner: let n ≥ 3 be a positive integer. Start with a
single node as the root of T . So long as the number of nodes is less than 3n− 8, choose a
leaf v independently of previous choices and uniformly at random, and add three leaves as
children of v. Once the number of nodes becomes 3n − 8, add the information about the
types using rules (a)–(d), as follows. Let the root have type 1, and determine the types of
other nodes in a top-down manner. For a node of type 1, let its children have type 2. For a
node of type 2, select one of the children independently and uniformly at random, let that
child have type 2, and let the other two children have type 3. Similarly, for a node of type
3, select one of the children independently of previous choices and uniformly at random,
let that child have type 1, and let the other two children have type 3. Henceforth, we will
forget about G and focus on finding the auxiliary height of a random tree T generated in
this manner.

A major difficulty in analyzing the auxiliary height of the tree generated in the afore-
mentioned manner is that the branches of a node are heavily dependent, as the total
number of nodes equals 3n − 8. To remedy this we use the idea of poissonization as ex-
plained in Section 2.4.1: we consider another process which has the desired independence
and approximates the original process well enough for our purposes. The process, P̂ , starts
with a single node, the root, which is born at time 0, and is of type 1. From this moment
onwards, whenever a node is born (say at time κ), it waits for a random time X, which is
distributed exponentially with mean 1, and after time X has passed (namely, at absolute
time κ+X) gives birth to three children, whose types are determined as before (according
to the rules (b)–(d)) and dies. Moreover, the lifetime of the nodes are independent. For a

nonnegative (possibly random) t, we denote by T̂ t the random tree obtained by taking a
snapshot of this process at time t. By the discussion in Section 2.4.1, for any deterministic
t ≥ 0, the distribution of T̂ t conditional on T̂ t having exactly 3n− 8 nodes, is the same as
the distribution of T .

Lemma 4.9. Assume that there exists a constant c such that a.a.s. the auxiliary height
of T̂ t is asymptotic to ct as t → ∞. Then the radius of a RAN with n vertices is a.a.s.
asymptotic to c log n/2 as n→∞.

Proof. Let `n = 3n−8, and let ε > 0 be fixed. For the process P̂ , we define three stopping
times as follows:
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Figure 4.5: a RAN (top) and its corresponding 4-tree (bottom). In the bottom right part,
the type of each node and its τ value are written inside and beside it, respectively.
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a1 is the deterministic time (1− ε) log(`n)/2.

A2 is the random time when the evolving tree has exactly `n nodes.

a3 is the deterministic time (1 + ε) log(`n)/2.

By Proposition 2.18, a.a.s. as t→∞ we have

log |V (T̂ t)| ∼ 2t ,

so, as n→∞, a.a.s.
log |V (T̂ a1)| ∼ 2a1 = (1− ε) log(`n) ,

and hence |V (T̂ a1)| < `n, which implies a1 < A2. Symmetrically, it can be proved that
a.a.s. as n→∞ we have A2 < a3. It follows that a.a.s. as n→∞

ah
(
T̂ a1
)
≤ ah

(
T̂A2

)
≤ ah

(
T̂ a3
)
.

By the assumption, a.a.s. as n → ∞ we have ah
(
T̂ a1
)
∼ (1 − ε)c log(`n)/2 and

ah
(
T̂ a3
)
∼ (1 + ε)c log(`n)/2. On the other hand, as noted above, T has the same

distribution as T̂A2 . It follows that a.a.s. as n→∞

1− 2ε ≤ 2 ah(T )

c log(`n)
≤ 1 + 2ε .

Since ε was arbitrary, the result follows. �

It will be more convenient to view the process P̂ in the following equivalent way. Let
T̂ denote an infinite ternary tree whose nodes have types assigned using rules (a)–(d) and
are associated with independent Exp(1) random variables. For convenience, each edge of
the tree from a parent to a child is labelled with the random variable associated with
the parent, which denotes the age of the parent when the child is born. For every node
u ∈ V (T̂ ), its birth time is defined as the sum of the labels on the edges connecting u to

the root, and the birth time of the root is defined to be zero. Given t ≥ 0, the tree T̂ t

is the subtree induced by nodes with birth time less than or equal to t, and is finite with
probability one.

Let k ≥ 3 be a fixed positive integer. We define two random infinite trees Tk and Tk as

follows. First, we regard T̂ as a tree generated by each node giving birth to exactly three
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children with types assigned using (b)–(d), and with an Exp(1) random variable used to
label the edges to its children. The tree Tk is obtained using the same generation rules as

T̂ except that every node of type 2 or 3, whose distance to its closest ancestor of type 1 is
equal to k, dies without giving birth to any children. Given t ≥ 0, the random tree T tk is,
as before, the subtree of Tk induced by nodes with birth time less than or equal to t. The

tree Tk is also generated similarly to T̂ , except that for each node u of type 2 (respectively,
3) in Tk whose distance to its closest ancestor of type 1 equals k, u has exactly three
(respectively, four) children of type 1, and the edges joining u to its children get label 0
instead of random Exp(1) labels. (In the ‘evolving tree’ interpretation, u immediately gives
birth to three or four children of type 1 and dies.) Such a node u is called an annoying
node. The random tree T tk is defined as before.

Lemma 4.10. For every fixed k ≥ 3, every t ≥ 0, and every g = g(t), we have

P
[
ah
(
T tk

)
≥ g
]
≤ P

[
ah
(
T̂ t
)
≥ g
]
≤ P

[
ah
(
T tk

)
≥ g
]
.

Proof. The left inequality follows from the fact that the random edge labels of T̂ and Tk
can easily be coupled using a common sequence of independent Exp(1) random variables
in such a way that for every t ≥ 0, the generated T tk is always a subtree of the generated

T̂ t.

For the right inequality, we use a sneaky coupling between the edge labels of T̂ and
Tk. It is enough to choose them using a common sequence of independent Exp(1) random

variables X1, X2, . . . and define an injective mapping f : V (T̂ ) → V
(
Tk
)

such that for

every u ∈ V (T̂ ),

(1) the auxiliary depth of f(u) is greater than or equal to the auxiliary depth of u, and

(2) for some I and J ⊆ I, the birth time of u equals
∑

i∈I Xi and the birth time of f(u)
equals

∑
j∈J Xj.

For annoying nodes, the coupling and the mapping f is shown down to their grandchil-
dren in Figures 4.6 and 4.7. This is easily extended in a natural way to all other nodes of
the tree. �

With a view to proving Lemma 4.8 by appealing to Lemmas 4.9 and 4.10, we will
define two sequences

(
ρk
)

and (ρk) such that for each k, a.a.s. the heights of T tk and T tk are
asymptotic to ρkt and ρkt, respectively, and also

lim
k→∞

ρk = lim
k→∞

ρk = c ,
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Figure 4.6: illustrating the coupling in Lemma 4.10 for an annoying node of type 2 in T̂ .
The offspring of the node is shown above and the offspring of the corresponding node in
Tk is shown below. The type of each node is written inside the node. The coupling of edge
labels is defined by the appearance of A,B, . . . in the two cases. The label 0 is also used
in the case of Tk. The function f is defined by the labels beside the nodes.
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Figure 4.7: the coupling in Lemma 4.10 for an annoying node of type 3 in T̂
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where c ≈ 1.668 is defined in the statement of Lemma 4.8.

The following definition will be used throughout the rest of the section.

Definition 4.11 (Gamma distribution). For a positive integer s, let Gamma(s) denote
the Gamma distribution with mean s, i.e., the distribution of the sum of s independent
Exp(1) random variables.

For the rest of this section, asymptotics are with respect to t instead of n, unless
otherwise specified. We analyze the heights of Tk and Tk with the help of a theorem
of Broutin and Devroye [27, Theorem 1]. We state here a special case suitable for our
purposes, including a trivial correction to the conditions on E.

Theorem 4.12 (see [27]). Let E be a template nonnegative random variable that satisfies
P [E = 0] = 0 and sup{z : P [E > z] = 1} = 0, and such that P [E = z] < 1 for every
z ∈ R; and for which there exists λ > 0 such that E [exp(λE)] is finite. Let b > 1 be a
positive integer and let T∞ be an infinite b-ary tree. Let B be a template random b-vector
with each component distributed as E (but not necessarily independent components). For
every node u of T∞, label the edges from u to its children using an independently generated
copy of B.

Given t ≥ 0, let Ht be the height of the subtree of T∞ induced by the nodes for which
the sum of the labels on their path to the root is at most t. Then, a.a.s. we have Ht ∼ ρt,
where ρ is the unique solution to

sup{λ/ρ− log(E [exp(λE)]) : λ ≤ 0} = log b .

For each i = 2, 3, . . . , let αi, βi, γi denote the number of nodes of type 1, 2, 3 at depth
i of T̂ for which the root is the only node of type 1 in their path to the root. Then rules
(a)–(d) for determining node types imply

∀i > 2 αi = γi−1, βi = βi−1, γi = 2βi−1 + 2γi−1 .

These, together with α2 = 0, β2 = 3, and γ2 = 6 (see Figure 4.8), imply

∀i ≥ 2 αi = 3× 2i−1 − 6, βi = 3, γi = 3× 2i − 6 . (4.3)

Let bk =
∑k

i=1 αi and bk =
∑k

i=1 αi + 3βk + 4γk.

We define a random infinite tree Tk
′ as follows. The nodes of Tk

′ are the type-1 nodes
of Tk. Let V ′ denote the set of these nodes. For u, v ∈ V ′ such that u is the closest type-1
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Figure 4.8: we have α2 = 0, β2 = 3, and γ2 = 6.

ancestor of v in Tk, there is an edge joining u and v in Tk
′, whose label equals the sum of the

labels of the edges in the unique (u, v)-path in Tk. By construction, for all t ≥ 0, the height
of the subtree of Tk

′ induced by nodes with birth time less than or equal to t equals the
auxiliary height of T tk. Let u be a node in Tk

′. Then observe that for each i = 3, 4, . . . , k,

u has αi children whose birth times equal the birth time of u plus a Gamma(i) random
variable. In particular, Tk

′ is an infinite bk-ary tree.

To apply Theorem 4.12 we need the label of each edge to have the same distribution.
For this, we create a random rearrangement of Tk

′. First let Ek be the random variable
such that for each 3 ≤ i ≤ k, with probability αi/bk, Ek is distributed as a Gamma(i)
random variable. Now, for each node u of Tk

′, starting from the root and in a top-down
manner, randomly permute the branches below u. This results in an infinite bk-ary tree,
every edge of which has a random label distributed as Ek. Although the labels of edges
from a node to its children are dependent, the bk-vector of labels of edges from a node to
its children is independent of all other edge labels, as required for Theorem 4.12. Let ρ be
the solution to

sup{λ/ρ− log(E
[
exp(λEk)

]
) : λ ≤ 0} = log bk . (4.4)

Then by Theorem 4.12, a.a.s. the auxiliary height of T tk, which equals the height of the

subtree of Tk
′ induced by nodes with birth time less than or equal to t, is asymptotic to

ρt. Notice that we have

E [exp(λ Exp(1))] =
1

1− λ
.

So, by the definition of Gamma(s), and since the product of expectation of independent
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variables equals the expectation of their product,

E [exp(λ Gamma(s))] =
1

(1− λ)s
.

Hence by linearity of expectation,

E
[
exp(λEk)

]
=

k∑
i=3

αi
bk(1− λ)i

. (4.5)

One can define a random infinite bk-ary tree Tk
′
in a similar way. Let Ek be the random

variable such that for each 3 ≤ i ≤ k − 1, with probability αi/bk, it is distributed as a
Gamma(i) random variable, and with probability (αk + 3βk + 4γk)/bk, it is distributed as
a Gamma(k) random variable. Then by a similar argument, a.a.s. the auxiliary height of
T tk is asymptotic to ρt, where ρ is the solution to

sup{λ/ρ− log(E
[
exp(λEk)

]
) : λ ≤ 0} = log bk . (4.6)

Moreover, one calculates

E
[
exp(λEk)

]
=
αk + 3βk + 4γk

bk(1− λ)k
+

k−1∑
i=3

αi

bk(1− λ)i
. (4.7)

As part of our plan to prove Lemma 4.8, we would like to define ρk and ρk in such a
way that they are the unique solutions to (4.4) and (4.6), respectively. We first need to
establish two analytical lemmas.

For later convenience, we define F to be the set of positive functions f : [0.1, 0.2]→ R
that are differentiable on (0.1, 0.2), and let W : F → R[0.1,0.2] be the operator defined as

Wf(x) = x(x− 1)f ′(x)/f(x)− log f(x) .

Note that Wf is continuous. Define h ∈ F as

h(x) =
12x3

1− 2x
− 6x3

1− x
.

Lemma 4.13. The function Wh has a unique root x̂ in (0.1, 0.2).
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Proof. By the definition of (αi)i≥3 in (4.3) we have

h(x) =
∑
i≥3

αix
i ∀x ∈ [0.1, 0.2] .

Since αi > 0 for all i ≥ 3, we have h(x) > 0 and h′(x) > 0 for x ∈ [0.1, 0.2], and hence
the derivative of log h(x) is positive. Moreover, the derivative of x(x− 1)h′(x)/h(x) equals
4x(x− 1)/(1− 2x)2, which is negative. Therefore, Wh(x) is a strictly decreasing function
on [0.1, 0.2]. Numerical calculations give Wh(0.1) ≈ 1.762 > 0 and Wh(0.2) ≈ −0.831 < 0.
Hence, there is a unique solution to Wh(x) = 0 in (0.1, 0.2). �

Remark 4.14. Numerical calculations give x̂ ≈ 0.1629562 .

Define functions gk, gk ∈ F as

gk(x) =
k∑
i=3

αix
i, and gk(x) = (αk + 3βk + 4γk)x

k +
k−1∑
i=3

αix
i .

Note that by (4.5) and (4.7),

bk E
[
exp

(
λEk

)]
= gk

(
1

1− λ

)
, and bk E

[
exp

(
λEk

)]
= gk

(
1

1− λ

)
(4.8)

hold at least when (1− λ)−1 ∈ [0.1, 0.2], namely for all λ ∈ [−9,−4].

Lemma 4.15. Both sequences
(
Wgk

)∞
k=3

and (Wgk)
∞
k=3 converge pointwise to Wh on

[0.1, 0.2] as k → ∞. Also, there exists a positive integer k0 and sequences
(
xk
)∞
k=k0

and

(xk)
∞
k=k0

such that Wgk
(
xk
)

= Wgk (xk) = 0 for all k ≥ k0, and

lim
k→∞

xk = lim
k→∞

xk = x̂ .

Proof. For any x ∈ [0.1, 0.2], we have

lim
k→∞

gk(x) = h(x), lim
k→∞

gk
′(x) = h′(x), lim

k→∞
gk(x) = h(x), lim

k→∞
gk
′(x) = h′(x) ,

so the sequences
(
Wgk

)∞
k=3

and (Wgk)
∞
k=3 converge pointwise to Wh.

Next, we show the existence of a positive integer k0 and a sequence
(
xk
)∞
k=k0

such that

Wgk
(
xk
)

= 0 for all k ≥ k0, and
lim
k→∞

xk = x̂ .
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The proof for existence of corresponding positive integer k0 and the sequence (xk)
∞
k=k0

is

similar, and we may let k0 = max{k0, k0}.
Since Wh(0.1) > 0 and Wh(0.2) < 0, there exists k0 so that for k ≥ k0, Wgk(0.1) > 0

and Wgk(0.2) < 0. Since Wgk is continuous for all k ≥ 3, it has at least one root in
(0.1, 0.2). Moreover, since Wgk is continuous, the set {x : Wgk(x) = 0} is a closed set,
thus we can choose a root xk closest to x̂. We just need to show that limk→∞ xk = x̂. Fix
an ε > 0. Since Wh (x̂− ε) > 0 and Wh (x̂+ ε) < 0, there exists a large enough M such
that for all k ≥ M , Wgk(x̂− ε) > 0 and Wgk(x̂+ ε) < 0. Thus xk ∈ (x̂− ε, x̂+ ε). Since
ε was arbitrary, we conclude that limk→∞ xk = x̂. �

Let k0 be as promised by Lemma 4.15 and let
(
xk
)∞
k=k0

and (xk)
∞
k=k0

be the sequences

given by Lemma 4.15. Define the sequences
(
ρk
)∞
k=k0

and (ρk)
∞
k=k0

by

ρk =
(
1− xk−1

)
/ log gk(xk), ρk =

(
1− xk −1

)
/ log gk(xk). (4.9)

Lemma 4.16. For every fixed k ≥ k0, a.a.s. the heights of T tk and T tk are asymptotic to
ρkt and ρkt, respectively.

Proof. We give the argument for T tk; the argument for T tk is similar. First of all, we claim

that log(E
[
exp(λEk)

]
) is a strictly convex function of λ over (−∞, 0]. To see this, let

λ1 < λ2 ≤ 0 and let θ ∈ (0, 1). Then we have

E
[
exp

(
θλ1Ek + (1− θ)λ2Ek

)]
= E

[[
exp

(
λ1Ek

)]θ [
exp

(
λ2Ek

)]1−θ]
< E

[
exp

(
λ1Ek

)]θ E [exp
(
λ2Ek

)]1−θ
,

where the inequality follows from Hölder’s inequality, and is strict as the random variable
Ek does not have all of its mass concentrated in a single point. Taking logarithms completes
the proof of the claim.

It follows that given any value of ρ, λ/ρ−log(E
[
exp(λEk)

]
) is a strictly concave function

of λ ∈ (−∞, 0] and hence attains its supremum at a unique λ ≤ 0.

Now, define
λk = 1− xk −1 ,

which is in (−9,−4) as xk ∈ (0.1, 0.2). Next we will show that

λk/ρk − log(E
[
exp(λk Ek)

]
) = log bk , (4.10)

d

dλ

[
λ/ρk − log(E

[
exp(λEk)

]
)
] ∣∣∣
λ=λk

= 0 , (4.11)
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which implies that ρk is the unique solution for (4.6), and thus by Theorem 4.12 and the
discussion after it, a.a.s. the height of T tk is asymptotic to ρkt.

Notice that λk ∈ (−9,−4), so by (4.8),

bkE
[
exp(λEk)

]
= gk((1− λ)−1)

for λ in a sufficiently small open neighbourhood of λk. Taking logarithm of both sides and
using (4.9) gives (4.10).

To prove (4.11), note that

d

dλ

[
log(E

[
exp(λEk)

]
)
] ∣∣∣
λ=λk

=
d

dλ

[
log gk

((
1− λk

)−1
)
− log bk

] ∣∣∣
λ=λk

=
gk
′ ((1− λk)−1

)(
1− λk

)2
gk
(
(1− λk)−1

) = xk
2 gk

′(xk)

gk(xk)
.

By Lemma 4.15, Wgk(xk) = 0, i.e.,

xk
2 gk

′(xk)

gk(xk)
= xk

2 log gk(xk)

xk(xk − 1)
=

log gk(xk)

1− xk −1 =
1

ρk
,

and (4.11) is proved. �

To complete the proof we will need an analytic lemma, known as Dini’s theorem.

Lemma 4.17 (Theorem 7.13 in Rudin [114]). Let E be a compact set. Let (fn)n∈N be a
sequence of functions continuous on E, which converges to a continuous function f on E.
If fn(x) ≥ fn+1(x) for every n ∈ N and x ∈ E, then fn converges to f uniformly on E.

We now have all the ingredients to prove Lemma 4.8.

Proof of Lemma 4.8. By Lemma 4.9, we just need to show that a.a.s. the auxiliary height
of T̂ t is asymptotic to ct, where

c =
1− x̂−1

log h(x̂)
.

By Lemma 4.16, a.a.s. the heights of T tk and T tk are asymptotic to ρkt and ρkt, respectively.

By Lemma 4.15, xk → x̂ and xk → x̂. Observe that
(
gk
)∞
k=3

and (gk)
∞
k=3 converge pointwise

to h, and that for every k ≥ 3 and every x ∈ [0.1, 0.2], gk(x) ≤ gk+1(x) and gk(x) ≥ gk+1(x).

Thus by Lemma 4.17,
(
gk
)∞
k=3

and (gk)
∞
k=3 converge uniformly to h on [0.1, 0.2].
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Hence,

lim
k→∞

ρk = lim
k→∞

1− xk−1

log gk(xk)
=

1− x̂−1

log h(x̂)
= c ,

and

lim
k→∞

ρk = lim
k→∞

1− xk−1

log gk(xk)
=

1− x̂−1

log h(x̂)
= c .

It follows from Lemma 4.10 that a.a.s. the auxiliary height of T̂ t is asymptotic to ct, as
required. �

4.2 Lower bounds for longest paths

In this section we prove Theorem 4.2. We first prove part (a), i.e., we give a deterministic
lower bound for the length of a longest cycle in a RAN. Recall that Cm denotes the number
of vertices of a longest cycle in a RAN with m faces. Let G be a RAN with m faces, and let
v be the unique vertex that is adjacent to ν1, ν2, and ν3 (see Figure 4.9(a)). For 1 ≤ i ≤ 3,
let 4i be the triangle with vertex set {v, ν1, ν2, ν3} \ {νi}. Define the random variable L′m
as the largest number L such that for every permutation π on {1, 2, 3}, there is a path in
G of L edges from νπ(1) to νπ(2) not containing νπ(3). Clearly we have Cm ≥ L′m + 2.

Proof of Theorem 4.2(a). Let ξ = log 2/ log 3. We prove by induction on m that L′m ≥ mξ.
This is obvious for m = 1, so assume that m > 1. Let mi denote the number of faces in
4i. Then m1 + m2 + m3 = m. By symmetry, we may assume that m1 ≥ m2 ≥ m3. For
any given 1 ≤ i ≤ 3, it is easy to find a path avoiding νi that connects the other two νj’s
by attaching two appropriate paths in 41 and 42 at vertex v. (See Figures 4.9(a)–(c).)
By the induction hypothesis, these paths can be chosen to have lengths at least m1

ξ and
m2

ξ, respectively. Hence for every permutation π of {1, 2, 3}, there is a path from νπ(1) to
νπ(2) avoiding νπ(3) with length at least

m1
ξ +m2

ξ . (4.12)

It is easily verified that since m1 ≥ m2 ≥ m3 and m1 + m2 + m3 = m, the minimum of
(4.12) happens when m1 = m2 = m/3, thus

L′m ≥ m1
ξ +m2

ξ ≥ 2
(m

3

)ξ
= mξ ,

and the proof is complete. �
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(b) Path avoiding ν2.
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(c) Path avoiding ν1

Figure 4.9: paths avoiding 43 and one of the νi’s

Next, we use the same idea to give a larger lower bound for E [Cm]. Let the random
variable Xi denote the number of faces in 4i. Then the Xi’s have the same distribution
and are not independent. As in the proof of Proposition 4.7, we can analyze the evolution
of the random vector (X1, X2, X3) by modelling the process of building the RAN as an
Eggenberger-Pólya urn: after the first subdivision of 4, each of 41, 42, and 43 contains
exactly one face. We consider an urn with 3 different colours. Start with one ball of each
colour, corresponding to the faces in 41,42, and 43. In each subsequent step, we choose
a face uniformly at random, and subdivide it. For each i, if the face is in 4i, then the
number of faces in 4i increases by 2. In the urn, we add two balls of colour i. Thus after
k subdivisions of 4, the number of faces in 4i has the same distribution as the number of
balls of colour i after k − 1 draws.

Note that, when the RAN has m faces, the number of subdivisions is k = (m − 1)/2.
It follows from Theorem 2.10 that we have the weak convergence(

X1

m
,
X2

m
,
X3

m

)
−→ Dirichlet

(
1

2
,
1

2
,
1

2

)
, (4.13)

as m→∞.

We are now ready to prove part (b) of Theorem 4.2.

Proof of Theorem 4.2(b). Let ζ = 0.88. We prove that there exists a constant κ > 0 such
that E [L′m] ≥ κmζ holds for all m ≥ 1. We proceed by induction on m, with the induction
base being m = m0, where m0 is a sufficiently large constant, to be determined later. By
choosing κ sufficiently small, we may assume E [L′m] ≥ κmζ for all m ≤ m0.

For 1 ≤ i ≤ 3, let Xi denote the number of faces in 4i. Define a permutation σ on
{1, 2, 3} such that Xσ(1) ≥ Xσ(2) ≥ Xσ(3), breaking ties randomly. Then σ is a random per-
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mutation determined by the Xi and the random choice in the tie-breaking. By symmetry,
for every fixed σ′ ∈ S3, P [σ = σ′] = 1/6. As in the proof of part (a), we have

L′m ≥ L′Xσ(1) + L′Xσ(2) .

Taking the expectation on both sides, we have

E [L′m] ≥ E
[
L′Xσ(1) + L′Xσ(2)

]
≥ 6E

[
(L′X1

+ L′X2
)1X1>X2>X3

]
, (4.14)

where the second inequality holds by symmetry and as P [σ = (1, 2, 3)] = 1/6. By the
induction hypothesis, for every x1, x2 < m,

E
[
L′X1
| X1 = x1

]
≥ κxζ1, and E

[
L′X2
| X2 = x2

]
≥ κxζ2.

Hence,

E
[
(L′X1

+ L′X2
)1X1>X2>X3

]
≥ κE

[
(Xζ

1 +Xζ
2 )1X1>X2>X3

]
. (4.15)

Let

f(x1, x2, x3) =
1

2π
√
x1x2x3

and
S := {(x1, x2, x3) : x1, x2, x3 ≥ 0 and x1 + x2 + x3 = 1} .

Note that f and S are the density function and the support of Dirichlet(1/2, 1/2, 1/2),
respectively (see Definition 2.6). Since the function

(x1, x2, x3) 7→ (xζ1 + xζ2)1X1>X2>X3

is bounded and continuous on S, it follows from the convergence (4.13) that

E

[((
X1

m

)ζ
+

(
X2

m

)ζ)
1X1>X2>X3

]
→
∫
S

(xζ1 + xζ2)1x1>x2>x3f(x1, x2, x3)d(x1, x2, x3)

=

1∫
x1=1/3

min{x1,1−x1}∫
x2=(1−x1)/2

xζ1 + xζ2

2π
√
x1x2(1− x1 − x2)

dx2dx1

as m→∞ (see, e.g., Billingsley [15, Theorem 29.1 (i)]). By the choice of ζ, we have∫ 1

x1=1/3

∫ min{x1,1−x1}

x2=(1−x1)/2

xζ1 + xζ2

2π
√
x1x2(1− x1 − x2)

dx2dx1 > 1/6 .

Then, by (4.14) and (4.15),

E [L′m] ≥ 6κE
[
(Xζ

1 +Xζ
2 )1X1>X2>X3

]
> κmζ ,

if we choose m0 sufficiently large. �
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Figure 4.10: a triangle in G corresponding to a node of T with 9 grandchildren. Ver-
tices v1, . . . , v7 are the vertices in the boundaries of the triangles corresponding to these
grandchildren.

4.3 Upper bounds for longest paths

In this Section we prove Theorem 4.4. Let Tt denote the 4-tree of a RAN G with n = t+3
vertices and m = 2t + 1 faces, i.e. a RAN after exactly t subdivisions. We start with a
crucial graph theoretic observation.

Recall that the set of grandchildren of a node is the set of children of its children, and
for a triangle 4 in G, let I(4) denote the set of vertices of G that are strictly inside 4.

Lemma 4.18. Let n4 be a node of Tt with nine grandchildren n41 ,n42 , . . . ,n49. Then
the vertex set of a path in G intersects at most eight of the I(4i)’s.

Proof. There are exactly seven vertices in the boundaries of the triangles corresponding
to the grandchildren of n4. Let v1, . . . , v7 denote such vertices (see Figure 4.10). Let
P = u1u2 . . . up be a path in G. When P enters or leaves one of 41,42, . . . ,49, it must
go through a vi. So P does not contain vertices from more than one triangle between two
consecutive occurrences of a vi. Since P goes through each vi at most once, the vertices vi
split P up into at most eight sub-paths. Hence P contains vertices from at most eight of
the triangles 4i. �

Definition 4.19 (Deficient subtree). A subtree J of Tt is called deficient if each node of
J has at most eight grandchildren (out of the nine possible).
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Figure 4.11: a deficient subtree is coloured in black.

See Figure 4.11 for an illustration. In view of Lemma 4.18, we will prove upper bounds
for the size of deficient subtrees.

For λ > 1, define

g(λ) =
9λ

2(λ− 1)3/2

(√
π +
√
π log (λ− 1) /2 + 4/9

)
. (4.16)

The main result of this section is the following proposition.

Proposition 4.20. Let τ, κ, and λ > 2 be positive constants satisfying

3e log τ < 2
√
τ , (4.17)

9 κλg(λ) ≤ 1 , (4.18)

and let d be the largest even integer smaller than log t/ log τ . Then, a.a.s. as t → ∞, the
largest deficient subtree of Tt has O

(
8d/2 + tκ−d/2

)
nodes.

We show how this theorem implies Theorem 4.4.

Proof of Theorem 4.4. Set λ = 106, κ = (9g(λ))−1/λ ≈ 1.000000535, τ = 720, and δ =
1− 4× 10−8. Observe that 3e log τ < 2

√
τ and δ > max{1− log(κ)/2 log τ, log(8)/2 log τ}.

82



Let P be a path in G and let R(P ) denote the set of nodes n4 of Tt such that I(4)
contains some vertex of P . By Lemma 4.18, R(P ) induces a deficient subtree of Tt. Hence,
using Proposition 4.20 for the second inequality, a.a.s. we have

|V (P )| ≤ 3 + |R(P )| ≤ 3 +O
(
8d/2 + tκ−d/2

)
< tδ < (2t+ 1)δ ,

as required. �

The rest of this section is devoted to the proof of Proposition 4.20. It will be convenient
to view T0, T1, . . . , Tt, . . . as a growing subtree of an infinite ternary tree T . Denote the
root of T by %. For any v ∈ V (T ), the set of nodes of the unique (v, %)-path is denoted by
π(v).

For any t ∈ N and v ∈ V (Tt), let ℵ(v, t) denote the number of descendants of v in Tt,
including v itself. This is the number of nodes in the ‘branch’ of Tt containing v, including
v. For any t ∈ N and v ∈ V (T ), let

Weight(v, t) =
ℵ(v, t)− 1

3
(4.19)

if v ∈ V (Tt), and Weight(v, t) = 0 if v /∈ V (Tt). Note that this is the number of non-leaf
nodes in this branch at time t, see Figure 4.12. For A ⊆ V (T ) define Weight(A, t) =∑

v∈A Weight(v, t).

The main idea of the proof is to show that in a deficient subtree, in every level we
lose a certain amount of ‘weight’, so we cannot gather a lot of nodes. However, working
with weights is a bit difficult; using the following lemma, which is based on results about
Eggenberger-Pólya urns, we introduce ‘masses’, which are easier to work with.

Lemma 4.21. There exist random variables {Bv}v∈V (T ), such that for any t ∈ N and
v ∈ V (T ) we have

Weight(v, t)
s

≤ Bin

t, ∏
σ∈π(v)

Bσ

 .

Moreover, B% = 1 and for all v 6= % we have Bv
d
= Beta(1/2, 1). Also, if u and v are not

siblings, then Bu and Bv are independent. Finally, if x, y, z are siblings, then

Bx +By +Bz = 1 . (4.20)
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v

Figure 4.12: we have let ℵ(v, 5) = 13 and Weight(v, 5) = 4.

Proof. Consider a node v 6= % and a positive integer t such that v ∈ V (Tt), and let p
denote the parent of v. Note that at time t, the number of leaves in the branch at v is
2Weight(v, t)+1. Hence, given that at time t+1 the weight of p increases, the probability,
conditional on the past, that the weight of v increases at the same time, is equal to

2Weight(v, t) + 1

2Weight(p, t) + 1
.

Each time a weight increases, its increment is exactly 1. Thinking of v and its offspring as
white balls, and its siblings and their offspring as black balls, the evolution of the numerator
of the above expression over time can be modelled using an Eggenberger-Pólya urn, with
initial condition w0 = 1, b0 = 2, and reinforcement s = 2 (see Section 2.3), that is,

2Weight(v, t) + 1
d
= Urn(1, 2, 2,Weight(p, t)− 1) .

Let X
d
= Beta(1/2, 1). Proposition 2.9 states that

Urn(1, 2, 2,Weight(p, t)− 1)
d
= 1 + 2 Bin(Weight(p, t)− 1, X) .

Thus,

Weight(v, t)
d
= Bin(Weight(p, t)− 1, X)

s

≤ Bin(Weight(p, t), X) .
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Moreover, the urns corresponding to distinct nodes are mutually independent. Set B% = 1
and for any triple of siblings (x, y, z) we independently assign

(Bx, By, Bz)
d
= Dirichlet(1/2, 1/2, 1/2) .

By the properties of the Dirichlet distribution (see Definition 2.6) we have Bx+By+Bz = 1
and each of Bx,By, and Bz is distributed as Beta(1/2, 1). Note that Weight(%, t) = t.
So by induction, Weight(v, t), conditional on {Bσ}σ∈π(v), is stochastically smaller than

Bin
(
t,
∏

σ∈π(v) Bσ

)
, as required. �

For any node v of T , define

Mass(v) =
∏

σ∈π(v)

Bσ . (4.21)

Thanks to Lemma 4.21, we can work with the smooth and somewhat independent masses
instead of non-smooth and dependent weights, which makes life easier. This lemma states
that the masses approximate the weights well enough for our purposes. Another advantage
is that we can now work with the infinite tree T rather than the finite and unbalanced Tt,
so we need not worry about the structure of the tree and which nodes are there by time t
etc.

Observation 4.22 (Law of mass conservation). Let v ∈ V (T ) and let x, y, z denotes its
children. Then (4.20) implies that Mass(v) = Mass(x) + Mass(y) + Mass(z) .

For a node v of T , we define

Υv = min

{
Mass(u)

Mass(v)
: u is a grandchild of v

}
. (4.22)

We will need a technical lemma, whose proof consists of straightforward calculations
and appears at the end of the section.

Lemma 4.23. Let v be a node of T and let λ > 2. Then E
[
(1−Υv)

λ
]
< g1(λ) < g(λ),

for some function g1, where g is defined in (4.16).

The following lemma, which is the core of our argument, bounds the mass of a deficient
subtree. The idea of the proof is that in a deficient subtree, going down every two levels
we lose a certain amount of mass.
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As in Definition 4.19, we say that a subtree J of T is deficient if each node of J has
at most eight grandchildren (out of the nine possible).

Denote by Bd the collection of subsets of V (T ) at depth d, with the property that they
belong to the same deficient subtree. Note that each element of B2d has at most 8d nodes.

Lemma 4.24. Let κ > 0 and λ > 2 be constants satisfying (4.18). A.a.s. as d → ∞ we
have

max
C∈B2d

Mass(C) ≤ κ−d.

Proof. Let g1(λ) be as given by Lemma 4.23. We first prove a claim. For a node v of V (T )
at even depth, let v = v2k, v2k−1, . . . , v1, v0 = % be the unique (v, %)-path. We define

ρ(v) = {v2k−2, v2k−4, . . . , v2, v0} .

Claim 4.25. A.a.s. as d→∞ the following holds: for all v at depth 2d of T we have∏
σ∈ρ(v)

(
1−Υσ

)−1 ≥ κd .

Proof of Claim. Let v be an arbitrary node at depth 2d. Since the Υσ are independent for
σ ∈ ρ(v) and λ > 2, Markov’s inequality gives

P

 ∏
σ∈ρ(v)

(
1−Υσ

)−1
< κd

 = P

 ∏
σ∈ρ(v)

(
1−Υσ

)λ
> κ−λd


< E

 ∏
σ∈ρ(v)

(
1−Υσ

)λκλd < (g1(λ)κλ
)d
,

where we have used Lemma 4.23 for the last inequality. By (4.18) and since g1(λ) < g(λ) we
have 9g1(λ)κλ < 1. Since there are 9d nodes at depth 2d of T , the union bound completes
the proof of claim.

For each node v of T at even depth, we define its adjusted mass, written AMass(v), as
follows. For the root, AMass(%) = 1, and for other nodes v,

AMass(v) = Mass(v)×
∏
σ∈ρ(v)

(1−Υσ)−1 .

For any A ⊆ V (T ), let AMass(A) =
∑

v∈A AMass(v).
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Claim 4.26. For any d ∈ N0 and any C ∈ B2d we have AMass(C) ≤ 1.

Proof of Claim. Let C ∈ B2d, and let T be a deficient subtree of T that contains the nodes
of C. For any node v of T , denote its set of grandchildren in T by gc(v). Then by the
definition of Υv in (4.22) and the Law of mass conservation (Observation 4.22),

Mass(gc(v)) ≤ (1−Υv)Mass(v).

Thus AMass(gc(v)) ≤ AMass({v}). Hence, for any 1 ≤ k ≤ d, we have∑
v∈V (T ),depth(v)=2k

AMass(v) ≤
∑

v∈V (T ),depth(v)=2k−2

AMass(v).

Iterating this, we get

AMass(C) =
∑
v∈C

AMass(v) ≤ AMass(%) = 1.

Using Claims 4.25 and 4.26, a.a.s. as d→∞ we have that for every C ∈ B2d,

1 ≥ AMass(C) =
∑
v∈C

Mass(v)
∏
σ∈ρ(v)

(1−Υσ)−1

 ≥∑
v∈C

(
Mass(v)κd

)
= κdMass(C) ,

and the lemma follows. �

We now prove the main result of this section.

Proof of Proposition 4.20. By Lemma 4.21, for any node v and positive integer t we have

Weight(v, t)
s

≤Bin(t,Mass(v)). The upper tail Chernoff bound (2.3) implies

P [Weight(v, t) ≥ 3tMass(v) |Mass(v) ≥ q] ≤ exp(−tq) (4.23)

for any q > 0.

Since τ satisfies (4.17), there exists τ1 < τ satisfying

3e log τ1 < 2
√
τ1 . (4.24)
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Let β = 1/τ1. By Lemma 2.23 (concentration of products of independent beta random
variables), for any node v at level d we have

P
[
Mass(v) < βd

]
= P

 ∏
σ∈π(v)

Bσ < βd

 ≤ (e log(1/β)
√
β

2

)d
. (4.25)

Note that (4.24) implies that the term in brackets is a constant smaller than 1/3.

Let A denote the event ‘there exists node v at depth d with Weight(v, t) ≥ 3tMass(v).’
We have

P [A] ≤ 3dP [Weight(v, t) ≥ 3tMass(v)] ≤ 3dP
[
Mass(v) < βd

]
+ 3d exp

(
−tβd

)
,

where we have used (4.23) for the second inequality. The right-hand-side is o(1): the
first term is o(1) since (4.25) holds, and the second one is o(1) as t1/dβ ≥ τβ, and τβ
is a constant larger than 1. So, a.a.s. as d → ∞, for all nodes v at depth d we have
Weight(v, t) < 3tMass(v).

On the other hand, by Lemma 4.24, a.a.s. as d→∞ we have maxC∈Bd Mass(C) ≤ κ−d/2.
Therefore, a.a.s. as d→∞ we have

max
C∈Bd

Weight(C, t) < 3tκ−d/2 . (4.26)

Since d is a growing function of t, (4.26) holds also a.a.s. as t→∞.

Let J be a deficient subtree of Tt. If J has k nodes at depths r and r + 1, then it has
at most 8k nodes at depths r + 2 and r + 3, hence the number of nodes of J with depth
smaller than d is at most

4× (1 + 8 + · · ·+ 8d/2−1) = 4× (8d/2 − 1)/7 < 8d/2 .

Let C be the set of nodes of J at depth d. Note that C ∈ Bd. From the definition of
weights in (4.19), the number of nodes of J with depth at least d is∑

v∈C

ℵ(v, t) = 3Weight(C, t) + |C| ≤ 9tκ−d/2 + 8d/2 ,

where we have used (4.26). Therefore,

|V (J )| ≤ 2× 8d/2 + 9tκ−d/2 ,

as required. �
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Proof of Lemma 4.23. Let Υ = Υv. By definition of the Mass function in (4.21), for
each grandchild u of v, the fraction Mass(u)/Mass(v) is a product of two independent
Beta(1/2, 1) random variables. Let B1 and B2 be two such variables. The density function
of each of B1 and B2 is 1/(2

√
x) if x ∈ (0, 1) and 0 elsewhere, hence we have

P [B1B2 ≤ ε] =

∫ 1

0

(∫ min{1,ε/x}

0

1

2
√
y

dy

)
1

2
√
x

dx =
√
ε(1 + log(1/ε)/2) .

Thus

E
[
(1−Υ)λ

]
=

∫ 1

0

P
[
(1−Υ)λ ≥ x

]
dx

=

∫ 1

0

P
[
Υ ≤ 1− x1/λ

]
dx .

Since v has nine grandchildren, by the union bound,

E
[
(1−Υ)λ

]
≤ 9

∫ 1

0

P
[
B1B2 ≤ 1− x1/λ

]
dx

=
9

2

∫ 1

0

√
1− x1/λ log

(
e2

1− x1/λ

)
dx .

With the change of variables y = (λ− 1)(1− x1/λ), we find

E
[
(1−Υ)λ

]
≤ 9λ

2(λ− 1)3/2

∫ λ−1

0

√
y log

(
e2(λ− 1)

y

)(
1− y

λ− 1

)λ−1

dy

<
9λ

2(λ− 1)3/2

∫ λ−1

0

√
y log

(
e2(λ− 1)

y

)
e−ydy .

Define

g1(λ) =
9λ

2(λ− 1)3/2

∫ λ−1

0

√
y log

(
e2(λ− 1)

y

)
e−ydy .

Since λ > 2, we have∫ λ−1

0

√
y log

(
e2(λ− 1)

)
e−ydy <

∫ ∞
0

√
y log

(
e2(λ− 1)

)
e−ydy = log

(
e2(λ− 1)

)√
π/2 ,

and ∫ λ−1

0

√
y log (1/y) e−ydy ≤

∫ 1

0

√
y log (1/y) e−ydy <

∫ 1

0

√
y log (1/y) dy = 4/9 ,

so E
[
(1−Υ)λ

]
< g1(λ) < g(λ), and the proof is complete. �
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Chapter 5

The random-surfer Webgraph model

In this chapter1 we study the random-surfer Webgraph model, which is similar to the
evolving models we studied in Chapter 3: in every step a new vertex arrives and is joined
to one or more vertices of the existing graph.

In the preferential attachment model and most of its variations (see, e.g., [9, 51, 54, 88])
the probability that the new vertex attaches to an old vertex v, called the attraction of
v, is proportional to a deterministic function of the degree of v. In other variations (see,
e.g., [14, 61]) the attraction also depends on the so-called ‘fitness’ of v, which is a random
variable generated independently for each vertex and does not depend on the structure
of the graph. For analyzing such models when they generate trees, a typical technique
is to approximate them with population-dependent branching processes and prove that
results on the corresponding branching processes carry over to the original models. For
example, Pittel [111] estimated the height of random recursive trees. Bhamidi [13] used this
technique to show that the height of a variety of preferential attachment trees is asymptotic
to a constant times the logarithm of the number of vertices, where the constant depends
on the parameters of the model.

In the random-surfer Webgraph model, however, the attraction of a vertex does not
depend only on its degree, but rather on the general structure of the graph, so the branching
processes techniques cannot apply directly, and new ideas are needed. The crucial novel
idea in our arguments is to reduce the attachment rule to a simple one, with the help of
introducing (possibly negative) ‘weights’ for the edges.

1This chapter is based on joint work with Nick Wormald. The results appear in the submitted
manuscript [101], an extended abstract of which has been published [102].

90



Suppose that when a new vertex appears, it builds d new edges to old vertices; to bound
the diameter, as we did in Chapter 3, we just employ the first created edge. In the special
case d = 1, we obtain a random recursive tree with edge weights, and then we adapt a
powerful technique developed by Broutin and Devroye [27] (that uses branching processes)
to study its weighted height. This technique is based on large deviations, and we have
already used a special case of their main result in Chapter 4 (see Theorem 4.12). Their
main result [27, Theorem 1] is not applicable here for two reasons. Firstly, the weights
of edges on the path from the root to each vertex are not independent, and secondly, the
weights can be negative.

We now define the models and state the main results of this chapter. In Section 5.1 we
give logarithmic upper bounds for diameters of the random-surfer Webgraph model and the
PageRank-based selection Webgraph model in the general case d ≥ 1. In Sections 5.2–5.4
we focus on the special case d = 1 and prove close lower and upper bounds. Section 5.2
contains the main technical contribution of this chapter, where we explain how to transform
the random-surfer tree model into one that is easier to analyze. The lower and upper bounds
are proved in Sections 5.3 and 5.4, respectively. Concluding remarks appear in Section 5.5.

Definition 5.1 (Random-surfer Webgraph model [16]). Let d be a positive integer and
let p ∈ (0, 1]. Generate a random directed rooted n-vertex graph, possibly with loops and
multiple edges, with all vertices having out-degree d. Start with a single vertex v0, the
root, with d self-loops. At each subsequent step s ∈ [n − 1], a new vertex vs appears
and d edges are created from it to vertices in {v0, v1, . . . , vs−1}, by doing the following
probabilistic procedure d times, independently: choose a vertex u uniformly at random
from {v0, v1, . . . , vs−1}, and a fresh random variable X = Geo(p); perform a simple random
walk of length X starting from u, and join vs to the last vertex of the walk.

The motivation behind this definition is as follows. Think of the vertex vs as a new
web page that is being set up. Say the owner wants to put d links in her web page. To
build each link, she does the following: she goes to a random page. With probability p she
likes the page and puts a link to that page. Otherwise, she clicks on a random link on that
page, and follows the link to a new page. Again, with probability p she likes the new page
and puts a link to that, otherwise clicks on a random link etc., until she finds a desirable
page to link to. The geometric random variables correspond to this selection process.

Theorem 5.2. Let d be a positive integer and let p ∈ (0, 1]. A.a.s. the diameter of the
random-surfer Webgraph model with parameters p and d is at most 8ep(log n)/p.

Recall that the diameter of a directed graph is defined as the diameter of its underlying
undirected graph, which is natural here since this model generates directed acyclic graphs
(newer vertices always create edges to older vertices).
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Figure 5.1: a random-surfer Webgraph (left) with d = 1 and its corresponding random-
surfer tree (right)

Notice that the upper bound in Theorem 5.2 does not depend on d (whereas one would
expect that the diameter must decrease asymptotically as d increases). This independence
is because in our argument we employ only the first edge created by each new vertex to
bound the diameter.

When d = 1, we show in Theorem 5.4 below that the diameter is a.a.s. Θ(log n). An
interesting open problem is to evaluate the asymptotic value of the diameter when d > 1.
In this regime the diameter might be of a smaller order, e.g. Θ(log n/ log log n), as is the
case for the preferential attachment model (see [20, Theorem 1]).

A random-surfer tree is an undirected tree obtained from a random-surfer Webgraph
with d = 1 by deleting the self-loops of the root and ignoring the edge directions. See
Figure 5.1 for an illustration.

Theorem 5.3. For p ∈ (0, 1), let s= s(p) be the unique solution in (0, 1) to

s log

(
(1− p)(2− s)

1− s

)
= 1 . (5.1)

Let p0 ≈ 0.206 be the unique solution in (0, 1/2) to

log

(
1− p
p

)
=

1− p
1− 2p

. (5.2)

Define the functions cL, cU : (0, 1)→ R as

cL(p) = exp(1/s)s(2− s)p ,
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Figure 5.2: the functions cL and cU in Theorems 5.3 and 5.4

and

cU(p) =

cL(p) if p0 ≤ p < 1(
log
(

1−p
p

))−1

if 0 < p < p0 .

For every fixed ε > 0, a.a.s. the height of the random-surfer tree model with parameter p
is between (cL(p)− ε) log n and (cU(p) + ε) log n.

The value p0 and the functions cL and cU (plotted in Figure 5.2) are well defined by
Lemma 5.21 below. Also, cL and cU are continuous, and limp→0 cL(p) = limp→0 cU(p) = 0
and limp→1 cL(p) = e. We suspect that the gap between our bounds when p < p0 is an
artefact of our proof technique, and we do not expect a phase transition in the behaviour
of the height at p = p0.

We also prove lower and upper bounds for the diameter, which are close to being tight.

Theorem 5.4. Let cL and cU be defined as in Theorem 5.3. For every fixed ε > 0,
a.a.s. the diameter of the random-surfer tree model with parameter p ∈ (0, 1) is between
(2cL(p)− ε) log n and (2cU(p) + ε) log n.

Immediately, we have the following corollary.

Corollary 5.5. Let cL and p0 be defined as in Theorem 5.3. For any p ∈ [p0, 1), the
height of the random-surfer tree model with parameter p is a.a.s. asymptotic to cL(p) log n
as n→∞, and its diameter is a.a.s. asymptotic to 2cL(p) log n.
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A natural open problem is to close the gap between the lower and upper bounds in
Theorems 5.3 and 5.4 when p < p0. It seems that for solving this problem new ideas are
required.

We now define the PageRank-based selection Webgraph model.

Definition 5.6 (PageRank-based selection Webgraph model [108]). Let d be a positive
integer and let β ∈ [0, 1] and p ∈ (0, 1]. The PageRank-based selection Webgraph model is
a random n-vertex directed graph possibly with loops and multiple edges, with all vertices
having out-degree d, generated as follows. It starts with a single vertex with d self-loops.
At each subsequent step a new vertex appears, chooses d old vertices and attaches to them
(where a vertex can be chosen multiple times). These choices are independent and the
head of each edge is a uniformly random vertex with probability β, and is a vertex chosen
according to the PageRank distribution (with restart probability p) with probability 1−β.

Remark 5.7. The preferential attachment scheme is sometimes justified by stating that
vertices with higher degrees are typically more important, so it is more likely that they
are linked to in the future. The idea of the above definition is to replace the notion of
degree with that of PageRank, which is supposed to be a better measure of importance of
a vertex.

Theorem 5.8. Let d be a positive integer and let p, β ∈ (0, 1]. A.a.s. as n → ∞ the
diameter of the PageRank-based selection Webgraph model with parameters d, p, and β is
at most 8ep(log n)/p.

Chebolu and Melsted [31, Theorem 1.1] showed the random-surfer Webgraph model is
equivalent to the PageRank-based selection Webgraph model with β = 0 (this fact also
follows from Proposition 2.25). Hence Theorems 5.2 follows immediately from Theorem 5.8.
Moreover, the conclusions of Theorems 5.3 and 5.4 apply to the PageRank-based selection
Webgraph model with β = 0 and d = 1.

In Theorems 5.3 and 5.4 we have assumed that p < 1, since the situation for p = 1
has been clarified in previous work. Let p = 1. Then a random-surfer tree has the same
distribution as a random recursive tree, the height of which is a.a.s. asymptotic to e log n
as proved by Pittel [111]. It is not hard to alter his argument to prove the diameter is a.a.s.
asymptotic to 2e log n. Note that this is consistent with our results, as limp→1 cL(p) = e.
For the rest of the chapter, we fix p ∈ (0, 1).

We give high-level sketches of the proofs. For the general case d ≥ 1, i.e. Theorems 5.2
and 5.8, we use a coupling with a random recursive tree, and sharp concentration bounds
for sums of exponential and geometric random variables (Lemmas 2.21 and 2.22).
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For the special case d = 1, i.e. Theorems 5.3 and 5.4, our results are sharper and the
analysis is much more involved. First, we simplify the attachment procedure by introducing
(possibly negative) weights for the edges. Then we embed the tree into a continuous-time
branching process using the idea of poissonization. To estimate the height, we would like
to apply the result of Broutin and Devroye [27] again, but it is not applicable since the
‘weights’ are not independent! So we adapt their technique and produce a variant of their
theorem which does not require independence, but has a weaker conclusion. For proving
this variant we use Galton-Watson branching processes (see Section 2.7). To apply this
variant we need a couple of large deviation inequalities for sums of non-independent random
variables, and establishing these takes a few pages of calculation. Finally, the answer is
given implicitly as a solution of an equation involving maximization of a function. We
solve this maximization problem via differentiation and a convexity argument.

We include some definitions here. Define the depth of a vertex as the length of a shortest
path (ignoring edge directions) connecting the vertex to the root, and the height of a graph
G, denoted by ht(G), as the maximum depth of its vertices. Clearly the diameter is at
most twice the height. In a weighted tree (a tree whose edges are weighted), define the
weight of a vertex to be the sum of the weights of the edges connecting the vertex to the
root, and the weighted height of tree T , written wht(T ), to be the maximum weight of its
vertices. We view an unweighted tree as a weighted tree with unit edge weights, in which
case the weight of a vertex is its depth, and the notion of weighted height is the same as
the usual height.

We will need the following two large deviation inequalities, which have been proved in
Section 2.5.

Define the function Υ : (0,∞)→ R as

Υ(x) =

{
x− 1− log(x) if 0 < x ≤ 1

0 if 1 < x .
(5.3)

Lemma 5.9 (Cramér’s Theorem for exponential random variables). Let E1, E2, . . . , Em be
independent exponential random variables with mean 1. For any fixed x > 0, as m → ∞
we have

exp (−Υ(x)m− o(m)) ≤ P [E1 + E2 + · · ·+ Em ≤ xm] ≤ exp(−Υ(x)m) .

Define the function f : (−∞, 1]→ R as

f(x) = (2− x)2−xp(1− p)1−x(1− x)x−1 . (5.4)

Lemma 5.10. Let Z1, Z2, . . . , Zm be independent 1 + Geo(p) random variables, and let
κ ≥ 1/p. Then we have P [Z1 + Z2 + · · ·+ Zm ≥ κm] ≤ f(2− κ)m.
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5.1 Upper bound for the PageRank-based model

In this section we prove Theorem 5.8, which gives an upper bound for the diameter of the
PageRank-based selection Webgraph model. Theorem 5.2 follows immediately using [31,
Theorem 1.1]. We need a technical lemma, whose proof follows from straightforward cal-
culations.

Lemma 5.11. Let η, c be positive numbers satisfying η ≥ 4ep/p and c ≤ pη. Then we have
−cΥ(1/c) + c log f(2− η/c) < max{η(1− p) log(1− p3),−0.15pη} − 1.

Proof. We consider two cases.
Case 1: c ≥ 1. In this case we prove

−cΥ(1/c) + c log f(2− η/c) < η(1− p) log(1− p3)− 1.

Notice that we have 1 − cΥ(1/c) = c + c log(1/c), so, using the definition of f and since
η(1− p) ≤ η − c, the conclusion is implied by

c+ c log(1/c) + η log(η(1− p)/(η − c)) + c log(p(η − c)/((1− p)c)) < (η − c) log(1− p3) .

Letting r = η/c and since c > 0, this statement is equivalent to

ep(1− p)r−1r2(r/(r − 1))r−1 < η(1− p3)r−1 .

Since (r/(r − 1))r−1 < e, and 1− p < (1− p3)e−p, for this inequality to hold it suffices to
have

e2+pr2p exp(−pr) ≤ 4ep/p ∀r ∈ [p−1,∞) ,

which follows from the fact that x2e−x ≤ 4e−2 for all x ≥ 1.

Case 2: c < 1. In this case we prove

−cΥ(1/c) + c log f(2− η/c) < −0.15pη − 1.

Since Υ(1/c) = 0, this is equivalent to

1 + 0.15pη + c log f(2− η/c) < 0. (5.5)

Note that (
η/c

η/c− 1

)η/c−1

< e ,
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so we have

c log f(2− η/c) = log
(
(η/c)ηpc(1− p)η−c(η/c− 1)c−η

)
< log

(
(eηp/c)c(1− p)η−c

)
≤ c log(eηp/c) + cp− pη ,

where we have used log(1 − p) ≤ −p in the last inequality. Hence to prove (5.5), since
c > 0, it suffices to show that

1

c
+ 1 + log(ηp/c) + p < 0.85pη/c . (5.6)

Since pη ≥ 4ep ≥ 4 > 4c, we have

1

c
< 0.25pη/c,

1 + p <
1 + p

c
<
ep

c
≤ 0.25pη/c,

log(ηp/c) < 0.35pη/c ,

which imply (5.6). �

We now describe an alternative way to generate the edge destinations in the PageRank-
based selection model. Define the non-negative random variable L as

L = L(p, β) =

{
0 with probability β ,

Geo(p) with probability 1− β .

Note that Geo(p) stochastically dominates L. The following lemma is a direct corollary of
Proposition 2.25.

Lemma 5.12. The head of each new edge in the PageRank-based selection model can be
obtained by sampling a vertex u uniformly from the existing graph and performing a simple
random walk of length L starting from u.

We now have the ingredients to prove Theorem 5.8.

Proof of Theorem 5.8. Let η = 4ep/p. As done several times in Chapter 3, we define an
auxiliary tree whose node set equals the vertex set of the graph generated by the PageRank-
based selection Webgraph model, and whose weighted height dominates the height of this
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graph. Then we show a.a.s. this tree has weighted height at most η log n, which completes
the proof.

Initially the tree has just one vertex v0. By Lemma 5.12, the growth of the PageRank-
based selection model at each subsequent step s ∈ [n − 1] can be described as follows:
a new vertex vs appears and d edges are created from it to vertices in {v0, v1, . . . , vs−1},
by doing the following probabilistic procedure d times, independently: choose a vertex u
uniformly at random from {v0, v1, . . . , vs−1}, and a fresh random variable L; perform a
simple random walk of length L starting from u, and join vs to the last vertex of the walk.

Consider a step s and the first chosen u ∈ {v0, . . . , vs−1} and L. In the tree, we join the
vertex vs to u and set the weight of the edge vsu to be L+ 1. Note that the edge weights
are mutually independent. Since the (u, vs)-distance in the graph is at most L + 1, an
inductive argument gives that for any vertex v, its weight in the auxiliary tree is greater
than or equal to its depth in the graph. Hence, it suffices to show that a.a.s. the weighted
height of the auxiliary tree is at most η log n. We work with the tree in the rest of the
proof.

Let us consider an alternative way to grow the tree, used by Devroye, Fawzi, and
Fraiman [47], which results in the same distribution. Let U1, U2, . . . be i.i.d. uniform
random variables in (0, 1). Then for each new vertex vs, we attach it to the vertex vbsUsc,
which is indeed a vertex uniformly chosen from {v0, . . . , vs−1}.

For convenience, we consider the tree when it has n + 1 vertices v0, v1, . . . , vn. Let
D(s),W (s) denote the depth and the weight of vertex vs, respectively. We have

P [wht(auxiliary tree) > η log n] ≤
n∑
s=1

P [W (s) > η log n]

≤ nP [W (n) > η log n] =
n∑
d=1

A(d) ,

where we define

A(d) = nP [D(n) = d]P [W (n) > η log n|D(n) = d] .

To complete the proof it is enough to show
∑n

d=1A(d) = o(1).

Let P (0) = 0 and for s = 1, . . . , n, let P (s) denote the index of the parent of vs. We
have

P [D(n) ≥ d] = P [D(P (n)) ≥ d− 1] = · · · = P
[
D(P d−1(n)) ≥ 1

]
= P

[
P d−1(n) ≥ 1

]
.
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Since P (m) = bmUmc ≤ mUm for each 0 ≤ m ≤ n and since the Ui are i.i.d., we have

P
[
P d−1(n) ≥ 1

]
≤ P [nU1U2 . . . Ud−1 ≥ 1] .

Let Ei = − logUi. Then Ei
d
= Exp(1) (see Proposition 2.13), and moreover,

P [D(n) ≥ d] ≤ P [nU1U2 . . . Ud−1 ≥ 1]

= P [E1 + · · ·+ Ed−1 ≤ log n] ≤ exp

(
−(d− 1)Υ

(
log n

d− 1

))
, (5.7)

where we have used Lemma 5.9. The right-hand side is o(1/n) for d = 1.1e log n. Hence
to complete the proof we need only show that

A(d) = o(1/ log n) ∀d ∈ (0, 1.1e log n) . (5.8)

Fix an arbitrary positive integer d ∈ (0, 1.1e log n). The random variable W (n), condi-
tional on D(n) = d, is a sum of d i.i.d. 1+L random variables. Since Geo(p) stochastically
dominates L, by Lemma 5.10 and since η > 1.1e/p, we have

P [W (n) > η log n|D(n) = d] ≤ f(2− η log n/d)d , (5.9)

with f defined in (5.4).

Combining (5.7) and (5.9), we get

A(d) ≤ exp
[

log n− (d− 1)Υ

(
log n

d− 1

)
+ d log f(2− η log n/d)

]
. (5.10)

Let c = d/ log n and c1 = c−1/ log n. Let ϑ = max{η(1−p) log(1−p3),−0.15pη}. Note
that ϑ is a negative constant. By Lemma 5.11 and since the function cΥ(1/c) is uniformly
continuous on [0, 1.1e], we find that for large enough n,

−c1Υ(1/c1) + c log f(2− η/c) < ϑ/2− 1 .

Together with (5.10), this gives A(d) ≤ exp(ϑ log n/2), and (5.8) follows. �
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5.2 Transformations of the random-surfer tree model

In Sections 5.2–5.4 we study the random-surfer tree model. In this section we show how to
transform this model three times to obtain a new random tree model, which we analyze in
subsequent sections. The first transformation is novel. The second one was perhaps first
used by Broutin and Devroye [27], and the third one probably by Pittel [111].

Let us call the random-surfer tree model the first model. First, we will replace the
attachment rule with a simpler one by introducing weights for the edges. In the first
model, the edges are unweighted and in every step s a new vertex vs appears, chooses an
old vertex u, and attaches to a vertex on the path connecting u to the root, according to a
certain rule. We introduce a second model that is weighted, and such that there is a one to
one correspondence between the vertices in the second model and in the first model. For a
vertex v in the first model, we denote its corresponding vertex in the second model by v.
In the second model, in every step s a new vertex vs appears, chooses an old vertex u and
attaches to u, and the weight w(u vs) of the new edge u vs is chosen such that the weight
of vs equals the depth of vs in the first model. Let w (u) denote the weight of vertex u.
Then it follows from the definition of the random-surfer tree model that

w(u vs)
d
= max{1−Geo(p), 1− w (u)} . (5.11)

The term Geo(p) is the length of the random walk taken towards the root, and the term
1− w (u) appears here solely because the weight of vs is at least 1 (in the first model, the
depth of vs is at least 1, since it cannot attach to a vertex higher than the root), and so
we must have

1 ≤ w(vs) = w(u) + w (uvs) .

Since the depth of v in the first model equals the weight of v in the second model, the
height of the first model equals the weighted height of the second model (see Figure 5.3).

Remark 5.13. This extra term of 1−w (u) in (5.11) causes a lot of trouble: it destroys the
independence among the edge weights, which means the Broutin-Devroye result does not
apply directly, and it is also the reason for the gap between cL and cU when p < p0.

We will need to make the degrees of the tree bounded, so we define a third model.
In this model, the new vertex can attach just to the leaves. In step s a new vertex vs
appears, chooses a random leaf u and joins to u using an edge with weight distributed as
max{1−Geo(p), 1−w (u)}. Simultaneously, a new vertex u′ appears and joins to u using
an edge with weight 0. Then we have w(u) = w(u′) and henceforth u′ plays the role of u,
i.e. the next vertex wanting to attach to u, but cannot do so because u is no longer a leaf,
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u u

vs

u

u

vs
−1

Figure 5.3: a birth in the first model (left) and the corresponding birth in the second model
(right) are shown. In the first model, the chosen vertex is u and the length of the random
walk is 2. In the second model, the new vertex vs is joined to u with weight −1. Note that
the depth of vs in the second model equals the weight of vs in the second model.
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u

vs

w1

u

vs

w1

u′

0

u

vs

w1

vt

w2

u

vs

w1

u′

vt

w2

u′′

0

0

Figure 5.4: two births in the second model (left) and the corresponding births in the third
model (right) are shown. In the second model a new vertex vs is born and is joined to u
with weight w1. In the third model, at the same time a new vertex u′ is born and is joined
to u with weight 0. Later in the second model a new vertex vt is born and is joined to u
with weight w2. In the third model vt is joined to u′ with weight w2 and at the same time
a new vertex u′′ is born which plays the role of u.
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may attach to u′ instead, see Figure 5.4. Observe that the weighted height of the third
model, when it has 2n− 1 vertices, has the same distribution as the weighted height of the
second model with n vertices. In fact the second model may be obtained from the third
one by contracting all zero-weight edges. We can thus study the weighted height of the
first model by studying it in the third model.

All the above models were defined using discrete time steps. Employing the idea of
poissonization explained in Section 2.4.1, we now define a fourth model using the following
continuous time branching process, which we call P . At time 0 the root is born. From this
moment onwards, whenever a new vertex v is born (say at time κ), it waits for a random
time E, which is distributed exponentially with mean 1, and after time E has passed
(namely, at absolute time κ+E) gives birth to two children v1 and v2, and dies. The weights
of the edges vv1 and vv2 are generated as follows: vertex v chooses i ∈ {1, 2} independently
and uniformly at random. The weight of vvi is distributed as max{1−Geo(p), 1− w (v)}
and the weight of vv3−i is 0. Given t ≥ 0, we denote by Tt the random tree obtained by
taking a snapshot of this process at time t. By the discussion in in Section 2.4.1, for any
stopping time τ , the distribution of Tτ , conditional on Tτ having 2n − 1 vertices, is the
same as the distribution of the third model when it has 2n− 1 vertices.

The following lemma, which is very similar to Lemma 4.9, implies that certain results
for Tt carry over to results for the random-surfer tree model.

Lemma 5.14. Assume that there exist constants θL, θU such that for every fixed ε > 0,

P [θL(1− ε)t ≤ wht(Tt) ≤ θU(1 + ε)t]→ 1

as t → ∞. Then for every fixed ε > 0, a.a.s. as n → ∞ the height of the random-surfer
tree model is between θL(1− ε) log n and θU(1 + ε) log n.

Proof. Let `n = 2n−1, and let ε > 0 be fixed. For the process P , we define three stopping
times as follows:

a1 is the deterministic time (1− ε) log(`n).

A2 is the random time when the evolving tree has exactly `n vertices.

a3 is the deterministic time (1 + ε) log(`n).

By hypothesis, a.a.s. as n→∞ we have

(1− ε)θL log(`n) ≤ wht (Ta1) and wht (Ta3) ≤ (1 + ε)θU log(`n) . (5.12)
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By Proposition 2.18, as t → ∞, we have log |V (Tt)| ∼ t. This means that, as n → ∞,
a.a.s.

log |V (Ta1)| ∼ a1 = (1− ε) log(`n) ,

and hence |V (Ta1)| < `n, which implies a1 < A2. Symmetrically, it can be proved that
a.a.s. as n→∞ we have A2 < a3. It follows that a.a.s. as n→∞

wht (Ta1) ≤ wht (TA2) ≤ wht (Ta3) . (5.13)

On the other hand, as noted above, TA2 has the same distribution as the third model with
2n − 1 vertices, whose weighted height has the same distribution as that of the random-
surfer tree model with n vertices. Chaining (5.12) and (5.13) completes the proof. �

It will be convenient to define Tt in a static way, which is equivalent to the dynamic
definition above.

Definition 5.15 (T∞, Tt). Let T∞ denote an infinite binary tree. To every edge e is
associated a random vector (Ee,We) and to every vertex v a random variable Wv, where
the We’s and Wv’s are the weights. The law for {Ee}e∈E(T ) is easy: first with every vertex
v we associate independently an Exp(1) random variable, and we let the values of E on the
edges joining v to its two children be equal to this variable. In the dynamic interpretation,
this random variable denotes the length of life of v. Generation of the weights is done in a
top-down manner, where we think, somewhat ironically, of the root as the top vertex. Let
the weight of the root be zero. Let v be a vertex whose weight has been determined, and
let v1, v2 be its two children. Choose i ∈ {1, 2} independently and uniformly at random,
and then choose Y = 1−Geo(p) independently of previous choices. Then let

Wvvi = max{Y, 1−Wv}, Wvi = Wv +Wvvi , (5.14)

and
Wvvj = 0, Wvj = Wv

for j = 3− i.
For a vertex v, let π(v) denote the set of edges of the unique path connecting v to the

root. Note that the weight of any vertex v equals
∑

e∈π(v) We. We define the birth time of
a vertex v, written Bv, as

Bv =
∑
e∈π(v)

Ee ,

and the birth time of the root is defined to be zero. Finally, given t ≥ 0, we define Tt as
the subtree of T∞ induced by vertices with birth time at most t. Note that Tt is finite
almost surely.
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5.3 Lower bounds for the random-surfer tree model

Here we prove the lower bounds in Theorems 5.3 and 5.4. For this, we consider another
infinite binary tree T ′∞ which is very similar to T∞, except for the generation rules for
the weights, which are as follows. Let the weight of the root be zero. Let v be a vertex
whose weight has been determined, and let v1, v2 be its two children. Choose i ∈ {1, 2}
independently and uniformly at random, and choose Y = 1 − Geo(p) independently of
previous choices. Then let

Wvvi = Y and Wvi = Wv +Wvvi (5.15)

and
Wvvj = 0 and Wvj = Wv

for j = 3− i. Comparing (5.15) with (5.14), we find that the weight of every vertex in T ′∞
is stochastically less than or equal to that of its corresponding vertex in T∞. The tree T ′t
is defined as before. Clearly probabilistic lower bounds for wht(T ′t) are also probabilistic
lower bounds for wht(Tt). Distinct vertices u and v in a tree are called antipodal if the
unique (u, v)-path in the tree passes through the root.

Lemma 5.16. Consider the tree T ′∞. Let γL : (0, 1)→ R be such that for every a ∈ (0, 1),
each vertex u and each descendant v of u that is m levels deeper,

P [Wv −Wu ≥ am] ≥ exp(−mγL(a)− o(m)) (5.16)

as m→∞. Assume that there exist α∗, ρ∗ ∈ (0, 1) with

γL(α∗) + Υ(ρ∗) = log 2 . (5.17)

Then for every fixed ε > 0, a.a.s. there exist antipodal vertices u, v of T ′t with weights at
least a∗

ρ∗
(1− ε)t.

The proof is very similar to the proof of [27, Lemma 4] except a small twist is needed
at the end to handle the negative weights.

Proof. Let c = a∗

ρ∗
, and let ε, δ > 0 be arbitrary. We prove that with probability at least

1 − δ for all large enough t there exists a pair (u, v) of antipodal vertices of T ′∞ with
max{Bu, Bv} < t and min{Wu,Wv} > (1− 2ε) ct.
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Let L be a constant positive integer that will be determined later, and let α = α∗ and
ρ = α

c(1−ε) > ρ∗. By (5.17) and since ρ∗ < 1 and Υ is strictly decreasing on (0, 1], we have

γL(α) + Υ(ρ) < log 2 .

Build a Galton-Watson process (see Section 2.7 for the definition) from T ′∞ whose
particles are a subset of vertices of T ′∞, as follows. Start with the root as the initial
particle of the process. If a given vertex u is a particle of the process, then its potential
offspring are its 2L descendants that are L levels deeper. Moreover, such a descendant v
is an offspring of u if and only if Wv −Wu ≥ αL and Bv − Bu ≤ ρL. As these two events
are independent, the expected number of children of u is at least

2LP [Wv −Wu ≥ αL]P [Bv −Bu ≤ ρL] ≥ exp [(log 2− γL(α)−Υ(ρ)− o(1))L]

as L → ∞, by (5.16) and Lemma 5.9 (Cramér’s Theorem for exponential random vari-
ables). Since we have log 2 − γL(α) − Υ(ρ) > 0, we may choose L large enough that this
expected value is strictly greater than 1. Therefore, this Galton-Watson process survives
with probability q > 0 (see Section 2.7).

We now boost this probability up to 1 − δ, by starting several independent processes,
giving more chance that at least one of them survives. Specifically, let b be a constant
large enough that

(1− q)2b−1

< δ/3 .

Consider 2b Galton-Watson processes, which have the vertices at depth b of T ′∞ as their
initial particles, and reproduce using the same rule as before. Let a be a constant large
enough that

2b+1(e−a + (1− p)a+2) < δ/3 ,

and let A be the event that all edges e in the top b levels of T ′∞ have Ee ≤ a and We ≥ −a.
Then

1− P [A] ≤ 2b+1(e−a + (1− p)a+2) < δ/3 .

Also, let Q be the event that in each of the two branches of the root, at least one of the
2b−1 Galton-Watson processes survives. Then

1− P [Q] ≤ 2(1− q)2b−1

< 2δ/3 ,

and so with probability at least 1− δ both A and Q happen.

Assume that both A and Q happen. Let

m =

⌊
t(1− ε)
ρL

⌋
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and let u and v be particles at generation m of surviving processes in distinct branches of
the root. Then u and v are antipodal,

max{Bu, Bv} ≤ ab+mρL ≤ t(1− ε) +O(1) < t ,

and

min{Wu,Wv} ≥ −ab+mαL ≥ (1− ε)α
ρ

t−O(1) > c(1− 2ε)t

for t large enough, as required. �

Let Y1, Y2, . . . be i.i.d. with Yi = 1−Geo(p). Recall the definition of f : (−∞, 1]→ R
from (5.4):

f(x) = (2− x)2−xp(1− p)1−x(1− x)x−1 .

Note that f(1) = p since by convention 00 = 1, and f (2− p−1) = 1. The following lemma

follows by noting that f is positive and the derivative of log f is log
(

1−x
(2−x)(1−p)

)
.

Lemma 5.17. The function f is continuous in (−∞, 1] and differentiable in (−∞, 1).
Moreover, f is increasing on (−∞, 2− p−1] and decreasing on [2− p−1, 1].

Lemma 5.18. (a) There is an absolute constant C such that for any a ∈ [2− p−1, 1] and
any positive integer m we have

P [Y1 + · · ·+ Ym ≥ am] ≤ Cmf(a)m .

(b) As m→∞, uniformly for all a ∈ [0, 1] we have

P [Y1 + · · ·+ Ym ≥ am] ≥ [f(a)− o(1)]m .

(c) If p ≥ 1/2, then as m→∞, uniformly for all a ∈ [0, 2− 1
p
] we have

P [Y1 + · · ·+ Ym ≥ am] ≥ [1− o(1)]m .

Proof. The conclusions are easy to see for a = 1, so assume that a < 1. First, assume that
am is an integer. Consider a sequence of independent biased coin flips, each of which is
heads with probability p. A random walker starts from 0, takes one step to the right on
seeing heads, and one to the left on seeing tails. Then Y1 + · · ·+Ym is the walker’s position
just after seeing the m-th head. Thus Y1 + · · ·+ Ym = am if and only if the (2m− am)-th
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coin comes up heads, and in the first 2m−am coin flips we see exactly m heads and m−am
tails, so we have

P [Y1 + · · ·+ Ym = am] =

(
2m− am− 1

m− 1

)
pm(1− p)m−am

= Θ

((
2m− am

m

)
pm(1− p)m−am

)
= Θ

(
f(a)m/

√
m
)
, (5.18)

where we have used Stirling’s approximation (2.4) for the last equality.

(a) Let a ∈ [2− p−1, 1), and let C be an absolute constant for the upper bound of Θ in
(5.18). Then

P [Y1 + · · ·+ Ym ≥ am] ≤ m sup{P [Y1 + · · ·+ Ym = αm] : α ∈ [a, 1]}
≤ C
√
m [sup{f(α) : α ∈ [a, 1]}]m ≤ Cm(f(a))m

since f is decreasing on
[
2− 1

p
, 1
]

by Lemma 5.17 and m is a positive integer.

(b) Assume that m→∞. Then

P [Y1 + · · ·+ Ym ≥ am] ≥ P [Y1 + · · ·+ Ym = dame] = (f(a)− o(1))m

uniformly for all a ∈ [0, 1) by continuity of f .

(c) Assume that p ≥ 1/2 and that m→∞. Then

P [Y1 + · · ·+ Ym ≥ am] ≥ P
[
Y1 + · · ·+ Ym =

⌈(
2− p−1

)
m
⌉]

= (f
(
2− p−1

)
− o(1))m = (1− o(1))m

uniformly for all a ∈ [0, 2− 1
p
] by continuity of f and since f(2− p−1) = 1. �

We define a two variable function

Φ(a, s) = p(1− p)(2− s)2(s− a)− a(1− s) , (5.19)

and we define a function φ : [0, 1] → [0, 1] as follows: given a ∈ [0, 1], φ(a) is the unique
solution in [a, 1] to

Φ(a, φ(a)) = p(1− p)(2− φ(a))2(φ(a)− a)− a(1− φ(a)) = 0 . (5.20)

Lemma 5.19(a) below shows that φ is well defined. The proof is straightforward.
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Lemma 5.19. (a) Given a ∈ [0, 1], there is a unique solution s ∈ [a, 1] to Φ(a, s) = 0. If
a ∈ {0, 1} then φ(a) = a. If a ∈ (0, 1) then 0 < a < φ(a) < 1.

(b) If s = φ(a) then

sf(s)a/s

aa/s(s− a)1−a
s

=
s

s− a

(
1− s

(1− p)(2− s)

)a
.

(c) The function φ is increasing on [0, 1] and differentiable on (0, 1).

(d) The function φ is invertible and φ−1 is increasing. If s ∈ {0, 1} then φ−1(s) = s. If
s ∈ (0, 1) then 0 < φ−1(s) < s < 1.

Proof. (a) The conclusion is clear for a ∈ {0, 1}, so we may assume that a ∈ (0, 1). Since
Φ(a, a) < 0 and Φ(a, 1) > 0, there exists at least one s ∈ (a, 1) with Φ(a, s) = 0. We now
show that there is a unique such s. Fixing a, since Φ is differentiable with respect to s, it
is enough to show that

if Φ(a, s) = 0, then
∂Φ

∂s
> 0 (5.21)

Let σ = p(1− p). We have

∂Φ

∂s
= σ(2− s)2 + a− 2σ(2− s)(s− a) .

At a point (a, s) with Φ(a, s) = 0, we have

σ(2− s)2 =
a(1− s)
s− a

, and σ(2− s)(s− a) =
a(1− s)

2− s
,

so at this point,
∂Φ

∂s
= a

(
1

s− a
+

1

1− s
− 2

2− s

)
,

which is strictly positive because

min

{
1

s− a
,

1

1− s

}
> 1 >

1

2− s
,

and this proves (5.21).

(b) Plugging the definition of f from (5.4) and using Φ(a, s) = 0 gives this equation.
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(c) We first show that φ is differentiable and increasing on (0, 1). Let a ∈ (0, 1) and let
s = φ(a). We have

∂Φ

∂a
= s− 1− p(1− p)(2− s)2 < 0 ,

and ∂Φ/∂s is positive as proved in part (a). Hence by the implicit function theorem ds/da
exists and is positive, so φ is differentiable and increasing on (0, 1). Since φ(0) = 0 and
φ(1) = 1, φ is increasing on [0, 1].

(d) Let s ∈ [0, 1]. Then Φ(0, s)Φ(s, s) ≤ 0 and so there exists at least one a0 ∈ [0, s]
with Φ(a0, s) = 0. The function Φ(a, s) is linear in a and the coefficient of a is non-zero,
hence this root a0 is unique. The function φ−1 is increasing since φ is increasing. The last
two statements follow from similar statements proved for φ in (a). �

Next let Ŷ1, Ŷ2, . . . be independent and distributed as follows: for every i = 1, 2, . . . we
flip an unbiased coin, if it comes up heads, then Ŷi = Yi, otherwise Ŷi = 0.

Define the function gL : (0, 1)→ R as

gL(a) =

{
1/2 if p > 1/2 and 0 < a < 1− 1

2p
φ(a)−a
φ(a)

(
(1−p)(2−φ(a))

1−φ(a)

)a
otherwise.

Note that gL is continuous as φ(1− 1
2p

) = 2− 1/p. The proofs of the following two lemmas
are standard and can be skipped on a first reading.

Lemma 5.20. We have the following large deviation inequality for every fixed a ∈ (0, 1)
as m→∞.

P
[
Ŷ1 + · · ·+ Ŷm ≥ am

]
≥ (2gL(a)− o(1))−m .

Proof. We have

P
[
Ŷ1 + · · ·+ Ŷm ≥ am

]
=

m∑
k=dame

(
m

k

)
2−m × P [Y1 + · · ·+ Yk ≥ am] ,

where k denotes the number of Ŷi’s whose value was determined to be equal to Yi.

If p > 1/2 and 0 < a < 1− 1
2p

, then letting k = dm/2e gives(
m

k

)
2−m = Ω

(
1√
m

)
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by Stirling’s approximation (2.4), and

P [Y1 + · · ·+ Yk ≥ am] ≥ (1− o(1))k

by Lemma 5.18(c). This gives

P
[
Ŷ1 + · · ·+ Ŷm ≥ am

]
≥ (1− o(1))m ,

as required.

Otherwise, let s = φ(a). Then letting k = dam/se gives(
m

k

)
2−m = Ω

([
s(s− a)a/s

2(s− a)aa/s

]m)/
m2

by Stirling’s approximation (2.4), and

P [Y1 + · · ·+ Yk ≥ am] ≥ (f(s)− o(1))k

by Lemma 5.18(b) and since f is continuous. Lemma 5.19(b) completes the proof. �

Lemma 5.21. (a) There exists a unique solution p0 ∈ (0, 1/2) to

log

(
1− p
p

)
=

1− p
1− 2p

.

Also, if p ≤ p0 then log
(

1−p
p

)
≥ 1−p

1−2p
.

(b) Given p ∈ (0, 1), there exists a unique solution s0 ∈ (0, 1) to

(1− p)(2− s) = exp(1/s)(1− s) .

Moreover, if p > 1/2 then s0 > 2− p−1, and if p0 < p ≤ 1/2 then s0 >
1−2p
1−p .

Proof. (a) The function r(p) = log
(

1−p
p

)
− 1−p

1−2p
approaches +∞ when p → 0+ and ap-

proaches −∞ when p→ 1
2

−
. Moreover,

r′(p) =
−1

p(1− p)
− 1

(1− 2p)2
< 0

for p ∈ (0, 1/2). Hence r(p) has a unique root p0, and r(p) ≥ 0 if and only if p ≤ p0.
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(b) The function

µ(s) = log(1− p) + log(2− s)− log(1− s)− 1

s

approaches −∞ as s → 0+, and approaches +∞ as s → 1−, and its derivative is positive
in (0, 1), hence it has a unique root s0 in (0, 1). Also we have µ(2 − p−1) = p/(1 − 2p),
which means that if p > 1/2 then s0 > 2 − p−1. Moreover, if p0 < p ≤ 1/2, then by part
(a),

µ

(
1− 2p

1− p

)
= log

(
1− p
p

)
− 1− p

1− 2p
= r(p) < 0 ,

which means s0 >
1−2p
1−p . �

Lemma 5.22. Given ε > 0, a.a.s as t → ∞ there exist two antipodal vertices u, v of T ′t
with weights at least cL(p)(1− ε)t. In particular, a.a.s. the weighted height of T ′t is at least
cL(p)(1− ε)t.

Proof. By Lemma 5.21(b), there is a unique solution s ∈ (0, 1) to

(1− p)(2− s) = exp(1/s)(1− s) .

By the definition of cL,
cL = cL(p) = exp(1/s)s(2− s)p .

Lemma 5.20 implies that the assumption (5.16) of Lemma 5.16 holds for the function
γL(a) = log(2gL(a)). Let a = φ−1(s) and let ρ = 1 − a

s
. Since s ∈ (0, 1) we have

0 < a < s < 1 by Lemma 5.19(d), and thus ρ ∈ (0, 1) as well. Moreover, since Φ(a, s) = 0,
we have cL = a/ρ.

We now show that gL(a) = s−a
s

exp(a/s). This is clear if p ≤ 1/2, so assume that
p > 1/2. It is easy to verify that Φ(1 − 1

2p
, 2 − 1

p
) = 0. Since p > 1/2, by Lemma 5.21(b)

we have s > 2− 1
p
. Since φ−1 is increasing, we have a = φ−1(s) ≥ 1− 1

2p
.

From gL(a) = s−a
s

exp(a/s) we get

log(2gL(a)) + ρ− 1− log(ρ) = log 2 ,

and Lemma 5.16 completes the proof. �

The lower bound in Theorem 5.3 follows from Lemmas 5.22 and 5.14.
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Proof of the lower bound in Theorem 5.4. Fix ε > 0. Let us define the semi-diameter of
a tree as the maximum weighted distance between any two antipodal vertices. Clearly,
semi-diameter is a lower bound for the diameter, so we just need to show a.a.s. as n→∞
the semi-diameter of the random-surfer model with n vertices is at least (2cL(p)− ε) log n.
By Lemma 5.22, a.a.s as t → ∞ the semi-diameter of T ′t is at least (2cL(p) − ε)t. Using
an argument similar to the proof of Lemma 5.14 we may conclude that a.a.s. as n → ∞
the semi-diameter of the third model (of Section 5.2) with 2n − 1 vertices is at least
(2cL(p) − ε) log n. It is easy to observe that this statement is also true for the random-
surfer model with n vertices, and the proof is complete. �

5.4 Upper bounds for the random-surfer tree model

In this section we prove the upper bounds in Theorems 5.3 and 5.4. As in the previous
section, a lot of algebra is involved.

Lemma 5.23. Let γU : [0, 1] → [0,∞) be a continuous function such that for every fixed
a ∈ [0, 1] and every vertex v of T∞ at depth m,

P

 ∑
e∈π(v)

We > am

 ≤ exp(−mγU(a) + o(m)) (5.22)

as m→∞. Define

θ = sup

{
a

ρ
: γU(a) + Υ(ρ) = log 2 : a ∈ [0, 1], ρ ∈ (0,∞)

}
. (5.23)

Then for every fixed ε > 0,

P [wht(Tt) > θ(1 + ε)t]→ 0

as t→∞.

The proof is similar to that of [27, Lemma 3], in which the assumption (5.22) is not
needed. In fact, in the model studied in [27], the weights {We : e ∈ π(v)} are mutually
independent, and the authors use Cramér’s Theorem (Theorem 2.20) to obtain a large
deviation inequality for

∑
e∈π(v) We, which is similar to (5.22).

Proof. We first prove a claim.
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Claim 5.24. For every ε > 0 there exists δ > 0 such that for all ρ ∈
(

0, 1
θ(1+ε)

]
,

Υ(ρ) + γU(θ(1 + ε)ρ)− log 2 ≥ δ .

Proof of Claim. Assume that this is not the case for some ε > 0. This means there exists
a sequence (ρi)i∈N such that for all i ∈ N,

Υ(ρi) + γU(θ(1 + ε)ρi)− log 2 < 1/i .

Then (ρi)i∈N has a convergent subsequence. Let ρ∗ ∈
[
0, 1

θ(1+ε)

]
be the limit. It cannot be

the case that ρ∗ = 0 since Υ(x)→∞ as x→ 0, and γU is non-negative. By continuity of
Υ and γU we have

Υ(ρ∗) + γU(θ(1 + ε)ρ∗)− log 2 ≤ 0 .

Since Υ is continuous, decreasing, and attains all values in [0,∞), we can choose ρ′ ≤ ρ∗

so that
Υ(ρ′) + γU(θ(1 + ε)ρ∗)− log 2 = 0 ,

But then
θ(1 + ε)ρ∗

ρ′
≥ θ(1 + ε) > θ ,

contradicting the definition of θ in (5.23).

Fix ε > 0 and let Ak be the event that there exists a vertex at depth k of Tt with weight
larger than θ(1 + ε)t. By the union bound,

P [wht(Tt) > θ(1 + ε)t] ≤
∞∑
k=1

P [Ak] =
∑

k>θ(1+ε)t

P [Ak] ,

as the weights of each edge is at most 1 (see (5.14)).

Let k > θ(1 + ε)t be a positive integer. A vertex v at depth k of T∞ is included in Tt
and has weight larger than θ(1 + ε)t if and only if Bv ≤ t and Wv > θ(1 + ε)t. These two
events are independent by the definition of T∞. The random variable Bv is distributed as
a sum of k independent exponential random variables with mean 1, and so

P [Bv ≤ t,Wv > θ(1 + ε)t] ≤ exp

[(
−Υ(t/k)− γU

(
θ(1 + ε)t

k

)
+ o(1)

)
k

]
≤ exp [(− log 2− δ + o(1))k] ,
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where we have used Lemma 5.9 and (5.22) for the first inequality, and δ > 0 is the constant
provided by the claim. Since there are 2k vertices at depth k of T∞, by the union bound

P [Ak] ≤ 2k exp [(− log 2− δ + o(1))k] ≤ exp [(−δ + o(1))k] .

The o(1) term is less than δ/2 for large enough t, and thus

P [wht(Tt) > θ(1 + ε)t] ≤
∑

k>θ(1+ε)t

P [Ak] ≤
∑

k>θ(1+ε)t

e−kδ/2 = O
(
e−θ(1+ε)tδ/2

)
= o(1) ,

as required. �

Let Y1, Y2, . . . be i.i.d. with Yi = 1 − Geo(p), and define random variables X1, X2, . . .
as follows:

X1 = max{Y1, 1} ,
and for i ≥ 1,

Xi+1 = max{Yi+1, 1− (X1 + · · ·+Xi)} .
Define the function h : [0, 1]→ R as

h(x) =


1 if p ≥ 1

2
and 0 ≤ x ≤ 2− 1

p(
p

1−p

)x
if p < 1

2
and 0 ≤ x ≤ 1−2p

1−p

(2− x)2−xp(1− p)1−x(1− x)x−1 otherwise .

(5.24)

Note that in the third case we have h(x) = f(x), where f is defined in (5.4). It is easy to
see that h is continuous. We now prove a lemma whose proof follows from straightforward
calculations.

Lemma 5.25. There exists an absolute constant C such that for every a ∈ [0, 1] and every
positive integer m we have P [X1 + · · ·+Xm > am] ≤ Cm2h(a)m.

Proof. The conclusion is obvious if p ≥ 1
2

and a ≤ 2 − 1
p
, or if a = 0, since in these cases

h(a) = 1. Also, P [X1 + · · ·+Xm > m] = 0 so the conclusion is true if a = 1, so we may
assume that max{0, 2− 1

p
} < a < 1.

Observe that if X1 + · · ·+Xm > am, there is a subsequence of the form Ym−k+1, . . . , Ym
whose sum is at least am, and this subsequence contains at least am elements since Yi ≤ 1
for all i. Hence we have

P [X1 + · · ·+Xm > am] ≤ mmax{P [Y1 + · · ·+ Yk ≥ am] : k ∈ [am,m] ∩ N}
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as the Yi’s are i.i.d.

For any integer k ∈ [am,m], by Lemma 5.18(a) we have

P [Y1 + · · ·+ Yk ≥ am] ≤ Ck(f(am/k))k

for an absolute constant C, since am/k ≥ a > 2− 1
p
. Let r = k/m ∈ [a, 1]. So we find that

P [X1 + · · ·+Xm > am] ≤ Cm2
(

sup{f(a/r)r : r ∈ [a, 1]}
)m

.

Let us define

ξ(r) = f(a/r)r = (2r − a)2r−apr(1− p)r−a(r − a)a−rr−r .

So to complete the proof we just need to show that

sup{ξ(r) : r ∈ [a, 1]} ≤ h(a) ∀ a ∈
(

max

{
0, 2− 1

p

}
, 1

)
. (5.25)

The function ξ(r) is positive and differentiable for each a ∈ (0, 1), hence the supremum
here occurs either at a boundary point or at a point with zero derivative. The derivative
of log(ξ(r)) equals

log

(
p(1− p)(2r − a)2

r(r − a)

)
.

Thus ξ′(r) has the same sign as ξ(r) = p(1 − p)(2r − a)2 − r(r − a) in r ∈ [a, 1]. Notice
that ξ(r) has two roots

r1 =
ap

2p− 1
, and r2 =

a(1− p)
1− 2p

.

We may consider several cases.

Case 0: p = 1/2. The function ξ is positive, so ξ is increasing in [a, 1], hence the supremum
in (5.25) happens at r = 1 and its value is f(a).

Case 1: p > 1/2. Since a > 2 − 1
p
, we find that r1 > 1 and r2 < 0. Moreover, ξ(a) ≥ 0.

Thus ξ is non-negative in [a, 1], which implies ξ is increasing in [a, 1]. Thus the supremum
in (5.25) happens at r = 1 and its value is f(a).

Case 2: p < 1/2 and a ≤ 1−2p
1−p . In this case r1 < 0 and a ≤ r2 ≤ 1. Since ξ(a) ≥ 0

and ξ(r1) = ξ(r2) = 0 and ξ is quadratic, the function ξ goes from positive to negative at
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r2. Therefore, the function ξ attains its supremum at r2 and the supremum value in (5.25)
equals

ξ(r2) =

(
p

1− p

)a
.

Case 3: p < 1/2 and a > 1−2p
1−p . We find that r1 < 0 and r2 > 1, and ξ(a) ≥ 0, so ξ is

non-negative in [a, 1], hence ξ is increasing in [a, 1]. Thus the supremum in (5.25) happens
at r = 1 and its value is f(a). This completes the proof of (5.25) and the lemma. �

Next we define random variables X̂1, X̂2, . . . as follows: for every i = 1, 2, . . . we flip
an independent unbiased coin, if it comes up heads, then X̂i = Xi, otherwise X̂i = 0.

We define the function gU : [0, 1]→ R as

gU(a) =


1/2 if p ≥ 1/2 and 0 ≤ a ≤ 1− 1/2p

(1−p
p

)a/2 if p < 1/2 and 0 ≤ a ≤ 1−2p
2−2p

1
p

if a = 1
φ(a)−a
φ(a)

(
(1−p)(2−φ(a))

1−φ(a)

)a
otherwise ,

(5.26)

where φ is defined by (5.20). Note that by Lemma 5.19(a), we have 0 < a < φ(a) < 1 for
a ∈ (0, 1), so gU is well defined for all a ∈ [0, 1]. Here is another computational lemma
with a somewhat lengthy proof.

Lemma 5.26. (a) We have the following concentration inequality for every a ∈ [0, 1] and
every positive integer m, where C ′ is an absolute constant:

P
[
X̂1 + · · ·+ X̂m > am

]
≤ C ′m3(2gU(a))−m . (5.27)

(b) The function gU is continuously differentiable on (0, 1) and

g′U(a) =


0 if p ≥ 1/2 and 0 < a ≤ 1− 1/2p

log(1−p
p

)gU(a) if p < 1/2 and 0 < a ≤ 1−2p
2−2p

log
(

(1−p)(2−φ(a))
1−φ(a)

)
gU(a) otherwise .

(5.28)

(c) The function log gU(a) is increasing and convex. It is strictly increasing when
gU(a) > 1/2.
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Proof. (a) First, the case a = 0 is obvious since gU(0) = 1/2, and the case a = 1 is easy

since P
[
X̂1 + · · ·+ X̂m > m

]
= 0. So we may assume that a ∈ (0, 1).

Letting k of the X̂i’s being equal to Xi and the rest equal to zero, we get

P
[
X̂1 + · · ·+ X̂m > am

]
=

m∑
k=am

(
m

k

)
2−mP [X1 + · · ·+Xk > am]

≤ m sup

{(
m

rm

)
2−mP [X1 + · · ·+Xrm > am] : r ∈ [a, 1]

}
.

For a given r ∈ [a, 1], Lemma 5.25 gives

P [X1 + · · ·+Xrm > am] ≤ C(rm)2h(a/r)rm ≤ Cm2h(a/r)rm .

Moreover, by Stirling’s approximation (2.4), we have(
m

rm

)
= O

(
1

rrm(1− r)(1−r)m

)
.

So, we find that

P
[
X̂1 + · · ·+ X̂m > am

]
≤ C ′m3

(
sup

{
h(a/r)r

2rr(1− r)1−r : r ∈ [a, 1]

})m
.

Thus to complete the proof of part (a) we just need to show

gU(a) = inf

{
ζ − a
ζ

(
a

(ζ − a)h(ζ)

)a/ζ
: ζ ∈ [a, 1]

}
, (5.29)

where we have used the change of variable ζ = a/r. For analyzing this infimum we define
the two variable function

ψ(a, ζ) =
ζ − a
ζ

(
a

(ζ − a)h(ζ)

)a/ζ
with domain {(a, ζ) : 0 < a < 1, a ≤ ζ ≤ 1}, and consider two cases depending on the
value of p.

Case 1: p ≥ 1/2. By the definition of h in (5.24) we have

ψ(a, ζ) =


ζ−a
ζ

(
a
ζ−a

)a/ζ
if a ≤ ζ ≤ 2− p−1

ζ−a
ζ

(
a

(ζ−a)f(ζ)

)a/ζ
otherwise ,
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where f is defined in (5.4). Since f(2 − p−1) = 1, ψ is continuous here. Let us define

ψ1(ζ) = ζ−a
ζ

(
a
ζ−a

)a/ζ
and ψ2(ζ) = ζ−a

ζ

(
a

(ζ−a)f(ζ)

)a/ζ
.

The derivative of logψ1(ζ) is

a log

(
ζ − a
a

)
/ζ2 ,

which is negative for ζ < 2a and positive for ζ > 2a. This implies ψ1(ζ) is decreasing
when ζ ≤ 2a and increasing when ζ ≥ 2a. So ψ1 achieves its minimum at ζ = 2a, and its
minimum value is 1/2.

The derivative of logψ2(ζ) is

a

ζ2

[
log
(
p(1− p)(2− ζ)2(ζ − a)

)
− log (a(1− ζ))

]
.

Comparing with (5.19) we find that this derivative has the same sign as Φ(a, ζ). So by
Lemma 5.19(a) it vanishes at a unique point ζ = φ(a). Also at ζ = φ(a) we have ∂Φ/∂ζ > 0
(see (5.21)), which implies Φ(a, ζ) is non-positive when ζ ≤ φ(a) and non-negative when
ζ ≥ φ(a). Thus ψ2 achieves its minimum at φ(a), and its minimum value is

ψ2(φ(a)) =
φ(a)− a
φ(a)

(
a

(φ(a)− a)f(φ(a))

)a/φ(a)

=
φ(a)− a
φ(a)

(
(1− p)(2− φ(a))

1− φ(a)

)a
by Lemma 5.19(b).

We conclude that:

(i) If 2a ≤ 2− 1/p, then the infimum of ψ occurs at ζ = 2a and its value is ψ(a, 2a) =
ψ1(2a) = 1/2. The reason is that on [a, 2− 1/p], ψ = ψ1 achieves its minimum at 2a, and
on [2− 1/p, 1], ψ = ψ2 is increasing since Φ(a, 2− 1/p) ≥ 0.

(ii) If a ≤ 2 − 1/p and 2a > 2 − 1/p, then the infimum occurs at ζ = φ(a) and its

value is φ(a)−a
φ(a)

((1− p)(2− φ(a))/(1− φ(a)))a. The reason is that on [a, 2−1/p], ψ = ψ1 is

decreasing, and on [2−1/p, 1], ψ = ψ2 achieves its minimum at φ(a) since Φ(a, 2−1/p) ≤ 0
and Φ(a, 1) ≥ 0.

(iii) If a > 2 − 1/p, then the infimum occurs at ζ = φ(a) and its value is equal to
φ(a)−a
φ(a)

((1− p)(2− φ(a))/(1− φ(a)))a. The reason is that on [a, 1], ψ = ψ2 achieves its

minimum at φ(a) since Φ(a, a) ≤ 0 and Φ(a, 1) ≥ 0.
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Case 2: p < 1/2. By the definition of h in (5.24) we have

ψ(a, ζ) =


(

1−p
p

)a
ζ−a
ζ

(
a
ζ−a

)a/ζ
if a ≤ ζ ≤ 1−2p

1−p

ζ−a
ζ

(
a

(ζ−a)f(ζ)

)a/ζ
otherwise.

The function ψ is continuous here since

f

(
1− 2p

1− p

)
=

(
p

1− p

) 1−2p
1−p

.

Let us define ψ3(ζ) =
(

1−p
p

)a
ζ−a
ζ

(
a
ζ−a

)a/ζ
. Since ψ3(ζ) =

(
1−p
p

)a
ψ1(ζ), the function ψ3(ζ)

is decreasing when ζ ≤ 2a and increasing when ζ ≥ 2a. So ψ3 achieves its minimum at

ζ = 2a and its minimum value is
(

1−p
p

)a
/2. We conclude that

(iv) If a ≤ 1− p/(1− p) and 2a ≤ 1− p/(1− p), then the infimum in (5.29) occurs at

ζ = 2a and at this point we have ψ(a, ζ) =
(

1−p
p

)a
/2. The reason is that on [a, 1−p/(1−p)],

ψ = ψ3 achieves its minimum at 2a, and on [1 − p/(1 − p), 1], ψ = ψ2 is increasing since
Φ(a, 1− p/(1− p)) ≥ 0.

(v) If a ≤ 1 − p/(1 − p) and 2a > 1 − p/(1 − p), then the infimum in (5.29) occurs

at ζ = φ(a) and its value is equal to φ(a)−a
φ(a)

((1− p)(2− φ(a))/(1− φ(a)))a. The reason is

that on [a, 1− p/(1− p)], ψ = ψ3 is decreasing, and on [1− p/(1− p), 1], ψ = ψ2 achieves
its minimum at φ(a) since Φ(a, 1− p/(1− p)) ≤ 0 and Φ(a, 1) ≥ 0.

(vi) If a > 1 − p/(1 − p), then the infimum in (5.29) occurs at ζ = φ(a) and its value

is equal to φ(a)−a
φ(a)

((1− p)(2− φ(a))/(1− φ(a)))a. The reason is that on [a, 1], ψ = ψ2

achieves its minimum at φ(a) since Φ(a, a) ≤ 0 and Φ(a, 1) ≥ 0.

In all cases we proved that gU(a) actually gives the value of the infimum in (5.29), and
this concludes the proof of (5.29) and of part (a).

(b) Consider the definition of gU in (5.26). The formulae in (5.28) for the cases ‘p ≥ 1/2
and 0 < a ≤ 1−1/2p’ and ‘p < 1/2 and 0 < a ≤ 1−2p

2−2p
’ follow from definition, so we assume

that a is in the ‘otherwise’ case. We use the equality (5.29). Note that as proved in part

(a), the infimum in (5.29) occurs at the point ζ = φ(a) that has ∂ψ
∂ζ

∣∣∣
(a,φ(a))

= 0. This
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implies for every a0,

dgU
da

(a0) =
∂ψ

∂a
(a0, φ(a0)) +

∂ψ

∂ζ
(a0, φ(a0))× dφ

da
(a0)

=
∂ψ

∂a
(a0, φ(a0)) =

∂

∂a

[
ζ − a
ζ

(
a

(ζ − a)f(ζ)

)a/ζ]∣∣∣∣∣
(a0,φ(a0))

,

and (5.28) follows from computing this partial derivative and putting ζ = φ(a0).

We next prove the continuity of gU and its derivative. Note that by Lemma 5.19(a), if
a ∈ (0, 1) then φ(a) ∈ (0, 1). First, gU is continuous at a = 1 since

lim
a→1

φ(a)− a
φ(a)

(
(1− p)(2− φ(a))

1− φ(a)

)a
= lim

a→1

φ(a)− a
φ(a)

(
a

p(2− φ(a))(φ(a)− a)

)a
= lim

a→1

(φ(a)− a)1−a

φ(a)

(
a

p(2− φ(a))

)a
=

1

p
.

For p ≥ 1/2, the only discontinuity for gU can possibly occur at b = 1− 1/2p. However
at this point we have φ(b) = 2b = 2− p−1 so that (1− p)(2− φ(b)) = 1− φ(b). Hence the
left and right limits of gU equal 1/2, and the left and right limits of g′U equal 0. Therefore,
both gU and g′U are continuous at b.

For p < 1/2, the only discontinuity for gU can possibly occur at c = (1− 2p)/(2− 2p).

However at this point φ(c) = 2c = (1 − 2p)/(1 − p) so that (1−p)(2−φ(c))
1−φ(c)

= 1−p
p

. Hence

the left and right limits of gU equal (p−1 − 1)
c
/2, and the left and right limits of g′U equal

log (p−1 − 1) (p−1 − 1)
c
/2. Therefore, both gU and g′U are continuous at c.

(c) Note that gU is positive everywhere, so log(gU) is (strictly) increasing if and only
if gU is (strictly) increasing. By the formulae for g′U in part (b), it is easy to see that g′U
is always non-negative, and is positive when gU(a) > 1/2. To show log(gU) is convex, we
need to show its derivative, i.e. g′U/gU is increasing. This also follows from part (b), noting
that φ is increasing by Lemma 5.19(c). �

Lemma 5.27. Let ω > 0 and let τ(x) : [0, ω] → R be a positive function that is differen-
tiable on (0, ω) and satisfies

α(x) + χ(τ(x)) = 0 ∀ x ∈ [0, ω] (5.30)

for convex functions α, χ, with α increasing and χ decreasing. Assume there exists x∗ ∈
(0, ω) such that τ ′(x∗) = τ(x∗)/x∗. Then we have

x∗

τ(x∗)
≥ y

τ(y)
(5.31)
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for all y ∈ [0, ω].

Proof. We first prove that τ is convex and increasing. Pick x1, x2 ∈ [0, ω] and λ1, λ2 ∈ [0, 1]
with λ1 + λ2 = 1. We need to show that

τ(λ1x1 + λ2x2) ≤ λ1τ(x1) + λ2τ(x2) . (5.32)

We have

χ(λ1τ(x1) + λ2τ(x2)) ≤ λ1χ(τ(x1)) + λ2χ(τ(x2))

= −λ1α(x1)− λ2α(x2)

≤ −α(λ1x1 + λ2x2)

= χ(τ(λ1x1 + λ2x2))

by convexity of χ, then (5.30), then convexity of α, and then (5.30) again. The equation
(5.32) follows since χ is decreasing. Hence τ is convex. Also, τ is increasing since α is
increasing and χ is decreasing.

Now, let y ∈ [0, ω]. We prove (5.31) for y < x∗. The proof for y > x∗ is similar. By the
mean value theorem, there exists z ∈ (y, x∗) with

τ ′(z) =
τ(x∗)− τ(y)

x∗ − y
.

On the other hand, since z < x∗ and τ is convex, we have

τ ′(z) ≤ τ ′(x∗) =
τ(x∗)

x∗
.

The inequality (5.31) follows from these two results. �

We are ready to prove the upper bound in Theorem 5.3. The upper bound in Theo-
rem 5.4 follows immediately as in every tree the diameter is at most twice the height.

Proof of the upper bound in Theorem 5.3. Let cU = cU(p). By Lemma 5.14 we just need
to show that given ε > 0, a.a.s as t→∞ the weighted height of Tt is at most (1+ε)cU t. For
proving this we use Lemma 5.23. Lemma 5.26 implies that condition (5.22) of Lemma 5.23
holds with γU(a) = log(2gU(a)), so we need only show that

cU = sup

{
a

ρ
: log(gU(a)) + ρ− 1− log(ρ) = 0 : a ∈ [0, 1], ρ ∈ (0,∞)

}
. (5.33)
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The function ρ−1− log(ρ) attains all values in [0,∞) for ρ ∈ (0, 1]. Moreover, it is strictly
decreasing for ρ ∈ (0, 1] and equals 0 for ρ ∈ [1,∞). So log(gU(a)) + ρ − 1 − log(ρ) = 0
has a unique solution (for ρ) if 0 < gU(a) < 1, and no solution if gU(a) > 1. Since
gU(0) = 1/2 and gU(1) = 1/p, and the function gU(x) is continuous and strictly increasing
when gU(x) > 1/2, there is a unique x with gU(x) = 1. Denote this point by amax. Define
the function τ : [0, amax]→ (0, 1] as follows. Let τ(amax) = 1 and for x < amax let τ(x) be
the unique number satisfying

log(gU(x)) + τ(x)− 1− log τ(x) = 0 . (5.34)

Hence to prove (5.33) it is enough to show that

cU = sup

{
x

τ(x)
: x ∈ [0, amax]

}
. (5.35)

We prove (5.35) using Lemma 5.27. The function log(gU(a)) is increasing and convex
by Lemma 5.26(c), and it is easy to check that the function ρ − 1 − log(ρ) is decreasing
and convex. Moreover, differentiating (5.34) gives

g′U(x)

gU(x)
+ τ ′(x)− τ ′(x)

τ(x)
= 0 .

So by the implicit function theorem τ is differentiable in x ∈ (0, amax) and

τ ′(x) =
τ(x)

1− τ(x)

g′U(x)

gU(x)
.

By Lemma 5.27, we just need to show the existence of x∗ ∈ (0, amax) with

cU =
x∗

τ(x∗)
=

1− τ(x∗)

τ(x∗)

gU(x∗)

g′U(x∗)
. (5.36)

We consider two cases. Recall that p0 ≈ 0.206 is the solution to

log

(
1− p
p

)
=

1− p
1− 2p

,

which has a unique solution by Lemma 5.21(a).

Case 1: 0 < p ≤ p0. In this case we have

cU =

(
log

(
1− p
p

))−1

.
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Let

a∗ =

[
2 log

(
1− p
p

)]−1

.

By Lemma 5.21(a)

log

(
1− p
p

)
≥ 1− p

1− 2p
,

which gives a∗ ≤ 1−2p
2−2p

, thus

gU(a∗) =

(
1− p
p

)a∗ /
2 = exp

(
1

2
− log 2

)
< 1

by the definition of gU in (5.26), and

g′U(a∗) = log

(
1− p
p

)
gU(a∗)

by Lemma 5.26(b). The definition of τ in (5.34) implies τ(a∗) = 1/2. Moreover,

a∗

τ(a∗)
=

(
log

(
1− p
p

))−1

=
1− τ(a∗)

τ(a∗)

gU(a∗)

g′U(a∗)
,

which gives (5.36). Finally, since gU(a∗) < 1, we have a∗ ∈ (0, amax), and the proof is
complete.

Case 2: p0 < p < 1. In this case we have

cU = ps∗(2− s∗) exp(1/s∗) ,

where s∗ ∈ (0, 1) is the unique solution for

s∗ log

(
(1− p)(2− s∗)

1− s∗

)
= 1 . (5.37)

Lemma 5.21(b) implies that s∗ is well defined. Let a∗ = φ−1(s∗).

We first show that

gU(a∗) =
s∗ − a∗

s∗

(
(1− p)(2− s∗)

1− s∗

)a∗
. (5.38)
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If p > 1/2, then by Lemma 5.21(b) we have s∗ > 2 − 1
p
. It is easy to verify that

Φ(1 − 1
2p
, 2 − 1

p
) = 0. Since φ−1 is increasing, we have a∗ = φ−1(s∗) > 1 − 1

2p
, so (5.38)

agrees with the definition of gU in (5.26).

If p0 < p ≤ 1/2, then by Lemma 5.21(b) we have s∗ > 1−2p
1−p . It is easy to verify that

Φ(1−2p
2−2p

, 1−2p
1−p ) = 0. Since φ−1 is increasing, we have a∗ = φ−1(s∗) > 1−2p

2−2p
, so (5.38) agrees

with the definition of gU in (5.26).

Using (5.37), the equation (5.38) simplifies into

gU(a∗) =

(
1− a∗

s∗

)
exp (a∗/s∗) < exp(−a

∗

s∗
) exp (a∗/s∗) = 1 , (5.39)

and by Lemma 5.26(b) we have

g′U(a∗) = gU(a∗) log

(
(1− p)(2− s∗)

1− s∗

)
= gU(a∗)/s∗ .

It follows from (5.39) and the definition of τ in (5.34) that τ(a∗) = 1 − a∗

s∗
. Using (5.37)

and Φ(a∗, s∗) = 0, we get

a∗

τ(a∗)
= ps∗(2− s∗) exp(1/s∗) =

1− τ(a∗)

τ(a∗)

gU(a∗)

g′U(a∗)
,

which gives (5.36). Finally, since gU(a∗) < 1, we have a∗ ∈ (0, amax), and the proof is
complete. �

5.5 Concluding remarks

There is a common generalization of random recursive trees, preferential attachment trees,
and random-surfer trees. Consider i.i.d. random variables X1, X2, . . . ∈ {0, 1, 2, . . . }. Start
with a single vertex v0. At each step s a new vertex vs appears, chooses a random vertex
u in the present graph, and then walks Xs steps from u towards v0, joining to the last
vertex in the walk (if it reaches v0 before Xs steps, it joins to v0). Random recursive trees
correspond to Xi = 0, preferential attachment trees correspond to Xi = Bernoulli(1/2)
(see, e.g., [16, Theorem 3.1]), and random-surfer trees correspond to Xi = Geo(p). Using
the ideas of this chapter, it is possible to obtain lower and upper bounds for the height
and the diameter of this general model (similar to Theorems 5.3 and 5.4), provided one
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can prove large deviation inequalities (similar to Lemma 5.18) for the sum of Xi’s and also
large deviation inequalities (similar to Lemma 5.25) for the sum of random variables X ′i,
defined as

X ′1 = 1, X ′i+1 = max{1−Xi, 1− (X ′1 + · · ·+X ′i)} .
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Chapter 6

Push&pull protocols

In this chapter1 we study two randomized rumour spreading protocols which are defined
below.

Definition 6.1 (Asynchronous push&pull protocol). Let G be a simple and connected
graph, and suppose that an independent Poisson clock of rate 1 is associated with each
vertex of G. Suppose that initially, some vertex v of G knows a piece of information, the
so-called rumour. The rumour spreads in G as follows. Whenever the clock of a vertex
x rings, this vertex performs an ‘action’: it calls a random neighbour y; if x knows the
rumour and y does not, then x tells y the rumour (a push operation), and if x does not
know the rumour and y knows it, y tells x the rumour (a pull operation). Note that if both
x and y know the rumour or neither of them knows it, then this action is useless. Also,
vertices have no memory, hence x may call the same neighbour several consecutive times.
The spread time of G starting from v, written STa(G, v), is the first time that all vertices
of G know the rumour. Note that this is a continuous random variable, with two sources
of randomness: the Poisson processes associated with the vertices, and random neighbour-
selection of the vertices. The guaranteed spread time of G, written gsta(G), is the smallest
deterministic number t such that for every v ∈ V (G) we have P [STa(G, v) > t] ≤ 1/|V (G)|.
The worst average spread time of G, written wasta(G), is the smallest deterministic number
t such that for every v ∈ V (G) we have E [STa(G, v)] ≤ t.

Definition 6.2 (Synchronous push&pull protocol). Let G denote a simple and connected
graph. Initially some vertex v of G knows the rumour, which spreads in G in a round-robin

1This chapter is based on joint work with Acan, Collevecchio, and Wormald. The results therein appear
in the submitted preprint [1].
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manner: in each round 1, 2, . . . , all vertices perform actions simultaneously. That is, each
vertex x calls a random neighbour y; if x knows the rumour and y does not, then x tells
y the rumour (a push operation), and if x does not know the rumour and y knows it, y
tells x the rumour (a pull operation). Note that this is a synchronous protocol, e.g. a
vertex that receives a rumour in a certain round cannot send it on in the same round.
The spread time of G starting from v, written STs(G, v), is the first time that all vertices
of G know the rumour. Note that this is a discrete random variable, with one source of
randomness: the random neighbour-selection of the vertices. The guaranteed spread time of
G, written gsts(G), and the worst average spread time of G, written wasts(G), are defined
in an analogous way to the asynchronous case.

In Proposition 6.16, we show that the choice of starting vertex does not affect the
spread time as far as we are not concerned with constant factors, and that wasta(G) =
Θ(E [STa(G, v)]) and wasts(G) = Θ(E [STs(G, v)]) for any vertex v ∈ V (G).

In this chapter G always denotes the ground graph which is simple and connected, and
n always denotes the number of its vertices, and is assumed to be sufficiently large.

The first main result of this chapter is the following theorem.

Theorem 6.3. The following hold for any n-vertex graph G.

(1− 1/n) wasta(G) ≤ gsta(G) ≤ ewasta(G) log n , (6.1)

wasta(G) = Ω(log n) and wasta(G) = O(n) , (6.2)

gsta(G) = Ω(log n) and gsta(G) = O(n log n) . (6.3)

Moreover, these bounds are asymptotically best possible, up to the constant factors.

Our proof of the right-hand bound in (6.2) is based on the pull operation only, so this
bound applies equally well to the pull protocol.

The arguments for (6.1) and the right-hand bounds in (6.2) and (6.3) can easily be
extended to the synchronous variant, giving the following theorem. The bound (6.6) below
also follows from [62, Theorem 2.1], but here we also show its tightness.

Theorem 6.4. The following hold for any n-vertex graph G.

(1− 1/n) wasts(G) ≤ gsts(G) ≤ ewasts(G) log n , (6.4)

wasts(G) = O(n) , (6.5)

gsts(G) = O(n log n) . (6.6)

Moreover, these bounds are asymptotically best possible, up to the constant factors.
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Open problem 6.5. Find the best possible constants factors in Theorems 6.3 and 6.4.

We next turn to studying the relationship between the asynchronous and synchronous
variants on the same graph.

Theorem 6.6. For any G we have gsta(G) = O (gsts(G) log n), and this bound is best
possible, up to the constant factor.

For all graphs we examined a stronger result holds, which suggests the following con-
jecture.

Conjecture 6.7. For any n-vertex graph G we have gsta(G) ≤ gsts(G) +O(log n).

Our last main result is the following theorem, whose proof is somewhat technical, and
uses couplings with the sequential rumour spreading protocol (defined on Page 146).

Theorem 6.8. For any α ∈ [0, 1) we have

gsts(G) ≤ n1−α +O(gsta(G)n(1+α)/2) . (6.7)

Corollary 6.9. We have

gsts(G)

gsta(G)
= Ω(1/ log n) and

gsts(G)

gsta(G)
= O

(
n2/3

)
,

and the left-hand bound is asymptotically best possible, up to the constant factor. Moreover,
there exist infinitely many graphs for which this ratio is Ω

(
n1/3(log n)−4/3

)
.

Open problem 6.10. What is the maximum possible value of the ratio gsts(G)/ gsta(G)
for an n-vertex graph G?

The parameters wasts(G) and wasta(G) can be approximated easily using the Monte
Carlo method: simulate the protocols several times, measuring the spread time of each
simulation, and output the average. Another open problem is to design a deterministic
approximation algorithm for any one of wasta(G), gsta(G), wasts(G) or gsts(G).

In this chapter we use standard graph theoretic arguments and well known properties
of the exponential distribution and Poisson processes (see Section 2.4 for a review), in
particular the memorylessness, and the fact that the union of two Poisson processes is
another Poisson process. For proving Theorem 6.8 we define a careful coupling between
the synchronous and asynchronous protocols.

We next review some related work. In Section 6.1 we prove some preliminary results.
In Section 6.2 we study some examples, which demonstrate tightness of some of the above
bounds. Theorems 6.3 and 6.4 are proved in Sections 6.3 and 6.4, respectively. Theo-
rems 6.6 and 6.8 and Corollary 6.9 are proved in Section 6.5.
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Related work

A protocol that was studied prior to push&pull is the (synchronous) push protocol, in which
the informed nodes push the rumour, but the uninformed ones do nothing. Feige, Peleg,
Raghavan and Upfal [62] showed that for any G, a.a.s. the spread time of the push protocol
is Ω(log n) and O(∆(G)·(diam(G)+log n)). This protocol has been studied on many graph
classes such as complete graphs [62, 110], Erdős-Rényi random graphs [62, 67, 106], random
regular graphs [10, 68], and hypercube graphs [62]. For most of these classes it turns out
that a.a.s. the spread time is Θ(diam(G) + log n), which does not depend on the maximum
degree. Interesting connections between the spread time and the cover time/mixing time
of the simple random walk on the graph have been proved in [59, 115].

Fountoulakis et al. [69] studied the asynchronous push&pull protocol on Chung-Lu
random graphs with exponent between 2 and 3. For these graphs, they showed that a.a.s.
after some constant time, n − o(n) nodes are informed. Doerr, Fouz, and Friedrich [49]
showed that for the preferential attachment graph (the non-tree case), a.a.s. all but o(n)
vertices receive the rumour in time O

(√
log n

)
, but to inform all vertices a.a.s., Θ(log n)

time is necessary and sufficient. Panagiotou and Speidel [107] studied this protocol on
Erdős-Renyi random graphs and proved that if the average degree is (1 + Ω(1)) log n, a.a.s.
the spread time is (1 + o(1)) log n.

6.1 Preliminaries

We start by making a few observations.

Observation 6.11. Consider the asynchronous variant. Let uv be an edge. Whenever v’s
clock rings, it calls u with probability 1/ deg(v). Hence, for each vertex v, we can replace
v’s clock by one Poisson clock for each incident edge, these clocks being independent of all
other clocks and having rate 1/ deg(v) (see the discussion after Proposition 2.16).

Observation 6.12. Whenever a new vertex is informed, by memorylessness of the Poisson
process, we may imagine that all Poisson clocks are restarted (see Proposition 2.16).

The following definition will be used throughout the chapter.

Definition 6.13 (Communication time). For an edge e = uv, the communication time via
edge e, written T (e), is defined as follows. Suppose τ is the first time that one of u and v
learns the rumour, and ρ is the first time after τ that one of u and v calls the other one.
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Then T (e) = ρ− τ , which is nonnegative. Note that after time ρ, both u and v know the
rumour.

Observation 6.14. Let uv ∈ E(G). In the synchronous version,

T (uv)
d
= 1 + min{Geo(1/ deg(u)),Geo(1/ deg(v))} .

We get a nicer formula in the asynchronous version.

Proposition 6.15. Let uv ∈ E(G). In the asynchronous version,

T (uv)
d
= Exp(1/ deg(u) + 1/ deg(v)) . (6.8)

Moreover, the random variables {Te}e∈E(G) are mutually independent.

Proof. By Observations 6.11 and 6.12, the T (e)’s are mutually independent, and more-
over, T (uv) is the minimum of two independent exponential random variables with rates
1/ deg(v) and 1/ deg(u), and (6.8) follows from Proposition 2.11. �

We now show that changing the starting vertex affects the spread time by at most a
multiplicative factor of 2, and in particular, wasts(G) ≤ 2E [STs(G, v)] and wasta(G) ≤
2E [STa(G, v)] for any vertex v.

Proposition 6.16. For any two vertices u and v of G we have STs(G, u)
s

≤ 2 STs(G, v)

and also STa(G, u)
s

≤ 2 STa(G, v).

Proof. We first consider the synchronous protocol. Let C(u, v) denote the first time that
v learns the rumour, assuming initially only u knows it. We claim that

C(u, v)
d
=C(v, u) , (6.9)

which would imply

STs(G, u)
s

≤C(u, v) + STs(G, v)
d
=C(v, u) + STs(G, v)

s

≤ 2 STs(G, v) .

In every round of an execution of the protocol, each vertex contacts a neighbour. We call
this an action, and the signature of this action, is a function a : V → V mapping each vertex
to a neighbour. Hence, m rounds of the protocol can be encoded as (u, a1a2 · · · am), where
u is the vertex knowing the rumour initially, and a1a2 · · · am is a sequence of signatures.
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Let I(u, a1a2 · · · am) denote the set of informed vertices after m rounds. Note that in each
round, the signature of the action taken is a uniformly random one. Hence P [C(u, v) ≤ k]
equals the proportion of the signature-sequences a1a2 · · · ak of length k that satisfy v ∈
I(u, a1 · · · ak). If v ∈ I(u, a1 · · · ak), then looking at the (u, v)-path through which v was
informed, we see that u ∈ I(v, akak−1 · · · a2a1). Therefore, P [C(u, v) ≤ k] = P [C(v, u) ≤ k]
for any k, and this proves (6.9).

We now consider the asynchronous protocol. Let D(u, v) denote the first time that v
learns the rumour, assuming initially only u knows it. Again, it suffices to prove

D(u, v)
d
=D(v, u) . (6.10)

By Proposition 6.15, for any edge uv we have T (uv)
d
= Exp(1/ deg(u) + 1/ deg(v)). More-

over, the variables {T (e)}e∈E are mutually independent. We define a collection of mutually
independent random variables {R(e)}e∈E, such that for any edge uv,

R(uv)
d
= Exp(1/ deg(u) + 1/ deg(v)) .

Let P denote the set of all (u, v)-paths. Then we have

D(u, v) = min

{∑
e∈P

T (e) : P ∈ P

}
d
= min

{∑
e∈P

R(e) : P ∈ P

}
.

By symmetry, D(v, u) has exactly the same distribution, and (6.10) follows. �

6.2 Examples

In this section we study some important graphs and bound their spread times, partly for
showing tightness of some of the bounds obtained, and partly to serve as an introduction
to the behaviour of the protocols.

6.2.1 The complete graph

For the complete graph, Kn, by symmetry what matters at any time is not the actual
set of informed vertices, but only the number of vertices that have the rumour. In the
asynchronous case, by Proposition 6.15 and Observation 6.11, we can imagine a Poisson
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Figure 6.1: the star graph G∗7

clock for each edge, having rate 2/(n− 1) and independent of all other clocks. Let T1 = 0
and denote by Tk the first time that there are k informed vertices. We can at this time
simply restart all k(n − k) clocks at edges joining informed to uninformed vertices (see
Observation 6.12). When the next alarm rings, a new vertex receives the rumour. Thus,
Tk+1 − Tk is distributed as the mimimum of k(n − k) independent exponential random
variables each with rate 2/(n − 1), i.e. as Exp(2k(n − k)/(n − 1)). Hence by linearity of
expectation,

wasta(Kn) = E [STa(Kn, v)] = E [Tn] = E [T1] +
n−1∑
k=1

E [Tk+1 − Tk] =
n−1∑
k=1

n− 1

2k(n− k)
.

We have

n−1∑
k=1

n− 1

2k(n− k)
=

(
n− 1

2n

) n−1∑
k=1

{
1

k
+

1

n− k

}
∼
(
n− 1

2n

)
(2 log n) ∼ log n ,

so wasta(Kn) ∼ log n. In fact, Janson [78, Theorem 1.1(ii)] showed that a.a.s. STa(Kn, v) ∼
log n. Moreover, it is implicit in his proof that gsta(Kn) = O(log n), see [78, Theorem 3.2].

For the synchronous version, Karp et al. [82, Theorem 2.1] showed that a.a.s. we have
STs(Kn, v) ∼ log3 n. It follows that wasts(Kn) ∼ log3 n. It is implicit in their proof that
gsts(Kn) = O(log n).

6.2.2 The star

The star G∗n with n vertices has n− 1 leaves and a central vertex that is adjacent to every
other vertex, see Figure 6.1. Each leaf must communicate with the central vertex through
the unique edge connecting them. It is clear that STs(G

∗
n, v) = 1 if v is the central vertex

and STs(G
∗
n, v) = 2 otherwise.
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In the asynchronous case, the spread time is close to the time the last vertex makes its
first call. By Proposition 6.15, all communication times are independent and distributed
as Exp(n/(n − 1)). Let X1, . . . , Xn−1 be independent Exp(n/(n − 1)) random variables.
Then

STa(G
∗
n, v)

d
=

{
max{X1, . . . , Xn−1} if v is the central vertex

X1 + max{X2, . . . , Xn−1} if v is a leaf.

It follows from Proposition 2.17 that that wasta(G
∗
n) ∼ log n.

Proposition 6.17. We have gsta(G
∗
n) = Θ(log n).

Proof. Let v be a leaf. Then

P [STa(G
∗
n, v) > log n/2] ≥ P [X1 ≥ (log n)/2] = exp

(
− n log n

2(n− 1)

)
> 1/n ,

so gsta(G
∗
n) > (log n)/2.

For the other direction, since max{X1, . . . , Xn−1}
s

≤X1 +max{X2, . . . , Xn−1}, it suffices
to show

P [X1 + max{X2, . . . , Xn−1} > 3 log n] < 1/n . (6.11)

We have
P [X1 > log n] = exp(−n log n/(n− 1)) < 1/(2n)

and

P [max{X2, . . . , Xn−1} > 2 log n] ≤ nP [X2 > 2 log n] = exp

(
log n− 2n log n

n− 1

)
< 1/(2n) .

Inequality (6.11) follows from the union bound. �

This graph gives that the left-hand bounds in (6.1), (6.2), (6.3), (6.4) and Corollary 6.9,
and Theorem 6.6, are tight, up to constant factors.

6.2.3 The path

The graph Pn consists just of a path (v1, . . . , vn), see Figure 6.2. In this case, the spread
times in the synchronous and asynchronous variants are close to each other. We first
consider the asynchronous variant. Let e be an edge. By Proposition 6.15, if e connects
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v1 v2 v3 v4 v5 v6

Figure 6.2: the path graph P6

two internal vertices, then T (e)
d
= Exp(1), and otherwise, T (e)

d
= Exp(3/2). Thus if the

rumour starts from one of the endpoints, say v1, we have

STa(Pn, v1)
d
=

n−1∑
i=1

Xi, (6.12)

where Xi’s are independent exponential random variables, X1 and Xn−1 with rates 3/2 and
the rest with rates 1. It follows that E [STa(Pn, v1)] = (n − 3) + 2(2/3) = n − 5/3. With
similar computations, it is easy to see that this is the worst case, i.e. wasta(Pn) = n− 5/3.
This shows that the right-hand bound in (6.2) is tight, up to the constant factor.

Next we show gsta(Pn) ∼ n. Fix ε > 0. Note that
∑n−2

i=2 Xi is a sum of i.i.d. random
variables, hence by Cramér’s Theorem (Theorem 2.20), the probability that it deviates by
at least εn from its expected value is exp(−Ω(n)). Moreover, (6.12) means that STa(Pn, v1)
is
∑n−2

i=2 Xi plus two exponential random variables with constant rate, and the same state-
ment is true for it as well, so gsta(Pn) ∼ n.

Now consider the synchronous case. Let e be an edge. By Observation 6.14, if e

connects two internal vertices, then T (e)
d
= 1 + Geo(3/4), and otherwise, T (e) = 1. Thus

if the rumour starts from one of the endpoints, say v1, we have

STs(Pn, v1)
d
=n− 1 +

n−2∑
i=2

Xi, (6.13)

where Xi’s are independent Geo(3/4) random variables. It follows that E [STs(Pn, v1)] =
(4/3)n − 2. With similar computations, it is easy to see that this is the worst case, i.e.
wasts(Pn) = (4/3)n− 2. This shows that the right-hand bound in (6.5) is tight, up to the
constant factor.

Next we show gsts(Pn) ∼ n. Fix ε > 0. Note that
∑n−2

i=2 Xi is a sum of i.i.d. random
variables, hence by Cramér’s Theorem (Theorem 2.20), the probability that it deviates by
at least εn from its expected value is exp(−Ω(n)). Moreover, (6.13) means that STs(Pn, v1)
is
∑n−2

i=2 Xi plus a constant, and the same statement is true for it as well, so gsts(Pn) ∼
(4/3)n.
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Figure 6.3: the double star graph DS8

6.2.4 The double star

Consider the tree DSn consisting of two adjacent vertices of degree n/2, referred to as the
star centres, and n−2 leaves, see Figure 6.3. We will show that gsta(DSn) and gsts(DSn)
are both Θ(n log n), while the average times wasta(DSn) and wasts(DSn) are Θ(n). This
example hence shows tightness of the right-hand bounds in (6.1), (6.3), (6.4) and (6.6) up
to constant factors.

The main delay in spreading the rumour in this graph comes from the edge e∗ joining
the two centres. First, consider the asynchronous case. Here, by Proposition 6.15, T (e∗) =
Exp(4/n). So, the rumour passes from one centre to the other one in n/4 time units on
average. On the other hand, the leaves learn the rumour in Θ(log n) time on average, as
in the star graph. Combining the two, we get wasta(DSn) ∼ n/4.

For the guaranteed spread time, note that if c < 1/4 then

P [T (e∗) ≥ cn log n] = exp(−n/4× cn log n) ≥ 1/n .

Thus gsta(DSn) ≥ n log n/4. Calculations similar to those in Section 6.2.2 show that if
c > 1/4 then for any vertex v, P [STa(DSn, v) > cn log n] < 1/n, whence gsta(DSn) ∼
(n log n)/4.

In the synchronous case, for any v we have T (e∗) + 1 ≤ STs(DSn, v) ≤ T (e∗) + 2 and
by Observation 6.14,

T (e∗)
d
= 1 + min{Geo(2/n),Geo(2/n)} d

= 1 + Geo(4/n− 4/n2) ,

hence
wasts(DSn) = 3 + E

[
Geo(4/n− 4/n2)

]
∼ n/4 .

If c < 1/4 then

P
[
3 + Geo(4/n− 4/n2) ≥ cn log n

]
≥ (1− 4/n+ 4/n2)cn logn .
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...

... . . . ...

Figure 6.4: a necklace graph, on which the asynchronous push&pull protocol is much
quicker than its synchronous variant.

Since e−y ≥ 1− y ≥ e−y−y
2

for every y ∈ [0, 1/4],

(1− 4/n+ 4/n2)cn logn = exp((−4/n+O(1/n2))cn log n) = (1/n)4ceo(1) ≥ 1/n .

While, if c > 1/4, then

P
[
3 + Geo

(
4

n
− 4

n2

)
≥ cn log n

]
=

(
1− 4

n
+

4

n2

)cn logn−3

≤ exp(−4c log n+o(1)) < 1/n,

whence gsts(DSn) ∼ (n log n)/4.

6.2.5 The necklace graph

Let m and k ≥ 2 be positive integers, and let G be the necklace graph given in Figure 6.4,
where there are m diamonds, each consisting of k edge-disjoint paths of length 2 with the
same end vetices, which we call hubs. The number of vertices is n = km + m + 1. Let us
analyze the average spread time.

Consider the asynchronous case first. Proposition 6.15 gives that for each edge e,

T (e)
d
= Exp(1/2 + 1/k)

s

≤ Exp(1/2)

and that {T (e)}e∈E are independent. Between any two consecutive hubs there are k disjoint
paths of length 2, so the communication time between them is stochastically dominated by
Z := min{Z1, . . . , Zk}, where the Zi are independent random variables equal in distribution
to the sum of two independent Exp(1/2) random variables.

Lemma 6.18. We have E [Z] = O(1/
√
k).

137



Proof. For any t ≥ 0 we have

P [Z > t] =
∏
i

P [Zi > t] = P [Z1 > t]k ≤
(
1− P [Exp(1/2) ≤ t/2]2

)k
= (2 exp(−t/4)− exp(−t/2))k .

Using the inequality 2 exp(−t/4)− exp(−t/2) ≤ exp(−t2/64), valid for all t ∈ [0, 4], we get

E [Z] =

∫ ∞
0

P [Z > t] dt ≤
∫ 4

0

exp(−kt2/64)dt+

∫ ∞
4

(2 exp(−t/4))kdt

<

∫ ∞
0

exp(−kt2/64)dt+
2k+2

kek

= 8
√
π/k + (2/e)k4/k = O(1/

√
k) . �

By Lemma 6.18, the expected time for all the hubs to learn the rumour is O(mk−1/2).
Once all the hubs learn the rumour, a degree 2 vertex pulls the rumour in Exp(1) time
and by Proposition 2.17, the expected value of the maximum of at most km independent
Exp(1) variables is O(log km). So by linearity of expectation,

wasta(G) = O(log n+mk−1/2).

In the synchronous case, for any G we have wasts(G) ≥ diam(G). For this graph, we
get wasts(G) ≥ 2m. Choosing k = Θ

(
(n/ log n)2/3

)
and m = Θ

(
n1/3(log n)2/3

)
gives

wasta(G) = O(log n) and wasts(G) = Ω(n1/3(log n)2/3) .

This graph, which has wasts(G)/wasta(G) = Ω
(
(n/ log n)1/3

)
, is the example promised by

Corollary 6.9.

6.3 Extremal spread times for the asynchronous

push&pull protocol

In this section we prove Theorem 6.3.
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6.3.1 Proof of (6.1) and its tightness

For a given t ≥ 0, consider the protocol which is the same as push&pull except that, if
the rumour has not spread to all vertices by time t, then the new process reinitializes.
Coupling the new process with push&pull, we obtain for any k ∈ N0 that

P [STa(G, v) > kt] ≤ P [STa(G, v) > t]k . (6.14)

and
P [STs(G, v) > kt] ≤ P [STs(G, v) > t]k . (6.15)

Combining (6.14) with

P [STa(G, v) > eE [STa(G, v)]] < 1/e,

which comes directly from Markov’s inequality, we obtain

P [STa(G, v) > e log nE [STa(G, v)]] < 1/n.

Since E [STa(G, v)] ≤ wasta(G) for all v, this gives the right-hand inequality in (6.1) directly
from the definition of gsta. This inequality is tight up to the constant factor, as the double
star has wasta(DSn) = Θ(n) and gsta(DSn) = Θ(n log n) (see Section 6.2.4).

To prove the left-hand inequality, let τ = gsta(G) and let v be a vertex such that
E [STa(G, v)] = wasta(G). Then

wasta(G) =

∫ ∞
0

P [STa(G, v) > t] dt =
∑
i∈N0

∫ (i+1)τ

iτ

P [STa(G, v) > t] dt ≤
∑
i∈N0

τ

ni

by (6.14) with t = τ . Hence wasta(G) ≤ τ/(1 − 1/n). This inequality is tight up to a
constant factor, as the star has wasta(G

∗
n) = Θ(gsta(G

∗
n)) = Θ(log n) (see Section 6.2.2).

6.3.2 Proof of the right-hand bound in (6.2) and its tightness

We will actually prove this using pull operations only. Indeed we will show wastpulla (G) ≤ 4n,
where the superscript pull means the pull protocol only. Since the path has wastpulla (Pn) ≥
wasta(Pn) = Θ(n) (see Section 6.2.3), this bound would be tight up to the constant factor.

The proof is by induction: we prove that when there are precisely m uninformed ver-
tices, just b of which have informed neighbours (we call these b vertices the boundary
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v

BI R

Figure 6.5: first case in the proof of the right-hand bound in (6.2): there exists a boundary
vertex v with 3 = dR(v) ≥ dB(v) = 2 (informed vertices are black).

vertices), the expected remaining time for the rumour to reach all vertices is at most
4m−2b. The inductive step is proved as follows. Let I denote the set of informed vertices,
B the set of boundary vertices, and R the set of the remaining vertices. Let |B| = b and
|B|+ |R| = m. Let d(v) denote the degree of v in G and, for a set S of vertices, let dS(v)
denote the number of neighbours of v in S. We consider two cases.

Firstly, suppose that there exists a boundary vertex v with dR(v) ≥ dB(v) (see Fig-
ure 6.5). We can for the next step ignore all calls from vertices other than v, so the process
is forced to wait until v is informed before any other vertices. This clearly gives an upper
bound on the spread time. The expected time taken for v to pull the rumour from vertices
in I is

d(v)

dI(v)
=
dI(v) + dR(v) + dB(v)

dI(v)
≤ 1 +

2dR(v)

dI(v)
≤ 1 + 2dR(v).

Once v is informed, the number of uninformed vertices decreases by 1, and the number
of boundary vertices increases by dR(v)− 1. The inductive hypothesis concludes this case
since

1 + 2dR(v) + 4(m− 1)− 2(b+ dR(v)− 1) < 4m− 2b.

Otherwise, if there is no such v, then any boundary vertex v has a ‘pulling rate’ of

dI(v)

dI(v) + dR(v) + dB(v)
≥ 1

1 + dR(v) + dB(v)
≥ 1

2dB(v)
≥ 1

2b
.

Since there are b boundary vertices, together they have a pulling rate of at least 1/2 (see,
e.g., Proposition 2.11), so the expected time until a boundary vertex is informed is at most
2. Once this happens, m decreases by 1 and b either does not decrease or decreases by at
most 1, and the inductive hypothesis concludes the proof.
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6.3.3 Proof of the left-hand bound in (6.2) and its tightness

In this section we show for any vertex v0 of a graph G we have E [STa(G, v0)] = Ω(log n).
This is tight as the star has wasta(G

∗
n) = O(log n) (see Section 6.2.2). We give an argument

for an equivalent protocol, defined below.

Definition 6.19 (Two-clock-per-edge protocol). On every edge place two Poisson clocks,
one near each end vertex. All clocks are independent. On an edge joining vertices u and
v, the clocks both have rate deg(u)−1 + deg(v)−1. Note that this is the rate of calls along
that edge, combined, from u and v (see Proposition 6.15). At any time that the clock near
u on an edge uv rings, and v knows the rumour but u does not, the rumour is passed to u.

Proposition 6.20. The two-clock-per-edge protocol is precisely equivalent to the asyn-
chronous push&pull protocol.

Proof. Consider an arbitrary moment during the execution of the two-clock-per-edge pro-
tocol. Let I denote the set of informed vertices. For any edge uv with u ∈ I and v /∈ I, the
rate of calls along uv is deg(u)−1+deg(v)−1. Moreover, the edges act independently. So, the
behaviour of the protocol at this moment is exactly the same as that of the asynchronous
push&pull protocol. Hence, the two protocols are equivalent. �

In view of Proposition 6.20, we may work with the two-clock-per-edge protocol instead.
Let Xv be the time taken for the first clock located near v to ring. Then Xv is distributed
as Exp(f(v)) where f(v) = 1 +

∑
deg(u)−1, the sum being over all neighbours u of v.

Hence,
∑
f(v) = 2n.

On the other hand, for a vertex v 6= v0 to learn the rumour, at least one of clocks
located near v must ring. Thus

max{Xv : v ∈ V (G)\{v0}}
s

≤ STa(G, v0) .

Let X = max{Xv : v ∈ V (G)\{v0}}. Hence to prove E [STa(G, v0)] = Ω(log n) it suffices
to show E [X] = Ω(log n).
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Let τ = log(n− 1)/3 and A = V (G) \ {v0}, Then we have

P [X < τ ] =
∏
v∈A

(Xv < τ)

=
∏
v∈A

(1− e−τf(v))

≤ exp

(
−
∑
v

e−τf(v)

)
≤ exp

(
−(n− 1)e−τ

∑
v f(v)/(n−1)

)
≤ exp

(
−(n− 1)e−3τ

)
= e−1 .

Here the first inequality follows from 1−x ≤ e−x, the second from the arithmetic-geometric
mean inequality, and the last one from 2n =

∑
v f(v) ≤ 3(n − 1) which holds for n ≥ 3.

Consequently, we have

E [X] ≥ P [X ≥ τ ] τ ≥ (1− e−1) log(n− 1)/3 = Ω(log n) ,

as required.

6.3.4 Proof of (6.3) and its tightness

The bounds in (6.3) follow immediately from (6.1) and (6.2). The left-hand bound is tight
as the star has gsta(G

∗
n) = Θ(log n) (see Section 6.2.2), and the right-hand bound is tight

as the double star has gsta(DSn) = Θ(n log n) (see Section 6.2.4).

6.4 Extremal spread times for the synchronous

push&pull protocol

In this section we prove Theorem 6.4. The bound gsts(G) = O(n log n) is a direct conse-
quence of bounds (6.5) and (6.4). This bound is tight as the double star has guaranteed
spread time Θ(n log n) (see Section 6.2.4). The proof of (6.4) and its tightness are ex-
actly the same as that for (6.1). Below we will prove bound (6.5), i.e. wasts(G) = O(n),
which would be tight, up to the constant factor, as the path has diameter n− 1 and hence
wasts(Pn) ≥ n− 1.
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v

BI R

Figure 6.6: second case in the proof of (6.5): for all boundary vertices v we have dR(v) <
dB(v) (informed vertices are black).

The proof for (6.5) is similar to the one for the right-hand bound in (6.2) given in
Section 6.3.2. Let α =

√
e/(
√
e− 1). We consider the pull operation only, and will

prove inductively that when there are m uninformed vertices and b boundary vertices, the
expected remaining time for the rumour to reach all vertices is at most (2 +α)m− 2b, and
it follows that wasts(G) = O(n). The inductive step is proved as follows. Let I denote the
set of informed vertices, B the set of boundary vertices, and R the set of the remaining
vertices. Let |B| = b and |B| + |R| = m. Let d(v) denote the degree of v in G and, for a
set S of vertices, let dS(v) denote the number of neighbours of v in S. Consider two cases.

Firstly, suppose that there is a vertex v ∈ B such that dR(v) ≥ dB(v). In this case, for
the next step, we ignore all calls from vertices other than v and wait until v is informed
before any other uninformed vertex. This gives an upper bound on the spread time. The
expected time taken for v to pull the rumour from vertices in I is

1 + E
[
Geo

(
dI(v)

d(v)

)]
=

d(v)

dI(v)
=
dI(v) + dR(v) + dB(v)

dI(v)
≤ 2dR(v) + 1.

Once v is informed, the number of uninformed vertices decreases by 1 and the number of
boundary vertices increases by dR(v) − 1. By the inductive hypothesis the expected time
for the spread of the rumour is at most

2dR(v) + 1 + (α + 2)(m− 1)− 2(b+ dR(v)− 1) < (α + 2)m− 2b.

Next consider the case that dR(v) < dB(v) for all v ∈ B (see Figure 6.6). For each
boundary vertex v we have

dI(v)

d(v)
=

dI(v)

dI(v) + dR(v) + dB(v)
≥ 1

1 + dR(v) + dB(v)
≥ 1

2dB(v)
≥ 1

2b
.
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Let X denote the time taken until the next vertex is informed. Then we have

X = 1 + min{X1, X2, . . . , Xb} ,

where the Xi’s are geometric random variables with parameters at least 1/2b, and corre-
spond to the waiting times of the boundary vertices, and they are independent since we
are considering pull operations only. Thus we have

E [X − 1] =
∑
t∈N

P [X − 1 ≥ t] =
∑
t∈N

∏
i∈[b]

P [Xi ≥ t] ≤
∑
t∈N

(
1− 1

2b

)tb
≤
∑
t∈N

e−t/2 = α− 1 ,

so a boundary vertex learns the rumour after at most α units of time on average, at which
time the number of boundary vertices either does not decrease or decreases by 1. By
inductive hypothesis again, the average spread time is at most

α + (α + 2)(m− 1)− 2(b− 1) = (α + 2)m− 2b,

which completes the proof.

6.5 Comparison of the two protocols

Assuming Theorems 6.6 and 6.8, in this section we prove Corollary 6.9. The left-hand
bound follows from Theorem 6.6; it is tight, up to the constant factor, as the star has
gsta(G

∗
n) = Θ(log n) and gsts(G

∗
n) = 2 (see Section 6.2.2). The right-hand bound follows

from Theorem 6.8 by choosing α = 1/3. A graph G was given in Section 6.2.5 having
wasts(G)/wasta(G) = Ω

(
(n/ log n)1/3

)
. Using (6.1) and (6.4), we get gsts(G)/gsta(G) =

Ω
(
n1/3(log n)−4/3

)
for this G.

In the following subsections we prove Theorems 6.6 and 6.8.

6.5.1 The lower bound

In this section we prove Theorem 6.6. Let G be an n-vertex graph and let s denote
the vertex starting the rumour. We give a coupling between the two versions. Consider a
‘collection of calling lists for vertices’: for every vertex u, we have an infinite list of vertices,
each entry of which is a uniformly random neighbour of u, chosen independently from other
entries, see Figure 6.7. The coupling is built by using the same collection of calling lists
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1

2

3 4

calling list for vertex 1: 2 2 3 2 3 · · ·
calling list for vertex 2: 1 3 3 1 3 · · ·
calling list for vertex 3: 2 2 1 4 1 · · ·
calling list for vertex 4: 3 3 3 3 3 · · ·

Figure 6.7: a collection of calling lists for vertices

for the two versions of the push&pull protocol. Note that STs(G, s) is determined by
this collection, but to determine STa(G, s) we also need to know the Poisson processes
associated with the vertices.

Let B denote the event ‘STs(G, s) ≤ 2 gsts(G)’, which depends on the calling lists only.
Inequality (6.15) gives P [Bc] ≤ 1/n2. Partition the time interval [0, 2 gsts(G) × 4 log n)
into subintervals [0, 4 log n), [4 log n, 8 log n), etc. Consider a ‘decelerated’ variant of the
asynchronous push&pull protocol in which each vertex makes a call the first time its clock
rings in each subinterval (if it does), but ignores later clock rings in that subinterval (if
any). The spread time in this protocol is stochastically larger than that in the asynchronous
push&pull protocol, so without loss of generality we may and will work with the decelerated
variant. Let A denote the event ‘during each of these 2 gsts(G) subintervals, all clocks ring
at least once.’ If A happens, then an inductive argument gives that for any 1 ≤ k ≤
2 gsts(G), the set of informed vertices in the decelerated variant at time 4k log n contains
the set of informed vertices after k rounds of the synchronous version. Hence, if both A
and B happen, then we would have

STa(G, s) ≤ (4 log n) STs(G, s) ≤ (8 log n) gsts(G) .

Hence to complete the proof, we need only show that P [Ac] ≤ 1/n− 1/n2.

Let I denote a given subinterval. In the asynchronous version, the clock of any given
vertex rings with probability at least 1−n−4 during I. By the union bound, all clocks ring
at least once during I, with probability at least 1 − n−3. The number of subintervals in
the definition of A is 2 gsts(G), which is O(n log n) by (6.6). By the union bound again,
P [Ac] = O (log n/n2), as required.

Theorem 6.6 is tight, up to the constant factor, as the star has gsta(G
∗
n) = Θ(log n)

and gsts(G
∗
n) = 2 (see Section 6.2.2).
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6.5.2 The upper bound

In this section we prove Theorem 6.8. We first sketch the proof. The main ingredients
in the proof are a coupling between the two protocols, and sharp concentration bounds.
Consider the asynchronous version. List the vertices in the order their clocks ring. The
list ends once all the vertices are informed. Now consider the natural coupling between
the two protocols, the synchronous actions follow the same ordering as in the list. We
partition the list into blocks according to a certain rule in such a way that the blocks have
the following property: the synchronous protocol in each round will inform a superset of
the set of vertices informed by the asynchronous variant in any single block. For example,
if we require that in each block each vertex communicates with the others at most once,
then we would have this property. However, in order to get our bound, we need to use a
more delicate rule for building the blocks. To conclude, we find an upper bound for the
number of blocks, which coincides with the right-hand side of (6.7).

We now give the details. Fix α ∈ [0, 1). We want to prove

gsts(G) ≤ n1−α + 64gsta(G)n(1+α)/2 . (6.16)

Let us fix an arbitrary starting vertex. Let B1, B2, . . . be an i.i.d. sequence of vertices,
where Bi is a uniformly random vertex of G. For each i, let Wi be a uniformly random
neighbour of Bi, chosen independently of all other choices. Hence, W1,W2, . . . is also
an i.i.d. sequence of vertices (not necessarily having uniform distribution). We define a
coupling between the two protocols by using the two sequences (Bi)i∈N and (Wi)i∈N.

To define the coupled asynchronous scenario, we also need to know the ringing times
of the clocks. Let Z1, Z2, . . . be a sequence of i.i.d. exponentials with rate n (and mean
1/n), and let this sequence be independent of (Bi)i∈N and (Wi)i∈N. Then the coupled
asynchronous scenario proceeds as follows: at time Z1 the clock of vertex B1 rings and it
contacts W1, then at time Z1 + Z2 the clock of B2 rings and it contacts W2, and so on.

We now define a third rumour spreading scenario, which corresponds to the so-called
sequential protocol [115]. This protocol works as the asynchronous one except we put
Zi = 1 for all i. Hence, the scenario only depends on the sequences (Bi)i∈N and (Wi)i∈N.
Let N denote the first time that this protocol has informed all the vertices. Note that
N ≥ n− 1. Observe that, in the asynchronous scenario, all vertices are informed right
after N clocks have rung, and the spread time is

∑N
i=1 Zi.

The following lemma relates gsta(G) and N .

Lemma 6.21. Define the event

A := {N ≤ 4n gsta(G)} .
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Then we have P [A] ≥ 1−O(1/n2).

Proof. As the spread time of the asynchronous scenario is
∑N

i=1 Zi, by definition of gsta we

have P
[∑N

i=1 Zi > gsta(G)
]
≤1/n. By (6.14) we have

P

[
N∑
i=1

Zi > 2 gsta(G)

]
≤1/n2 .

So we need only show that

P

[
N > 2

N∑
i=1

nZi

]
= O(1/n2) .

Since Zi’s are i.i.d. exponentials with rate n, the random variables nZi are i.i.d. exponentials
with rate 1 (see, e.g., Proposition 2.12), so for any fixed t, Lemma 2.21 (concentration of
the sum of i.i.d. exponential random variables) gives

P

[
t∑
i=1

nZi < t/2

]
= e−ct

for some positive constant c. Since N ≥ n− 1, we have

P

[
N > 2

N∑
i=1

nZi

]
≤

∞∑
t=n−1

P

[
N > 2

N∑
i=1

nZi

∣∣∣∣ N = t

]
=

∞∑
t=n−1

e−ct = exp(−Ω(n)) ,

as required. �

To define the coupled synchronous scenario, we need some definitions. For each vertex
v, let π(v) denote the probability that Wj = v. Recall that this probability does not
depend on j. Call a vertex v special if π(v) > nα−1. Note that since

∑
π(v) = 1, there are

less than n1−α special vertices.

We partition the list B1,W1, B2,W2, . . . into infinitely many finite blocks as follows.
The first block is of the form

B1,W1, B2,W2, . . . , Bj,Wj ,

with j as large as possible, subject to the following conditions:
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1. We have Bi /∈ {B1,W1, . . . , Bi−1,Wi−1} for all 1 < i ≤ j.

2. If Wi ∈ {B1,W1, . . . , Bi−1,Wi−1} for some 1 < i ≤ j, then Wi is special.

Note that we choose the block to be as long as possible, hence we stop at Wj only if Bj+1

already appears in B1, . . . ,Wj, or Wj+1 is non-special and it appears in B1, . . . ,Wj, or
both. If we have stopped at Wj, then a new block is started from Bj+1, and this process
is iterated forever to define all the blocks. Note that each block has an even number of
elements.

Let S1, S2, . . . denote the sizes of the blocks, and let Nb be the smallest number such
that

S1 + S2 + · · ·+ SNb ≥ 2N .

The following lemma relates the spread time of the synchronous protocol and Nb.

Lemma 6.22. The spread time of the synchronous push&pull protocol is stochastically
smaller than Nb + n1−α.

Proof. In this proof we only consider the finite listB1,W1, . . . , BN ,WN , which is partitioned
into blocks as discussed before. We further split the blocks into smaller ones according to
the following rule. Let v be a special vertex and assume that in the sequential scenario, it is
informed exactly at time i. So, either Bi = v or Wi = v. If the elements Bi,Wi, Bi+1,Wi+1

are contained in the same block, then we split this block at this point, putting everything
up to Bi,Wi in one block and Bi+1,Wi+1 and everything after in the other one. Since the
number of splits equals the number of special vertices, and there are less than n1−α special
vertices, the new total number of blocks is less than Nb+n1−α. We work with these refined
blocks for the rest of the proof.

We couple with a modified version of the synchronous push&pull protocol, which we
call the lazy scenario. We define the coupled lazy scenario inductively using the blocks.
Assume that the kth block is

Bi,Wi, Bi+1,Wi+1, . . . , Bj,Wj .

Then in the kth round of the lazy scenario, vertex Bi contacts Wi, vertex Bi+1 contacts
Wi+1 and so on, up until vertex Bj contacts Wj (all these communications happen at the
same time). Moreover, a vertex that does not appear in this block, does not perform any
action in the kth round. It is clear that stochastic upper bounds for the spread time of
this lazy scenario carries over to the synchronous push&pull scenario.
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To complete the proof we will show that the set of vertices informed by the lazy scenario
after k rounds equals the set of vertices informed by the sequential scenario right after time
(S1 + · · · + Sk)/2. (The factor of 2 appears here because a block with r communications
has length 2r.) The proof proceeds by induction. Assume that the kth block is

Bi,Wi, Bi+1,Wi+1, . . . , Bj,Wj .

If no repetition happens in this block at all, then it is clear that the lazy scenario in one
round informs every vertex which the sequential one informs during times i, i + 1, . . . , j.
Notice the possible problem if a repetition happens: if during this block, x contacts y and
tells her the rumour for the first time, and z also contacts y and asks her the rumour, then
in the sequential scenario both y and z will learn the rumour by time j, whereas in the lazy
scenario this is not the case because these operations happen at exactly the same time.
However, if v is a repeated vertex in this block, then v is a special vertex, and moreover by
the secondary splitting of the blocks, we know that it cannot be the case that v is informed
in this block for the first time and appears again later in the block. Hence, no ‘informing
path’ of length greater than one can appear in this block, and the proof is complete. �

Let k = 64 gsta(G)n(1+α)/2. The following lemma bounds Nb.

Lemma 6.23. Define the event

B := {S1 + · · ·+ Sk ≥ 8 gsta(G)n} .

Then we have P [B] ≥ 1−O(1/n2).

Before proving this lemma, let us see why it concludes the proof of Theorem 6.8. By
Lemmas 6.21 and 6.23 and the union bound, with probability at least 1− 1/n both events
A and B happen. Assume this is the case. Then we have

S1 + · · ·+ Sk ≥ 8 gsta(G)n ≥ 2N ,

which means Nb ≤ k by the definition of Nb. Together with Lemma 6.22, this implies that
with probability at least 1− 1/n, the spread time of the synchronous push&pull protocol
is at most k + n1−α, which gives (6.16).

Proof of Lemma 6.23. Let ` = n(1−α)/2/4. We first show that

P [S1 > 2`] ≥ 1/2 . (6.17)
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Let j be arbitrary. We compute the conditional probability of {S1 ≥ 2j + 2} given that
{S1 ≥ 2j}. On the event {S1 ≥ 2j}, the conditional probability that Bj+1 is a repetition
of a vertex already in the block B1,W1, B2,W2, . . . , Bj,Wj is 2j/n. The probability that
Wj+1 is a repetition of a non-special vertex in the block is bounded above by 2jnα−1, since
there are at most 2j distinct vertices in the block so far, and Wj+1 is a given non-special
vertex with probability at most nα−1. So, we have

P [S1 ≥ 2j + 2|S1 ≥ 2j] ≥ 1− 4jnα−1 ≥ exp(−8jnα−1) .

Consequently,

P [S1 > 2`] ≥
∏̀
j=1

exp(−8jnα−1) = exp
(
−4nα−1`(`+ 1)

)
≥ 1/2

by the choice of `, so (6.17) holds.

Observe that the block sizes S1, S2, . . . are i.i.d., and each of them is at least 2` with
probability at least 1/2. So we have

P [S1 + · · ·+ Sk ≤ k`/2] ≤ P [Bin(k, 1/2) ≤ k/4] ≤ exp(−k/16) = O(1/n2) ,

where for the second inequality, we have used the lower tail Chernoff bound (2.2). �
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Chapter 7

Synchronous push&pull protocol on
two random graphs

In this chapter1 we study the synchronous push&pull protocol on random k-trees and
random k-Apollonian networks, both of which we have already encountered in Section 3.5.
We recall the definition of random k-trees.

Definition 7.1 (Random k-tree process [71]). Let k be a positive integer. Build a sequence
G(0), G(1), . . . of random graphs as follows. The graph G(0) is just a clique on k vertices.
For each 1 ≤ t ≤ n, G(t) is obtained from G(t − 1) as follows: a k-clique of G(t − 1) is
chosen uniformly at random, a new vertex is born and is joined to all vertices of the chosen
k-clique. The graph G(n) is called a random k-tree on n + k vertices. See Figure 7.1 for
an illustration.

Remark 7.2. A k-tree is defined in a similar manner (see, e.g., [86, Definition 2.1.8]), the
only difference being that in each step we choose an arbitrary k-clique instead of a uniformly
random one.

Sometimes it is convenient to view this as a ‘random graph evolving in time.’ In this
interpretation, in every round 1, 2, . . . , a new vertex is ‘born’ and is added to the evolving
graph, and G(t) denotes the graph at the end of round t. Observe that G(t) has k+ t many
vertices and kt + 1 many k-cliques. Also, if t > 0, then each vertex in G(t) has degree at
least k.

1This chapter is based on joint work with Ali Pourmiri. The results therein appear in the submitted
manuscript [99], an extended abstract of which has been published [100].
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G(0) G(1) G(2) G(3) G(11)

Figure 7.1: an instance of a random 2-tree process

As in the preferential attachment scheme, the random k-tree process enjoys a ‘the rich
get richer’ effect. Think of the number of k-cliques containing any vertex v as the ‘wealth’
of v (note that this quantity is linearly related to deg(v)). Then, the probability that the
new vertex attaches to v is proportional to the wealth of v, and if this happens, the wealth
of v increases by k − 1.

The first result of this chapter is the following theorem.

Theorem 7.3. Let k ≥ 2 be fixed and let f(n) = o(log log n) be an arbitrary function going
to infinity with n. If initially a random vertex of an (n + k)-vertex random k-tree knows

a rumour, then a.a.s. after O
(

(log n)1+ 2
k · log log n · f(n)

3
k

)
rounds of the synchronous

push&pull protocol, n− o(n) vertices will know the rumour.

Remark 7.4. There are two sources of randomness here: the structure of the graph, and
the actions of the protocol.

We give a high-level sketch of the proof of Theorem 7.3. Let G be a random k-tree.
Let m = o(n) be a suitably chosen parameter, and note that G(m) is a subgraph of G.
Consider the connected components of G − G(m). Most vertices born later than round
m have relatively small degree, so most these components have a small maximum degree
(and logarithmic diameter) thus the rumour spreads quickly inside each of them. A vertex
v ∈ V (G(m)) typically has a large degree, but this means there is a high chance that v has
a neighbour x with small degree, which quickly receives the rumour from v and spreads it
(or vice versa). We build an almost-spanning tree T of G(m) with logarithmic height, such
that for every edge uv of T , one of u and v have a small degree, or u and v have a common
neighbour with a small degree. Either of these situations mean the rumour is exchanged
quickly between u and v. This tree T then works as a ‘highway system’ to spread the
rumour within vertices of G(m) and from them to the components of G−G(m). The main
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novelty in this proof is how the almost-spanning tree is built and used. The degrees in
a random k-tree, and the sizes of the components of G − G(m) are naturally related to
the number of balls of a given colour in certain triangular urn models. In our proofs, we
exploit these connections and apply some recent results on triangular urn models from the
work of Flajolet, Dumas and Puyhaubert [65] and Janson [79].

Our second main result is the following theorem, which gives a polynomial lower bound
for the spread time.

Theorem 7.5. Let k ≥ 2 be fixed and let f(n) = o(log log n) be an arbitrary func-
tion going to infinity with n. Suppose that initially one vertex in the random k-tree,
G(n), knows the rumour. Then, a.a.s. the synchronous push&pull protocol needs at least
n(k−1)/(k2+k−1)f(n)−3 rounds to inform all vertices of G(n).

We give a high-level sketch of the proof of Theorem 7.5. A barrier in a graph is a
subset D of edges of size O(1), whose deletion disconnects the graph. If both endpoints of
every edge of a barrier D have large degrees, then the protocol needs a large time to pass
the rumour through D. For proving Theorem 7.5, we prove a random k-tree has a barrier
a.a.s. The main novelty in this proof is introducing and using the notion of a barrier.

It is instructive to contrast Theorems 7.3 and 7.5. The former implies that if you want
to inform almost all the vertices, then you just need to wait for a polylogarithmic number of
rounds. The latter implies that, however, if you want to inform each and every vertex, then
you have to wait for polynomially many rounds. This is a striking phenomenon and the
main message of this chapter is to present a natural class of random graphs in which this
phenomenon can be observed. In fact, in applications such as viral marketing and voting,
it is more appealing to inform 99 percent of the vertices very quickly instead of waiting a
long time until everyone gets informed. For such applications, Theorem 7.3 implies that
the synchronous push&pull protocol can be effective even on poorly connected graphs.

It is worth mentioning that bounds for the number of rounds to inform almost all
vertices have already appeared in the literature, see for instance [49, 69]. In particular,
for Chung-Lu graphs with exponent in (2, 3), it is shown [69] that a.a.s. after O(log log n)
rounds the rumour spreads in n − o(n) vertices, but to inform all vertices of the giant
component, Θ(log n) rounds are needed. This result also shows a great difference between
the two cases, however in both cases the required time is quite small.

Informally speaking, a random k-tree looks like the graph in Figure 7.2: there is a big
chunk B, containing almost all vertices, in which the rumour spreads quickly, and there
are small pieces here and there that are loosely connected to B and it takes a lot of time
for the rumour to pass from a piece to B or vice versa.
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B

Figure 7.2: informally speaking, a random k-tree looks like this graph: there is a big chunk
B, containing almost all vertices, in which the rumour spreads quickly, and there are small
pieces here and there that are loosely connected to B and it takes a lot of time for the
rumour to pass from a piece to B or vice versa.

A closely related class of graphs is the class of random k-Apollonian networks, which
was also discussed in Section 3.5. Recall that their construction is very similar to that of
random k-trees, with just one difference: if a k-clique is chosen in a certain round, it will
never be chosen again. Our third main result is the following theorem.

Theorem 7.6. Let k ≥ 3 be fixed and let f(n) = o(log log n) be an arbitrary function going
to infinity with n. Assume that initially a random vertex of an (n + k)-vertex random k-
Apollonian network knows a rumour. Then, a.a.s. after

O
(

(log n)(k2−3)/(k−1)2 · log log n · f(n)2/k
)

rounds of the synchronous push&pull protocol, at least n − o(n) vertices will know the
rumour.

The proof of Theorem 7.6 is along the lines of that of Theorem 7.3, although there are
several differences. Note that we have (k2 − 3)/(k − 1)2 < 1 + 2/k, so our upper bound for
random k-Apollonian networks is slightly stronger than that for random k-trees.

Unfortunately, our technique for proving Theorem 7.5 does not extend to random k-
Apollonian networks, although we believe that a.a.s. we need a polynomial number of
rounds to inform all vertices in a random k-Apollonian network as well. We leave this as
a conjecture.
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For the rest of the chapter, k is a constant greater than 1, and the asymptotics are for n
going to infinity. For brevity, the synchronous push&pull protocol will be simply called the
‘protocol.’ Several times in this chapter we use urn models to analyze the vertices’ degrees
and the number of vertices in certain parts of a random k-tree. The connections with urn
models are built in Section 7.1. In Section 7.2 we study basic properties of random k-trees,
demonstrating their similarities with real-world networks. Theorems 7.3, 7.5, and 7.6 are
proved in Sections 7.3, 7.4, and 7.5, respectively.

7.1 Connections with urn models

In this section we build some connections between random k-trees and urn models (see
Section 2.3). First we recall a definition from that section.

Definition 7.7 (Eggenberger-Pólya urn). Start with W0 white and B0 black balls in an
urn. In every step a ball is drawn from the urn uniformly at random, the ball is returned
to the urn, and k balls of the same color are added to the urn. Then Urn(W0, B0, k, n)
denotes the number of white balls right after n draws.

Proposition 7.8. Let X
d
= Urn(a, b, k, n) and w = a+ b. Then

E
[
X2
]

=
(
a+

a

w
kn
)2

+
abk2n(kn+ w)

w2(w + k)

and for any c ≥ (a+ b)/k we have

P [X = a] ≤
(

c

c+ n

)a/k
.

Proof. The first statement follows from the following well known formulae for the expected
value and the variance of X (see [96, Corollary 5.1.1] for instance):

E [X] = a+
a

w
kn , variance(X) =

abk2n(kn+ w)

w2(w + k)
.
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For the second statement, we have

P [X = a] =
b

a+ b
· b+ k

a+ b+ k
· · · · b+ (n− 1)k

a+ b+ (n− 1)k

=
n−1∏
i=0

(
1− a

a+ b+ ik

)

≤
n−1∏
i=0

(
1− a

ck + ik

)

≤ exp

(
−

n−1∑
i=0

a

ck + ik

)

=

{
exp

(
n−1∑
i=0

1

c+ i

)}−a/k
≤
{

exp

(∫ c+n

x=c

dx

x

)}−a/k
=

(
c

c+ n

)a/k
. �

In this chapter we consider a generalized version of the Eggenberger-Pólya urn, which
is known as a ‘triangular urn.’

Definition 7.9 (Triangular urn). Let α, γ, δ be nonnegative integers. We start with W0

white and B0 black balls in an urn. In every step a ball is drawn from the urn uniformly
at random and returned to the urn. Additionally, if the ball is white, then δ white balls
and γ black balls are returned to the urn; otherwise, i.e. if the ball is black, then α black

balls (and no white ball) are returned to the urn. Let Urn

(
W0, B0,

[
δ γ
0 α

]
, n

)
denote the

number of white balls right after n draws.

Note that Eggenberger-Pólya urns correspond to the matrix

[
s 0
0 s

]
.

We will need two inequalities regarding the Gamma function.

Proposition 7.10. (a) Let m and k be positive integers. Then we have Γ(m+ 1/k) ≤
Γ(m)m1/k.

(b) Let a > 0 and b ≥ 1. Then Γ(a)ab ≤ Γ(a+ b).

Proof. (a) Laforgia [90, inequality (2.2)] proved

Γ(x+ 1)

Γ(x+ s)
≥ x1−s ∀x > 0, s ∈ [0, 1] . (7.1)
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Letting x = m and s = 1/k we get

mΓ(m)

Γ(m+ 1/k)
=

Γ(m+ 1)

Γ(m+ 1/k)
≥ m1−1/k ,

and the conclusion follows.

(b) We use induction on bbc. First, if bbc = 1, then using (7.1) with x = a+ b− 1 and
s = 2− b gives

Γ(a+ b)

aΓ(a)
=

Γ(a+ b)

Γ(a+ 1)
≥ (a+ b− 1)b−1 ≥ ab−1 ,

hence Γ(a+ b) ≥ Γ(a)ab. For bbc ≥ 2, by inductive hypothesis we have

Γ(a+ b) = (a+ b− 1)Γ(a+ b− 1) ≥ (a+ b− 1)Γ(a)ab−1 ≥ Γ(a)ab ,

as required. �

The following proposition follows from known results.

Proposition 7.11. Let X
d
= Urn

(
W0, B0,

[
δ γ
0 α

]
, n

)
and let r be a positive integer. If

γ, δ > 0, α = γ + δ, and rδ ≥ α, then we have

E [Xr] ≤
(

αn

W0 +B0

)rδ/α r−1∏
i=0

(W0 + iδ) +O
(
n(r−1)δ/α

)
.

Proof. [65, Proposition 15] states

E [Xr] = nrδ/αδr
Γ(W0/δ + r)Γ((W0 +B0)/α)

Γ(W0/δ)Γ((W0 +B0 + rδ)/α)
+O

(
n(r−1)δ/α

)
,

Note that
Γ(W0/δ + r)

Γ(W0/δ)
=

r−1∏
i=0

(i+W0/δ) ,

and the inequality

Γ((W0 +B0)/α)

Γ((W0 +B0 + rδ)/α)
≤ ((W0 +B0)/α)−rδ/α

follows from Proposition 7.10(b), since rδ ≥ α. �
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Proposition 7.12. Suppose that in G(j) vertex x has A > 0 neighbours, and is contained
in B many k-cliques. Conditional on this, the degree of x in G(n+ j) is distributed as

A+

(
Urn

(
B, kj + 1−B,

[
k − 1 1

0 k

]
, n

)
−B

)/
(k − 1) .

Proof. We claim that the total number of k-cliques containing x in G(n+ j) is distributed

as Urn

(
B, kj + 1−B,

[
k − 1 1

0 k

]
, n

)
. At the end of round j, there are B many k-cliques

containing x, and kj + 1− B many k-cliques not containing x. In each subsequent round
j+ 1, . . . , j+n, a random k-clique is chosen and k new k-cliques are created. If the chosen
k-clique contains x, then k− 1 new k-cliques containing x are created, and 1 new k-clique
not containing x is created. Otherwise, i.e. if the chosen k-clique does not contain x, then
no new k-cliques containing x is created, and k new k-cliques not containing x are created,
and the claim follows.

Hence the number of k-cliques that are created in rounds j+ 1, . . . , j+n and contain x

is distributed as Urn

(
B, kj + 1−B,

[
k − 1 1

0 k

]
, n

)
−B, and the proof follows by noting

that every new neighbour of x creates k − 1 new k-cliques containing x. �

In view of Proposition 7.12, we set

K :=

[
k − 1 1

0 k

]
throughout this chapter.

Combining Propositions 7.11 and 7.12 we obtain the following lemma.

Lemma 7.13. Let 1 ≤ j ≤ n and let q be a positive integer. Let x denote the vertex born
in round j of the random k-tree process. Conditional on any G(j), the probability that x
has degree greater than k + q(n/j)(k−1)/k in G(n) is O

(
q
√
q exp(−q)

)
.

Proof. Let X = Urn (k, kj − k + 1,K, n− j). By Proposition 7.12, deg(x) is distributed
as k + (X − k) /(k − 1). By Proposition 7.11,

E [Xq] ≤ (1 + o(1))

(
k(n− j)
kj + 1

) q(k−1)
k

q−1∏
i=0

(k + i(k − 1)) ≤
(
n

j

) q(k−1)
k

(k − 1)q(q + 1)! .
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Thus,

P
[
deg(x) > k + q(n/j)(k−1)/k

]
= P

[
X − k > q(k − 1)(n/j)(k−1)/k

]
≤ E [Xq]

(q(k − 1)(n/j)(k−1)/k)
q

≤ (q + 1)!q−q = O (q
√
q exp(−q)) ,

by Stirling’s approximation (2.4), as required. �

7.2 Basic properties of random k-trees

We have already seen that a random k-tree a.a.s. has a logarithmic diameter (see Theo-
rem 3.36). In this section we prove that random k-trees exhibit another important property
observed in real-world networks: a large clustering coefficient. We also prove that random
k-trees do not expand well, confirming our claim in the Introduction that random k-trees
are poorly connected graphs and thus existing techniques do not apply.

Definition 7.14 (Clustering coefficient). The clustering coefficient of a graph G, written
cc(G), is defined as

cc(G) =
1

|V (G)|
∑

u∈V (G)

|〈N(u)〉|(
deg(u)

2

) ,

where |〈N(u)〉| denotes the number of edges xy such that both x and y are adjacent to u.

Let G(0), G(1), . . . be defined as in Definition 7.1.

Proposition 7.15. For every positive integer n, deterministically, cc(G(n)) > 1/2.

Proof. Let u be a vertex of G = G(n). When u is born, we have |〈N(u)〉| =
(
k
2

)
. Whenever

a new vertex is joined to u, |〈N(u)〉| increases by k − 1. Hence we have |〈N(u)〉| =
(k − 1)(deg(u)− k/2). Since deg(u) ≥ k we get

|〈N(u)〉|(
deg(u)

2

) ≥ k

deg(u)
.

By the Cauchy-Schwarz inequality we have ∑
u∈V (G)

deg(u)

 ∑
u∈V (G)

1/ deg(u)

 ≥ |V (G)|2 = (n+ k)2 ,
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hence

cc(G) ≥ 1

|V (G)|
∑

u∈V (G)

k

deg(u)
≥ k

n+ k
· (n+ k)2

2|E(G)|
>

1

2
. �

Definition 7.16 (Vertex expansion). The vertex expansion, vertex isoperimetric number
of a graph G (also known as the vertex isoperimetric number of G), written α(G), is defined
as

α(G) = min

{
|∂S|
|S|

: S ⊆ V (G), 0 < |S| ≤ |V (G)|/2
}
,

where ∂S denotes the set of vertices in V (G) \ S that have a neighbour in S.

Definition 7.17 (Conductance). The conductance of a graph G, written Φ(G), is defined
as

Φ(G) = min

{
e(S, V (G) \ S)

vol(S)
: S ⊆ V (G), 0 < vol(S) ≤ vol(V (G))/2

}
,

where e(S, V (G) \S) denotes the number of edges between S and V (G) \S, and vol(S) =∑
u∈S deg(u) for every S ⊆ V (G).

Proposition 7.18. Deterministically G(n) has vertex expansion O (k/n), and a.a.s. its
conductance is O

(
log n · n−1/k

)
.

Proof. Let G = G(n). Since G is a k-tree and by definition has treewidth k, by [86,
Lemma 5.3.1] there exists a partition (A,B,C) of V (G) such that

1. |C| = k + 1,

2. (n− 1)/3 ≤ |A| ≤ 2(n− 1)/3 and (n− 1)/3 ≤ |B| ≤ 2(n− 1)/3, and

3. there is no edge between A and B.

At least one of A and B, say A, has size less than (n+ k)/2. Then

α(G) ≤ |∂A|
|A|
≤ k + 1

(n− 1)/3
= O(k/n) .

At least one of A and B, say B, has volume less than vol(G)/2. Then since all vertices
in G have degrees at least k,

Φ(G) ≤ e(B,A ∪ C)

vol(B)
≤ e(B,C)

k|B|
≤ (k + 1)∆(G)

k(n− 1)/3
= O(∆(G)/n) .
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Hence to prove Φ(G) = O
(
log n · n−1/k

)
it suffices to show that a.a.s. we have

∆(G) ≤ k + (2 log n)n1−1/k . (7.2)

Let q = b2 log nc and let x be a vertex born in one of the rounds 1, 2, . . . , n. By Lemma 7.13,

P
[
deg(x) > k + qn1−1/k

]
= O(q

√
q exp(−q)) = o(1/n) .

An argument similar to the proof of Lemma 7.13 shows that the probability that a vertex
in G(0) has degree greater than k + qn1−1/k is o(1/n) as well. A union bound over all
vertices gives(7.2), as required. �

7.3 Upper bound for random k-trees

In this section we prove Theorem 7.3. Once we have the following lemma, our problem
reduces to proving a structural result for random k-trees.

Lemma 7.19. Let χ and τ be fixed positive integers. Let G be an n-vertex graph and
let Σ ⊆ V (G) with |Σ| = n − o(n) be such that for every pair of vertices u, v ∈ Σ there
exists a (u, v)-path uu1u2 · · ·ul−1v such that l ≤ χ and for every 0 ≤ i ≤ l − 1 we have
min{deg(ui), deg(ui+1)} ≤ τ (where we define u0 = u and ul = v). If a random vertex in
G knows a rumour, then a.a.s. after 6τ(χ+ log n) rounds of the protocol, at least n− o(n)
vertices will know the rumour.

Proof. The proof is along the lines of that of [62, Theorem 2.2]. We show that given any
u, v ∈ Σ, if u knows the rumour then with probability at least 1−o (n−2) after 6τ(χ+log n)
rounds v will know the rumour. The lemma follows by using the union bound and noting
that a random vertex lies in Σ a.a.s. Consider the (u, v)-path uu1u2 · · ·ul−1v promised by
the hypothesis. We bound from below the probability that the rumour is passed through
this path.

For every 0 ≤ i ≤ l − 1, the number of rounds taken for the rumour to pass from ui
to ui+1 is one plus a geometric random variable with success probability at least 1/τ (if
deg(ui) ≤ τ , this is the number of rounds needed for ui to push the rumour along the edge,
and if deg(ui+1) ≤ τ , this is the number of rounds needed for ui+1 to pull the rumour along
the edge). The random variables corresponding to distinct edges are mutually independent.
Hence the probability that the rumour is not passed in 6τ(χ+ log n) rounds is at most the
probability that the number of heads in a sequence of 6τ(χ + log n) independent biased
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coin flips, each having probability 1/τ of being heads, is less than l. Let X denote the
number of heads in such a sequence. Then using the lower tail Chernoff bound (2.2) and
noting that E [X] = 6(χ+ log n) we get

P [X < l] ≤ P [X ≤ E [X] /6] ≤ exp(−(5/6)2E [X] /2) ≤ exp(−(5/6)2(6 log n)/2) ,

which is o (n−2), as required. �

Let f(n) = o(log log n) be an arbitrary function going to infinity with n, and let

m =

⌈
n

f(n)3/(k−1)(log n)2/(k−1)

⌉
. (7.3)

Also let q = d4 log log ne and let

τ = 2k + q(n/m)1−1/k . (7.4)

By Theorem 3.36, a.a.s. a random k-tree on n + k vertices has diameter O(log n). Theo-
rem 7.3 thus follows from Lemma 7.19 and the following structural result, which we prove
in the rest of this section.

Lemma 7.20. Let G be an (n + k)-vertex random k-tree. A.a.s. there exists Σ ⊆ V (G)
satisfying the conditions of Lemma 7.19 with τ defined in (7.4) and χ = O(log n+diam(G)).

For the rest of this section, G is an (n+k)-vertex random k-tree, and whenever we talk
about the degree of a vertex, we mean its degree in G, unless specified otherwise. Recall
from Definition 7.1 that G = G(n), where G(0), G(1), . . . is the random k-tree process.
Consider the graph G(m), which has k + m vertices and mk + 1 many k-cliques. For an
edge e of G(m), let N(e) denote the number of k-cliques of G(m) containing e. We define
a spanning forest F of G(m) as follows: for every 1 ≤ t ≤ m, if the vertex x born in round
t is joined to the k-clique C, then in F , x is joined to a vertex u ∈ V (C) such that

N(xu) = max
v∈V (C)

N(xv) .

Note that F consists of k trees and the k vertices of G(0) lie in distinct trees. Think
of these trees as rooted at these vertices. The tree obtained from F by merging these
k vertices is the ‘highway system’ described in the sketch of the proof of Theorem 7.3.
Roughly speaking, the proof has three parts: first, we show that this tree has a small
height (Lemma 7.21); second, we show that each edge in this tree quickly exchanges the
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rumour with a reasonably large probability (Lemma 7.23); and finally we show that almost
all vertices in G−G(m) have quick access to and from F (Lemma 7.24).

Let LOG denote the event ‘each tree in F has height O(log n).’ Proposition 3.37 states
that a.a.s. an (n + k)-vertex random k-tree has the following property: let uhuh−1 · · ·u0

be any path such that ui is born later than ui−1 for all i; then h ≤ e log n + O(1). The
following lemma is an immediate corollary of this proposition.

Lemma 7.21. Asymptotically almost surely LOG happens.

We prove Lemma 7.20 conditional on the event LOG. In fact, we prove it for any G(m)
that satisfies LOG. Let G1 be an arbitrary instance of G(m) that satisfies LOG. So, G1

and F are fixed in the following, and all randomness refers to rounds m + 1, . . . , n. The
following deterministic lemma will be used in the proof of Lemma 7.23.

Lemma 7.22. Assume that xy ∈ E(F ) and x is born later than y. If the degree of x in
G1 is greater than 2k − 2, then N(xy) ≥ (k2 − k)/2.

Proof. Assume that x is joined to u1, . . . , uk when it is born, and that v1, v2, . . . , vk−1, . . .
are the neighbours of x that are born later than x, in the order of birth. Let Ψ denote
the number of pairs (uj, C), where 1 ≤ j ≤ k, and C is a k-clique in G1 containing the
edge xuj. Consider the round in which vertex x is born and is joined to u1, . . . , uk. For
every j ∈ {1, . . . , k}, the vertex uj is contained in k − 1 new k-cliques, so in this round Ψ
increases by k(k− 1). For each i ∈ {1, . . . , k− 1}, consider the round in which vertex vi is
born. This vertex is joined to x and k− 1 neighbours of x. At this round x has neighbour
set {u1, . . . , uk, v1, . . . , vi−1}. Thus at least k − i of the uj’s are joined to vi in this round.
Each vertex uj that is joined to vi in this round is contained in k − 2 new k-cliques that
contain x as well, so in this round Ψ increases by at least (k− i)(k− 2). Consequently, we
have

Ψ ≥ k(k − 1) +
k−1∑
i=1

(k − i)(k − 2) = k2(k − 1)/2 .

By the pigeonhole principle, there exists some ` ∈ {1, . . . , k} such that the edge xu` is
contained in at least (k2 − k)/2 many k-cliques, and this completes the proof. �

A vertex of G is called modern if it is born later than the end of round m, and is
called traditional otherwise. In other words, vertices of G1 are traditional and vertices of
G−G1 are modern. We say edge uv ∈ E(G) is fast if at least one of the following is true:
deg(u) ≤ τ , or deg(v) ≤ τ , or u and v have a common neighbour w with deg(w) ≤ τ . For
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an edge uv ∈ E(F ), let pS(uv) denote the probability that uv is not fast (slow), and let pS
denote the maximum of pS over all edges of F . Recall that G1 and F are fixed, so these
probabilities are well defined.

Lemma 7.23. We have pS = o(1/(f(n) log n)).

Proof. Let xy ∈ E(F ) be arbitrary. By symmetry we may assume that x is born later
than y. By Lemma 7.22, at least one of the following is true: vertex x has less than 2k− 1
neighbours in G1, or N(xy) ≥ (k2 − k)/2. So we may consider two cases.

• Case 1: vertex x has less than 2k − 1 neighbours in G1. Assume that x has A
neighbours in G1 and lies in B many k-cliques in G1. Then we have A ≤ 2k− 2 and

B ≤ k + (k − 1)(A− k) ≤ k(k − 1) .

Let X
d
= Urn (B, km+ 1−B,K, n−m). Then by Proposition 7.12 the degree of x

is distributed as A+ (X −B) /(k − 1). By Proposition 7.11,

E [Xq] ≤ (1 + o(1))

(
k(n−m)

km+ 1

) q(k−1)
k

q−1∏
i=0

(B + i(k − 1))

≤ (1 + o(1))
( n
m

) q(k−1)
k

(k − 1)q
q−1∏
i=0

(k + i)

≤ (k − 1)q(k + q)!
( n
m

) q(k−1)
k

,

where we have used B ≤ k(k − 1) for the second inequality. Therefore,

pS(xy) ≤ P
[
deg(x) > 2k + q(n/m)

k−1
k

]
≤ P

[
X ≥ (k − 1)q(n/m)

k−1
k

]
≤ E [Xq]

(k − 1)qqq(n/m)
q(k−1)
k

≤ (k + q)!

qq
= o

(
1

f(n) log n

)
,

since q ≥ 4 log log n, k is fixed, and f(n) = o(log log n).
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• Case 2: N(xy) ≥ (k2 − k)/2. In this case we bound from below the probabil-
ity that there exists a modern vertex w that is adjacent to x and y and has de-
gree at most τ . We first bound from above the probability that x and y have
no modern common neighbours. For this to happen, none of the k-cliques con-
taining x and y must be chosen in rounds m + 1, . . . , n. This probability equals
P [Urn(N(xy),mk + 1−N(xy), k, n−m) = N(xy)]. Since N(xy) ≥ (k2 − k)/2, by
Proposition 7.8 we have

P [Urn(N(xy),mk + 1−N(xy), k, n−m) = N(xy)] ≤
(
m+ 1

n+ 1

) k−1
2

,

which is o (1/(f(n) log n)) by the definition of m in (7.3).

Now, assume that x and y do have a modern common neighbour w. If there are
multiple such vertices, choose the one that is born first. Since w appears later than
round m, by Lemma 7.13,

pS(xy) ≤ P
[
deg(w)> k + q(n/m)(k−1)/k

]
= O (q

√
q exp(−q)) = o

(
1

f(n) log n

)
. �

Enumerate the k-cliques of G1 as C1, . . . , Cmk+1. Then choose r1 ∈ C1, . . . , rmk+1 ∈
Cmk+1 arbitrarily, and call them the representative vertices. Starting fromG1, when modern
vertices are born in rounds m + 1, . . . , n until G is formed, every clique Ci ‘grows’ to a
random k-tree with a random number of vertices, which is a subgraph of G. Enumerate
these subgraphs as H1, . . . , Hmk+1, and call them the pieces. More formally, H1, . . . , Hmk+1

are induced subgraphs of G such that a vertex v is in V (Hj) if and only if every path
connecting v to a traditional vertex intersects V (Cj). In particular, V (Cj) ⊆ V (Hj) for all
j ∈ {1, . . . ,mk + 1}. Note that the Hj’s may intersect, as a traditional vertex may lie in
more than one Cj, however every modern vertex lies in a unique piece. See Figure 7.3 for
an illustration.

A traditional vertex is called nice if it is connected to some vertex in G(0) via a path
of fast edges. Since F has height O(log n) and each edge of F is fast with probability at
least 1 − pS, the probability that a given traditional vertex is not nice is O(pS log n) by
the union bound. A piece Hj is called nice if all its modern vertices have degrees at most
τ , and the vertex rj is nice. A modern vertex is called nice if it lies in a nice piece. A
vertex/piece is called bad if it is not nice.

Lemma 7.24. The expected number of bad vertices is o(n).
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Figure 7.3: illustration of the pieces with k = 2, m = 2, and n = 11. Traditional vertices
are white and modern vertices are black. There are five pieces, illustrated by the five
rectangles.

Proof. The total number of traditional vertices is k + m = o(n) so we may just ignore
them in the calculations below. Let η = nf(n)/m = o(log3 n). Say piece Hj is sparse if
|V (Hj)| ≤ η + k. We first bound the expected number of modern vertices in non-sparse
pieces. Observe that the number of modern vertices in a given piece is distributed as
X = (Urn(1, km, k, n −m) − 1)/k. Using Proposition 7.8 we get E [X2] ≤ 2kn2/m2. By
the second moment method, for every t > 0 we have

P [X ≥ t] ≤ E [X2]

t2
≤ 2kn2

m2t2
.

The expected number of modern vertices in non-sparse pieces is thus at most

(km+ 1)
∞∑
i=0

(2i+1η)P
[
2iη < X ≤ 2i+1η

]
≤

∞∑
i=0

(2i+1η)(km+ 1)
2kn2

m2η222i

≤ O

(
n2

mη

) ∞∑
i=0

2−i = O

(
n2

mη

)
,

which is o(n) by the definition of η.
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We now bound from above the expected number of modern vertices in sparse bad pieces.
Indeed, we find an upper bound for the expected number of bad pieces, and multiply by
η. A piece Hj can be bad in two ways:

(1) the representative vertex rj is bad: the probability of this is O (pS log n). Therefore,
the expected number of pieces that are bad due to this reason is O (mkpS log n), which is
o(n/η) by Lemma 7.23.

(2) there exists a modern vertex in Hj with degree greater than τ : the probability that
a given modern vertex has degree greater than τ is O

(
q
√
q exp(−q)

)
by Lemma 7.13. So

the average number of modern vertices with degree greater than τ is O
(
nq
√
q exp(−q)

)
.

Since every modern vertex lies in a unique piece, the expected number of pieces that are
bad because of this reason is bounded by O

(
nq
√
q exp(−q)

)
= o(n/ log3 n).

So the expected number of bad pieces is o(n/η + n/ log3 n), and the expected number
of modern vertices in sparse bad pieces is o(n+ ηn/ log3 n) = o(n). �

We now prove Lemma 7.20, which concludes the proof of Theorem 7.3.

Proof of Lemma 7.20. Let Σ denote the set of nice modern vertices. By Lemma 7.24 and
using Markov’s inequality, we have |Σ| = n−o(n) a.a.s. Let {a1, . . . , ak} denote the vertex
set of G(0). Using an argument similar to the proof of Lemma 7.23, it can be proved that
given 1 ≤ i < j ≤ k, the probability that edge aiaj is not fast is o(1). Since the total
number of such edges is a constant, a.a.s. all such edges are fast. Let u and v be nice
modern vertices, and let ru and rv be the representative vertices of the pieces containing
them, respectively. Since the piece containing u is nice, there exists a (u, ru)-path whose
vertices except possibly ru all have degrees at most τ . The length of this path is at
most diam(G). Since ru is nice, for some 1 ≤ i ≤ n there exists an (ru, ai)-path in F
consisting of fast edges. Appending these paths gives a (u, ai)-path with length at most
diam(G) + O(log n) such that for every pair of consecutive vertices in this path, one of
them has degree at most τ . Similarly, for some 1 ≤ j ≤ n there exists a (v, aj)-path of
length O(log n+ diam(G)), such that one of every pair of consecutive vertices in this path
has degree at most τ . Since the edge aiaj is fast a.a.s., we can build a (u, v)-path of length
O(log n+ diam(G)) of the type required by Lemma 7.19, and this completes the proof. �

7.4 Lower bound for random k-trees

In this section we prove Theorem 7.5.
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Definition 7.25 (Barrier). A pair {C1, C2} of disjoint k-cliques in a connected graph is
called a D-barrier if

(i) the set of edges between C1 and C2 is a cut-set, i.e. deleting them disconnects the
graph, and

(ii) the degree of each vertex in V (C1) ∪ V (C2) is at least D.

Proposition 7.26. If graph G has a D-barrier, then for any vertex v and any a ∈ N we
have P [STs(G, v) ≤ a] ≤ 2k2a/D.

Proof. Let {C1, C2} be a D-barrier in G. Assume that initially, the set of informed vertices
is precisely C1, and let TC1,C2 denote the first time that a vertex in C2 learns the rumour.

Then we have TC1,C2

s

≤ STs(G, v) for any vertex v. Any given vertex in C1 pushes the
rumour to C2 with probability at most k/D, and any given vertex in C2 pulls the rumour
with probability at most k/D, hence for any a ∈ N by the union bound we have

P [STs(G, v) ≤ a] ≤ P [TC1,C2 ≤ a] ≤ a× 2k × 2k/D ,

as required. �

For proving the next lemma we need a proposition which follows from known results.

Proposition 7.27. There exists δ > 0 such that for all large n we have

P
[
Urn(1, 1,K, n− k) < δn(k−1)/k

]
< 1/(2k + 1) .

Proof. Let Y
d
= Urn(1, 1,K, n − k). Janson [79, Theorem 1.3(v)] proved that as n → ∞,

n−(k−1)/kY converges to a positive random variable W . Let δ > 0 be small enough that
P [W < δ] < 1/(3k). Then for large enough n,

P
[
Y < δn(k−1)/k

]
= P

[
n−(k−1)/kY < δ

]
< 1/(2k + 1) ,

as required. �

Lemma 7.28. The graph G(n) has an Ω(n1−1/k)-barrier with probability Ω(n1/k−k).
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Proof. Let u1, . . . , uk be the vertices ofG(0), and let v1, . . . , vk be the vertices ofG(k)−G(0)
in the order of appearance. We define two events. Event A is that for every 1 ≤ i ≤ k,
when vi appears, it attaches to v1, v2, . . . , vi−1, ui, ui+1, . . . , uk; and for each 1 ≤ i, j ≤ k,
ui and vj have no common neighbour in G(n) − G(k). Event B is that all vertices of
G(k) have degree Ω(n(k−1)/k) in G(n). Note that if A and B both happen, then the pair
{u1u2 . . . uk, v1v2 . . . vk} is an Ω(n(k−1)/k)-barrier in G(n). To prove the lemma we will show
that P [A] = Ω(n1/k−k) and P [B|A] = Ω(1).

For A to happen, first, the vertices v1, . . . , vk must choose the specified k-cliques, which
happens with constant probability. Moreover, the vertices appearing after round k must not
choose any of the k2−1 many k-cliques that contain both ui’s and vj’s. Since 1−y ≥ e−y−y

2

for every y ∈ [0, 1/4],

P [A] = Ω(P
[
Urn(k2 − 1, 2, k, n− k) = k2 − 1

]
)

= Ω

(
n−k−1∏
i=0

(
2 + ik

k2 + 1 + ik

))

≥ Ω

(
4k−1∏
i=0

(
2 + ik

k2 + 1 + ik

) n−k−1∏
i=4k

(
1− k2 − 1

ik

))

≥ Ω

(
exp

(
−

n−k−1∑
i=4k

{
k2 − 1

ik
+

(
k2 − 1

ik

)2
}))

which is Ω(n1/k−k) since

n−k−1∑
i=4k

k2 − 1

ik
≤ (k − 1/k) log n+O(1) and

n−k−1∑
i=4k

(
k2 − 1

ik

)2

= O(1) .

Conditional on A and using an argument similar to that in the proof of Proposition 7.12,
the degree of each of u1, . . . , uk, v1, . . . , vk in G(n) is at least k+(Urn(1, 1,K, n−k)−1)/(k−
1). By Proposition 7.27 there exists δ > 0 such that

P
[
Urn(1, 1,K, n− k) < δn(k−1)/k

]
< 1/(2k + 1) .

By the union bound, the probability that all vertices u1, . . . , uk, v1, . . . , vk have degrees at
least δn(k−1)/k/(k − 1) is at least 1/(2k + 1), hence P [B|A] ≥ 1/(2k + 1) = Ω(1). �

Let f(n) = o(log log n) be any function going to infinity with n, and let

m =
⌈
f(n)n1−k/(k2+k−1)

⌉
. (7.5)
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Note that the value of m is different from that in Section 7.3, although its role is somewhat
similar. Consider the random k-tree process up to round m. Enumerate the k-cliques
of G(m) as C1, . . . , Cmk+1. Starting from G(m), when new vertices are born in rounds
m + 1, . . . , n until G = G(n) is formed, every clique Ci ‘grows’ to a random k-tree with
a random number of vertices, which is a subgraph of G. Enumerate these subgraphs as
H1, . . . , Hmk+1, and call them the pieces (see Figure 7.3). We say a piece is moderate if its
number of vertices is between n/(mf(n)) and nf(n)/m. Note that the number of vertices
in a piece has expected value Θ(n/m). The following lemma is proved by showing this
random variable does not deviate much from its expected value.

Lemma 7.29. Asymptotically almost surely there are o(m) non-moderate pieces.

Proof. We prove the first piece, H1, is moderate a.a.s. By symmetry, this would imply
that the average number of non-moderate pieces is o(m). By Markov’s inequality, this
gives that a.a.s. there are o(m) non-moderate pieces. Let X denote the number of vertices
of H1. Note that X is distributed as k + Urn(1, km, k, n − m); so its expected value is
k + n−m

1+km
= Θ(n/m). By Markov’s inequality, P [X > nf(n)/m] = o(1).

For bounding P [X < n/(mf(n))], we use an alternative way to generate the random

variable Urn(1, km, k, n−m). Let Z
d
= Beta(1/k,m). Proposition 2.9 states that

Urn(1, km, k, n−m)
d
= 1 + kBin(n−m,Z) ,

which gives

X − k d
= 1 + kBin(n−m,Z) .

Note that

P [Z < 3/(mf(n))] =
Γ(m+ 1/k)

Γ(m)Γ(1/k)

∫ 3/(mf(n))

0

x1/k−1(1− x)m−1dx

≤ m1/k

Γ(1/k)

∫ 3/(mf(n))

0

x1/k−1dx =
31/kk

Γ(1/k)f(n)1/k
= o(1) ,

where we have used the fact Γ(m+ 1/k) ≤ Γ(m)m1/k, see Proposition 7.10(a). On the
other hand, the lower tail Chernoff bound (2.2) gives

P [X < n/(mf(n))|Z ≥ 3/(mf(n))] ≤ P [Bin(n−m, 3/(mf(n))) < n/(kmf(n))]

≤ exp(−3(n−m)/(8mf(n))) = o(1) ,

thus P [X < n/(mf(n))] = o(1). �
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Proof of Theorem 7.5. Consider an alternative way to generate G(n) from G(m): first, we
determine how many vertices each piece has, and then we expose the structure of the pieces.
Let Y denote the number of moderate pieces. By Lemma 7.29 we have Y = Ω(m) a.a.s.
We prove the theorem conditional on Y = y, where y = Ω(m) is otherwise arbitrary. Note
that after the sizes of the pieces are exposed, what happens inside each piece in rounds
m + 1, . . . , n is mutually independent from other pieces. Let H be a moderate piece with
n1 vertices. By Lemma 7.28, the probability that H has an Ω(n

1−1/k
1 )-barrier is Ω(n

1/k−k
1 ).

Since n/(mf(n)) ≤ n1 ≤ nf(n)/m, the probability that H has a Ω((n/(mf(n))1−1/k)-
barrier is Ω((nf(n)/m)1/k−k). Since there are y = Ω(m) moderate pieces in total, the
probability that no moderate piece has an Ω

(
(n/(mf(n)))1−1/k

)
-barrier is at most

(1− Ω((nf(n)/m)1/k−k))y ≤ exp(−Ω(f(n))) = o(1) ,

by the definition of m in (7.5). So, a.a.s. there exists an Ω
(
n(k−1)/(k2+k−1)f(n)−2

)
-barrier in

G(n). By Proposition 7.26, a.a.s. the spread time is Ω
(
n(k−1)/(k2+k−1)f(n)−3

)
, as required.

�

7.5 Upper bound for random k-Apollonian networks

In this section we analyze the protocol on random k-Apollonian networks and prove Theo-
rem 7.6. The proof follows the line of that for random k-trees. First, we recall the definition
of the random k-Apollonian process.

Definition 7.30 (Random k-Apollonian process). Let k be a positive integer. Build a
sequence A(0), A(1), . . . of random graphs as follows. The graph A(0) is just a clique on
k vertices. This k-clique is marked as active. For each 1 ≤ t ≤ n, A(t) is obtained from
A(t − 1) as follows: an active k-clique of A(t − 1) is chosen uniformly at random, a new
vertex is born and is joined to all vertices of the chosen k-clique. The chosen k-clique is
marked as non-active, and all the new k-cliques are marked as active in A(t). The graph
A(n) is called a random k-Apollonian network (k-RAN) on n+ k vertices.

We first prove a counterpart of Proposition 7.12 and Lemma 7.13 for k-RANs.

Proposition 7.31. Suppose that in A(j) vertex x has D > 0 neighbours, and is contained
in B active k-cliques. Conditional on this, the degree of x in A(n+ j) is distributed as

D +

(
Urn

(
B, (k − 1)j + 1−B,

[
k − 2 1

0 k − 1

]
, n

)
−B

)/
(k − 2) .
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Proof. We claim that the number of active k-cliques containing x in G(n+j) is distributed

as Urn

(
B, (k − 1)j + 1−B,

[
k − 2 1

0 k − 1

]
, n

)
. At the end of round j, there are B

active k-cliques containing x, and (k − 1)j + 1 − B many k-cliques not containing x. In
each subsequent round j + 1, . . . , j + n, a random active k-clique is chosen and k new
active k-cliques are created, and one active k-clique is deactivated. If the chosen active
k-clique contains x, then k − 2 new active k-cliques containing x are created, and 1 new
active k-clique not containing x is created. Otherwise, just k − 1 new active k-cliques not
containing x are created, and the claim follows.

Hence the number of active k-cliques that are created in rounds j + 1, . . . , j + n and

contain x is distributed as Urn

(
B, (k − 1)j + 1−B,

[
k − 2 1

0 k − 1

]
, n

)
− B, and the

conclusion follows by noting that every new neighbour of x creates k − 2 new active k-
cliques containing x. �

Lemma 7.32. Let 1 ≤ j ≤ n and let q be a positive integer. Let x denote the vertex
born in round j. Conditional on any A(j), the probability that x has degree greater than
k + q(n/j)(k−2)/(k−1) in A(n) is O

(
q
√
q exp(−q)

)
.

Proof. Let X
d
= Urn

(
k, (k − 1)(j − 1),

[
k − 2 1

0 k − 1

]
, n− j

)
. Proposition 7.31 implies

that the degree of x in A(n) is distributed as k + (X − k) /(k − 2). By Proposition 7.11,

E [Xq] ≤ (1 +o(1))

(
(k − 1)(n− j)
(k − 1)j + 1

) q(k−2)
k−1

q−1∏
i=0

(k + i(k − 2)) ≤
(
n

j

) q(k−2)
k−1

(k−2)q(q+ 1)! .

Thus,

P
[
deg(x) > k + q(n/j)(k−2)/(k−1)

]
= P

[
X − k > (k − 2)q(n/j)(k−2)/(k−1)

]
≤ E [Xq]

((k − 2)q(n/j)(k−2)/(k−1))
q

≤ (q + 1)!q−q = O (q
√
q exp(−q)) . �

Fix k > 2 and let f(n) = o(log log n) be an arbitrary function going to infinity with n,
and let

m =

⌈
n

(log n)2/(k−1)f(n)(2k−2)/(k2−2k)

⌉
. (7.6)
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Finally, let q = d4 log log ne and let

τ = 2k + q(n/m)(k−2)/(k−1) . (7.7)

By Theorem 3.36, a.a.s. a k-RAN on n+k vertices has diameter O(log n). Theorem 7.6
thus follows from Lemma 7.19 and the following structural result, which we prove in the
rest of this section.

Lemma 7.33. Let A be an (n+ k)-vertex k-RAN. A.a.s. there exists Σ ⊆ V (A) satisfying
the conditions of Lemma 7.19 with τ defined in (7.7) and χ = O(log n+ diam(A)).

The proof of Lemma 7.33 is along the lines of that of Lemma 7.20. For the rest of this
section, A = A(n) is an (n+ k)-vertex k-RAN, and whenever we talk about the degree of
a vertex, we mean its degree in A, unless specified otherwise. Consider the graph A(m),
which has k + m vertices and m(k − 1) + 1 active k-cliques. For any edge e of A(m), let
N∗(e) denote the number of active k-cliques of A(m) containing e. Note that, since k > 2,
for each edge e, the number of active k-cliques containing e does not decrease as the k-RAN
evolves. We define a spanning forest F of A(m) as follows: at round 0, F has k isolated
vertices, i.e. the vertices of A(0); then for every 1 ≤ t ≤ m, if the vertex x born in round t
is joined to the k-clique C, then in F , x is joined to a vertex u ∈ V (C) such that

N∗(xu) = max
v∈V (C)

N∗(xv) .

Note that F consists of k trees and the k vertices of A(0) lie in distinct trees. Let LOG
denote the event ‘each tree in F has height O(log n).’

Proposition 3.38 states that a.a.s. an (n+ k)-vertex random k-Apollonian network has
the following property: let uhuh−1 · · ·u0 be any path such that ui is born later than ui−1

for all i; then h ≤ ek log n/(k− 1) +O(1). The following lemma is an immediate corollary
of this proposition.

Lemma 7.34. Asymptotically almost surely LOG happens.

We prove Lemma 7.33 conditional on the event LOG. In fact, we prove it for any A(m)
that satisfies LOG. Let A1 be an arbitrary instance of A(m) that satisfies LOG. So, A1

and F are fixed in the following, and all randomness refers to rounds m + 1, . . . , n. The
following deterministic lemma will be used in the proof of Lemma 7.36.

Lemma 7.35. Assume that xy ∈ E(F ) and x is born later than y. If the degree of x in
A1 is at least 2k − 1, then N∗(xy) ≥ (k − 1)2/2.
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Proof. Assume that x is joined to u1, . . . , uk when it is born, and that v1, v2, . . . , vk−1, . . .
are the neighbours of x that are born later than x, in the order of birth. Let Ψ denote the
number of pairs (uj, C), where C is an active k-clique in A1 with xuj ∈ E(C). Consider
the round in which vertex x is born and is joined to u1, . . . , uk. For every j ∈ {1, . . . , k},
the edge xuj is contained in k − 1 new active k-cliques, so in this round Ψ increases by
k(k − 1). For each i ∈ {1, . . . , k − 1}, consider the round in which vertex vi is born. At
least k − i of the uj’s are joined to vi in this round. Each vertex uj that is joined to vi in
this round is contained in k − 2 new k-cliques that contain x, and one k-clique containing
uj is deactivated. Hence in this round Ψ increases by at least (k− i)(k−3). Consequently,
right after vk−1 is born, we have

Ψ ≥ k(k − 1) +
k−1∑
i=1

(k − i)(k − 3) = (k − 1)2k/2 .

By the pigeonhole principle, there exists some ` ∈ {1, . . . , k} such that the edge xu`
is contained in at least (k − 1)2/2 active k-cliques, and this completes the proof, as the
number of active k-cliques containing xu` will not decrease later. �

A vertex of A is called modern if it is born later than the end of round m, and is
called traditional otherwise. In other words, vertices of A1 are traditional and vertices of
A−A1 are modern. We say edge uv ∈ E(A) is fast if at least one of the following is true:
deg(u) ≤ τ , or deg(v) ≤ τ , or u and v have a common neighbour w with deg(w) ≤ τ . For
an edge uv ∈ E(F ), let pS(uv) denote the probability that uv is not fast (slow), and let pS
denote the maximum of pS over all edges of F . These probabilities are well defined since
we have fixed A1 and F .

Lemma 7.36. We have pS = o(1/(f(n) log n)).

Proof. The proof is similar to that of Lemma 7.23. Let xy ∈ E(F ) be arbitrary. By
symmetry we may assume that x is born later than y. By Lemma 7.35, at least one of the
following is true: vertex x has less than 2k − 1 neighbours in A1, or N∗(xy) ≥ (k − 1)2/2.
So we may consider two cases.

• Case 1: vertex x has less than 2k − 1 neighbours in A1. Suppose that x has D
neighbours in A1 and lies in B active k-cliques in A1. Then D ≤ 2k − 2 and

B ≤ k + (k − 2)(D − k) ≤ k(k − 2) .
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Let

X
d
= Urn

(
B, (k − 1)m+ 1−B,

[
k − 2 1

0 k − 1

]
, n−m

)
.

Then by Proposition 7.31, the degree of x is distributed as D + (X −B) /(k − 2).
By Proposition 7.11,

E [Xq] ≤ (1 + o(1))

(
(k − 1)(n−m)

(k − 1)m+ 1

) q(k−2)
k−1

q−1∏
i=0

(B + i(k − 2))

= O

(( n
m

) q(k−2)
k−1

(k − 2)q(k + q)!

)
,

where we have used B ≤ k(k − 2). Therefore,

pS(xy) ≤ P
[
deg(x) > 2k + q(n/m)

k−2
k−1

]
≤ P

[
X ≥ (k − 2)q(n/m)

k−2
k−1

]
≤ E [Xq]

(k − 2)qqq(n/m)
q(k−2)
k−1

= O

(
(k + q)!

qq

)
= o

(
1

f(n) log n

)
,

since q ≥ 4 log log n, f(n) = o(log log n), and k is fixed.

• Case 2: N∗(xy) ≥ (k − 1)2/2. In this case we bound from below the probability that
there exists a modern vertex w that is adjacent to x and y and has degree at most
τ . We first bound from above the probability that x and y have no modern common
neighbours. For this to happen, none of the k-cliques containing x and y must be
chosen in rounds m+ 1, . . . , n. This probability equals

p := P [Urn(N∗(xy),m(k − 1) + 1−N∗(xy), k − 1, n−m) = N∗(xy)] .

Since N∗(xy) ≥ (k − 1)2/2, by Proposition 7.8 we have

p ≤
(
m+ 1

n

)(k−1)/2

= o

(
1

f(n) log n

)
,

by the definition of m in (7.6).
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Now, assume that x and y do have a modern common neighbour w. If there are
multiple such vertices, choose the one that is born first. Since w appears later than
round m, by Lemma 7.32,

pS(xy) ≤ P
[
deg(w) > k + q(n/m)(k−2)/(k−1)

]
= O (q

√
q exp(−q))

= o

(
1

f(n) log n

)
. �

Enumerate the k-cliques of A1 as C1, C2, . . . , and Cm(k−1)+1. Then choose r1 ∈ C1, . . . ,
rm(k−1)+1 ∈ Cm(k−1)+1 arbitrarily, and call them the representative vertices. Starting from
A1, when modern vertices are born in rounds m+ 1, . . . , n until A is formed, every clique
Ci ‘grows’ to a k-RAN with a random number of vertices, which is a subgraph of A.
Enumerate these subgraphs as H1, . . . , Hm(k−1)+1, and call them the pieces. More formally,
H1, . . . , Hm(k−1)+1 are induced subgraphs of A such that a vertex v is in V (Hj) if and only
if every path connecting v to a traditional vertex intersects V (Cj).

A traditional vertex is called nice if it is connected to some vertex in A(0) via a path
of fast edges. Since F has height O(log n) and each edge of F is fast with probability at
least 1 − pS, the probability that a given traditional vertex is not nice is O(pS log n) by
the union bound. A piece Hj is called nice if all its modern vertices have degrees at most
τ , and the vertex rj is nice. A modern vertex is called nice if it lies in a nice piece. A
vertex/piece is called bad if it is not nice.

Lemma 7.37. The expected number of bad vertices is o(n).

Proof. The proof is very similar to that of Lemma 7.24, except we use Lemmas 7.32 and 7.36
instead of Lemmas 7.13 and 7.23, respectively. �

The proof of Lemma 7.33 is exactly the same as that of Lemma 7.20, except we use
Lemmas 7.36 and 7.37 instead of Lemmas 7.23 and 7.24, respectively. This concludes the
proof of Theorem 7.6.
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Chapter 8

Conclusions and open problems

In this chapter we first explain the major contributions of the thesis, and then mention
some research directions and open problems.

In Chapter 3 we presented a versatile technique for proving logarithmic upper bounds
for diameters of certain evolving random graph models. This technique gives unified simple
proofs for known results, provides lots of new ones, and will help in proving many of the
forthcoming network models are small-world. Perhaps, for any given model, one can come
up with an ad hoc argument that the diameter is O(log n), but it is interesting that a
unified technique works for such a wide variety of models, and our first major contribution
is introducing such a technique.

In Chapters 4 and 5 we estimated the diameter of two random graph models. Although
the two models are quite different, surprisingly the same engine is used for proving these
results, namely the powerful technique of Broutin and Devroye [27] for analyzing weighted
heights of random trees, which we have adapted and applied to the two random graph
models. Our second major contribution is demonstrating the flexibility of this technique
via providing two significant applications.

Our third major contribution appears in Chapters 6 and 7, where we gave analytical
proofs for two experimentally verified statements: firstly, the asynchronous push&pull
protocol is typically faster than its synchronous variant (see, e.g., [50, Figures 4 and 5]),
and secondly, it takes considerably more time to inform the last 1 percent of the vertices
in a social network than the first 99 percent (see, e.g., [109, Figure 1]). We hope that our
work on the asynchronous push&pull protocol attracts attention to this fascinating model.

Let us now turn to open problems.
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Open problem 8.1 (Page 33). Develop a mathematical theory for characterizing those
evolving random graphs which have logarithmic diameters.

It would be interesting to have several meta-theorems so that whenever a new model is
proposed, it can be quickly determined whether the diameter is logarithmic. This is a rather
ambitious project, nevertheless very beneficial for network science. The proof technique
we introduced in Chapter 3 could be a fundamental step in building this theory. One can
try to further develop this technique to cover other network models, e.g. growth-deletion
models [34, 42], accelerated network growth models [52], and spatial models [80].

In this thesis we only considered growth models: vertices and edges are never deleted
from the graph. In most real-world networks, however, deletions exist. Growth-deletion
models are harder to analyze than growth-only models, and we are aware of only two
papers [34, 42] that consider vertex/edge deletions. A specific obstacle in bounding the
diameters of growth-deletion models is that, the evolving graph may get disconnected and
then get connected again, so the diameter could become undefined during the generation
process.

In accelerated network growth models, the number of edges in the graph is superlinear.
As time passes, the number of edges added in each step increases, see [52]. The techniques
of Chapter 3 are probably applicable and give some upper bounds for the diameter.

In spatial models, vertices are embedded in a metric space, and link formation depends
on the relative position of vertices in the space. Consider a social network for example.
Each person has a vector of attributes (age, location, occupation, etc.) and two individuals
that are ‘close’ in the underlying metric space are more likely to be friends. Spatial models
have gained a lot of interest in recent years, see [80] for a survey. It is not straightforward
to prove logarithmic upper bounds for diameters of spatial models, but proving general
results would be very interesting.

Open problem 8.2. Consider the following growing random tree model: start from a
single node, and suppose in every step a new node is born and is joined to a random node
of the existing tree, sampled according to some probability distribution. If this distribution
is the uniform distribution, then we obtain a random recursive tree, and it was proved by
Pittel [111], and also follows from Lemma 3.3, that a.a.s. the height is Θ(log n)

For which distributions is the diameter logarithmic? It is reasonable to conjecture
that, if the distribution is ‘close enough’ to uniform (e.g. according to the Kullback-Leibler
divergence or the Shannon entropy) then the height would still be Θ(log n). It would be
nice to prove such a theorem. If the distribution is ‘far’ from uniform, then not much can
be said: the height could be 1 if each new node is attached to the root, or it could be n−1
if each new node is attached to the farthest vertex from the root.
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Open problem 8.3 (Page 33). Prove nontrivial lower bounds for the diameter of any
of the models studied in Chapter 3. Several logarithmic upper bounds were proved in
Chapter 3, but it seems completely new ideas are required for proving lower bounds, and
the author is not aware of any general approach.

Open problem 8.4 (Page 60). What is the typical order of magnitude of Lm, the length
of a longest path in a RAN? Is this variable concentrated around its mean? In Theorem 4.2
we showed Lm > mlog 2/ log 3 and E [Lm] = Ω (m0.88) and in Theorem 4.4 we showed that
a.a.s. we have Lm < m0.99999996. What is the correct answer? This question, which seems
to be difficult, is interesting from the mathematical point of view, but the author is not
aware whether it has any applications.

Open problem 8.5 (Page 92). In Theorem 5.4 we showed that the diameter of the
random-surfer Webgraph is a.a.s. Θ(log n) when each vertex has out-degree d = 1. What
is the order of magnitude of the diameter when d > 1?

The random-surfer Webgraph has similarities with the preferential attachment model
(see Section 5.5), for which the diameter is of order Θ(log n/ log log n) when d > 1 (by [20,
Theorem 1]). However, if we change the preferential attachment rule slightly so that each
vertex v is chosen with probability proportional to deg(v) + δ for some δ > 0, the diameter
becomes Θ(log n) (by [51, Theorems 1.3 and 1.4]), but if δ ∈ (−d, 0) the diameter is
Θ(log log n) (by [51, Theorems 1.6 and 1.7]). Given these, it is not easy to guess what
the answer should be for the random-surfer Webgraph model. The answer might indeed
depend on the value of p, e.g. in [31, Theorem 1.3] it is shown that a phase transition
occurs in the root’s degree when p passes 1/2.

Open problem 8.6 (Page 94). What are the asymptotic values of the height and diameter
of the random-surfer tree when p < p0? There is a gap between our lower and upper bounds
in Theorems 5.3 and 5.4 (see Figure 5.2). It seems one cannot estimate the diameter in
this regime by adapting the technique of Broutin and Devroye.

Open problem 8.7 (Page 128). Find the best possible constant factors in Theorems 6.3
and 6.4. These results provide the extremal spread times for the synchronous and asyn-
chronous push&pull protocols.

We conjecture that the path graph has the maximum average spread time, and the
double star has the maximum guaranteed spread time. For the asynchronous variant, we
conjecture that the complete graph is the fastest graph. We have proved these conjectures
up to constant factors, and it would be interesting to either disprove them, or prove them
up to 1 + o(1) factors; but the author has no idea how to do so.
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Open problem 8.8 (Page 129). In Theorem 6.6 we proved that any n-vertex graph G
has gsta(G) = O (gsts(G) log n). For all graphs we examined a stronger result holds, which
suggests that indeed for any n-vertex graph G we have gsta(G) ≤ gsts(G)+O(log n). Does
this bound hold?

It might be possible to prove gsta(G) ≤ max{2 gsts(G), O(log n)} by considering the
path through which the rumour passes (for each vertex), and using concentration of sums
of independent exponentials (along the lines of [60, Theorem 6]). The author has tried this
approach but failed to produce a valid coupling. Still, there might exist a sneaky way to
make it work.

Open problem 8.9 (Page 129). In Corollary 6.9 we proved that for any n-vertex G,

gsts(G)

gsta(G)
= O

(
n2/3

)
,

and that there exist infinitely many graphs for which this ratio is Ω
(
n1/3(log n)−4/3

)
. What

is the maximum possible value of the ratio gsts(G)/ gsta(G) for an n-vertex graph G? There
is a big gap in the exponent here, and it would be great to find the right answer.

It seems improving the upper bound might be easier than improving the lower bound:
we have not used much ‘graph theory’ in proving the upper bound, in particular the proof
is valid for graphs with multiple edges as well. On the other hand, the author cannot
think of any graph better than the necklace graph, in terms of having a large gap between
asynchronous and synchronous spread times.

Open problem 8.10 (Page 129). The parameters wasts(G) and wasta(G) can be approx-
imated easily using the Monte Carlo method: simulate the rumour spreading protocols
several times, measuring the spread time of each simulation, and output the average. An
open problem is to design a deterministic approximation algorithm for any one of wasta(G),
gsta(G), wasts(G) or gsts(G).

Computers cannot produce real randomness, hence it is important to know whether a
randomized algorithm can be turned into a deterministic one. This is called derandomiza-
tion. Often devising a deterministic algorithm requires exploiting the problem’s structure,
hence a deterministic algorithm typically provides a better understanding of the problem
in hand.

Open problem 8.11. In some practical applications, performing both push and pull is
expensive, so only push operations or pull operations can be performed in any given step.
It can be observed that push operations are more effective in the beginning of spread, and
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pull operations become more effective later on. Consider the following protocol: up until
some time, only push operations are performed, and after that time, only pull operations
are performed. When is the best time to make the transition in this protocol?

Open problem 8.12 (Page 154). In Theorem 7.5 we showed that a.a.s. the spread time
of the synchronous push&pull protocol on a random k-tree is polynomially large. Our
technique does not extend to random k-Apollonian networks, although we believe that a.a.s.
we need a polynomial number of rounds to inform all vertices in a random k-Apollonian
network as well. For establishing this result, perhaps one needs to define a new notion of
‘barrier,’ which would be useful in proving lower bounds for spread times.
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