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1 Introduction

What is the number of vertices in the largest connected component of the Erdös-Rényi random graph

G(n, p) when p = Θ(1/n)? If we parametrize p = c/n, c fixed, then it turns out that this number

increases from O(lnn) for c < 1 to Θ(n) for c > 1. This phenomenon is called the Erdös-Rényi phase

transition, and has been studied extensively in random graph literature (see e.g. [2]). Here, following the

presentation of [1], we study the size of largest component when c < 1 (called the subcritical case) and

when c > 1 (called the supercritical case). The case c = 1 is more delicate and is not considered here; the

interested reader is referred to [2]. Since our approach is based on branching processes, we first review

them and state the needed results.

2 Branching Processes Preliminaries

A branching process has a sequence of independent nonnegative random variables Z1, Z2, . . . as its un-

derlying space, and is a sequence of random variables given by the recurrence relation

Y0 = 1, Yi = Yi−1 + Zi − 1 (i > 0),

which gives the explicit formula

Yi = 1 +
i

∑

j=1

Zj − i ∀i ≥ 0.

Here is the intuition: there is a particle who gives birth to Z1 other particles and dies. Now, each of the

particles, give birth to some number of new particles and die themselves (one particle per time unit).

Suppose that the i-th particles gives birth to Zi particles (independent of what others do). Then the

number of alive particles at time i is precisely Yi.

It is possible that at some time, say time i, there is no alive particle. Hence we would have Yi = 0.

We call this event extinction. Let T be the first index for which YT = 0, and let T = ∞ if extinction does
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not happen. Thus

if i < T then (since Yi > 0)

i
∑

j=1

Zj ≥ i. (1)

We say that the process dies at time T . Note that if the process dies at time T , exactly T particles were

active during the process, hence we can call T the total population. Here the story breaks down because

YT+1 = YT + ZT may be greater than zero, while we cannot have a new particle born where there is no

alive particle! However, usually we will be working with the process in the i ≤ T range, so the intuition

is valid.

In most of the applications, the variables Zi have the same distribution (each particle has the same

ability in giving birth) but there are examples where this is not the case. Branching process are classified

according to the distribution of the Zi.

2.1 Binomial branching process

Let c > 0 be fixed. If every Zi has binomial distribution with parameters n, p, where p ∼ c/n1, then we

have a binomial branching process. The Zi can be approximated (for large n) by Poisson variables with

mean c, so there is a strong similarity between the binomial branching process and the Poisson branching

process with mean c (which is one in which every Zi is Poisson with mean c). In particular we have the

following:

Lemma 1. Assume that c > 1 and ρ be the unique solution of ρec = eρc in (0, 1). Then we have

lim
n→∞

Pr[extinction] = ρ. (2)

We define the following two functions of n:

k0 = k0(n) =

⌊

34c

(c− 1)2
lnn

⌋

k1 = k1(n) =
⌈

n2/3
⌉

Using Chernoff’s bounds we get the following:

Lemma 2.

Pr

[

∃i ≥ k0 s.t. Yi ≤
(c− 1)i

2

]

= o(n−2) (3)

Pr [extinction, k0 ≤ T ] = o(n−2) (4)

2.2 Graph branching process

Let v1 be a vertex of the random graph G(n, p). Then v1 has Z1
d
∼ Bin(n−1, p) neighbors2, number them

as v2, v3, . . . , vZ0
. We can view v1 as a particle that gives birth to these Z0 new particles and dies. Now, v2

1a ∼ b means that a = (1 + o(1)b)

2X
d
∼ Bin(n, p) means that X is a random variable having binomial distribution with paramteres n, p
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can have up to n−1−Z0 “non-discovered” neighbors, each with probability p. Let Z2
d
∼ Bin(n−1−Z0, p)

be the number of non-discovered neighbors of v2, and number them as vZ0+1, vZ0+2, . . . , vZ0+Z1−1. We

can view v2 as a particle that gives birth to these Z1 new particles and dies. Continue in the same way.

Let us denote the number of alive particles by Gi (instead of the usual Yi) in the graph branching process.

In the i-th step, when we are going to determine the offspring of i-th particle, we have i− 1 already-dead

particles, Gi alive particles, and so n− (i− 1)−Gi non-discovered vertices, each of which can be a child

of the i-th particle with probability p. Therefore, for the graph branching process, we have

G0 = 1, Gi = Gi−1 + Zi − 1 (i > 0)

Zi
d
∼ Bin(n− (i− 1)−Gi−1, p)

A moment of thought shows that T is the size of the connected component containing v1, hence its study

gives insight into the size of the components.

As this process is a bit complicated, we usually approximate it with two processes Y + and Y −, defined

as following:

Y +
0 = 1, Y +

i = Y +
i−1 + Z+

i − 1 (i > 0), Z+
i

d
∼ Bin(n, p),

Y −
0 = 1, Y −

i = Y −
i−1 + Z−

i − 1 (i > 0), Z−
i

d
∼ Bin(n− dck1e , p).

We can couple all three processes nicely: for each i, flip n fresh coins with Pr[heads] = p. Let Z−
i

be the number of heads among the first n − dck1e of them, Zi be the number of heads among the first

n − (i − 1) − Gi−1 of them, and Z+
i be the total number of heads. If i + Gi ≤ ck1 then n − dck1e ≤

n− (i − 1)−Gi−1; so we have the following inequalities:

Zi ≤ Z+
i (5)

Gi ≤ Y +
i (6)

If i+Gi ≤ ck1 then Y −
i ≤ Gi (7)

Using this coupling we get the following result for the graph branching process:

if p ∼ c/n then Pr

[

∃k0 < i < k1 s.t. Gi <
(c− 1)i

2

]

= o(n−2) (8)

Here is the argument: if there exists k0 < i < k1 with Gi <
(c−1)i

2 , then i +Gi <
(c+1)i

2 < ci ≤ ck1,

thus Y −
i ≤ Gi. But by (3) we know that Pr

[

∃i ≥ k0 s.t. Yi ≤
(c−1)i

2

]

= o(n−2).

3 Largest Connected Component of The Random Graph

Now we study the size (number of vertices) of the largest connected component of the random graph

G(n, p), where p = c/n for some fixed c 6= 1.

3.1 Subcritical case: c < 1

In this (easy) case the size of the largest component of G(n, p) is O(lnn) by the following theorem.
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Theorem 1. For fixed c < 1 and ε > 0 the number of vertices in the largest connected component of

G(n, c/n) is a.s.3 at most 2+ε
(1−c)2 lnn.

Proof. Let v1 be a fixed vertex of G(n, c/n). We prove that the probability that v1 is in a component of

size > i := 2+ε
(1−c)2 lnn is O(n−1−ε/2), and the theorem follows by using the union bound. We can build

a graph branching process by using v1 as the root and use the idea of Section 2.2. In this process, T

(total population in the branching process) is the size of the component containing v1. Therefore the

component containing v1 has size > i if and only if i < T , and

Pr[i < T ] ≤Pr[

i
∑

j=1

Zj ≥ i] (by 1)

≤Pr[
i

∑

j=1

Z+
j ≥ i] (by 5)

≤ exp

(

−(1− c)2i

2

)

(by Chernoff′s bounds)

=O(n−1−ε/2).

3.2 Supercritical case: c > 1

In this case the largest component have linear size! We need three lemmas before proving the main

theorem.

Lemma 3. Almost surely, There is no component with size in (k0, k1).

Proof. Let v1 be a fixed vertex of G(n, c/n). We prove that the probability that v1 is in a component

of size ∈ (k0, k1) is o(n−1), and the lemma follows by using the union bound. Build a graph branching

process by using v1 as the root. We know that T is the size of the component containing v1, and GT = 0

by the definition of T . Thus by (8) we have Pr [k0 < T < k1] = o(n−2).

By the previous lemma, a.s. all components either have size ≤ k0 or have size ≥ k1. Let us call a

component of former type small and a component of latter type large.

Lemma 4. Almost surely, there is at most one large component.

Proof. Let v, v′ be two fixed vertices of G(n, c/n). We prove that the probability that v, v′ are in two

different large components is o(n−2), and the lemma follows by using union bound. First, start a graph

branching process using v as the root, and stop it at time k1. If the process is died at that time, then v

is not in a large component. Suppose this does not happen. Let S denote the set of “dead” vertices at

this time, so N(S)− S4 is the set of “alive” vertices (whose children have not yet been determined). By

(8), with probability 1− o(n−2), |N(S)− S| = Gk1
≥ (c− 1)k1/2.

3a.s. stands for almost surely, i.e. with probability 1− o(1)
4For a subset S of vertices, N(S) is the set of vertices that have a neighbor in S
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If v′ has already been discovered then v, v′ are not in two different large components. Otherwise,

start another graph branching process on the graph G′ induced by V (G) − S using v′ as the root. This

new graph is a random graph with n′ = n− k1 ∼ n vertices and two vertices are joined with probability

p = c/n ∼ c/n′. It can be shown (using (8) by a proof similar to that of Lemma 3) that this new

process either dies in less than k0(n
′) steps, or survives for at least k1(n

′) steps. In the former case v′

is not in a large component. In the latter case, stop the process at time k1/2 < k1(n
′). Let S′ be the

set of dead vertices, and N(S′) − S′ be the set of alive vertices. By (8), with probability 1 − o(n−2),

N(S′)− S′ = G′
k1/2

≥ (c− 1)k1/4.

Now, If (N(S)−S)∩(N(S′)−S′) 6= ∅ then v, v′ are not in two different large components. Otherwise,

note that there are at least (c − 1)2k21/8 = Θ(n4/3) possible locations for edges between N(S) − S

and N(S′) − S′, none of which has been tested in either of the processes. If v, v′ are in different large

components, then none of these edges exist. But the probability of this event is at most

(1 − c/n)Θ(n4/3) < exp
(

−cΘ(n1/3)
)

= o(n−2)

as required.

Lemma 5. Let X be the number of vertices in small components. Then EX = ρn+ o(n) and VarX =

o(n2), where ρ is the unique solution in (0, 1) of ρec = eρc.

Proof. Let Xv be the indicator variable for “v is in a small component.” We need to show that EXv =

ρ+o(1) (and then use linearity of expectation). Consider the graph branching process Gi using v as root,

together with its companions Y −
i , Y +

i . Notice that by (2), the extinction probability of Y +, Y − is ρ+o(1).

If v is in a small component then T + GT = T ≤ k0 < ck1 so Y −
T ≤ GT = 0, i.e. Y − becomes extinct.

Therefore Pr[Xv = 1] ≤ ρ + o(1). On the other hand, Y + dies with probability ρ + o(1). Moreover, if

Y + dies then by (4), with probability 1 − o(n−2) it happens at time i < k0. If Y + dies at time i < k0

then Gi ≤ Y +
i = 0 so v is in a small component. Hence we get ρ + o(1) ≤ Pr[Xv = 1]. Consequently,

Pr[Xv = 1] = ρ+ o(1) as required.

To compute variance, we shall compute Pr[Xv = Xv′ = 1] for distinct vertices v, v′. First, consider

the graph branching process using v as root. With probability ρ+ o(1), v is in a small component and we

have T ≤ k0. With probability 1 − o(1), v′ has not been discovered yet. Consider the graph branching

process using v′ as root, on the graph obtained by removing the component containing v. This graph

has ∼ n vertices and so the probability that v′ is in a small component is again ρ+ o(1). Hence we find

Pr[Xv = Xv′ = 1] = ρ2 + o(1) for v 6= v′.

Therefore, noting X =
∑

v∈V Xv,

VarX =E[X2]−E[X ]2

=
∑

v

E[X2
v ] +

∑

v 6=v′

E[XvXv′ ]− (ρn+ o(n))2

≤n(ρ+ o(1)) + n2(ρ2 + o(1))− (ρ2n2 + o(n2)) = o(n2).
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Theorem 2. Let c > 1 be fixed. In G(n, c/n), there is a.s. a unique connected component with more

than 34c
(c−1)2 lnn vertices. This component a.s. has n− ρn+ o(n) vertices, where ρ is the unique solution

in (0, 1) of ρec = eρc.

Proof. The first part follows from Lemmas 3,4. For the second part, for any ε > 0, using Lemma 5 and

Chebyshev’s inequality,

Pr[|X −EX | ≥ εEX ] ≤
VarX

(εEX)2
=

o(n2)

ε2ρ2n2 + o(n2)
= o(1).

Therefore, as EX = Θ(n), we have X = ρn+o(n) with probability 1−o(1). Hence the number of vertices

in the unique large component is a.s. n− ρn+ o(n).

Remark. This unique largest connected component that has linear size, is called the giant component

of the random graph.
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