
Kelner-Madry’s Õ (m
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1 Introduction

In FOCS 2009, Kelner and Madry presented an Õ(|E|
√
|V | log 1/δ) algorithm for gen-

erating δ-random spanning trees of a graph G = (V,E). Their result is presented in a

simpler and hopefully more clear way here. To make in easier to understand, we will

focus on the main ideas, and not the details. For example, to make things simpler, we

will restrict ourselves to spanning trees, whereas to get the algorithm with the mentioned

running time, one has to use directed rooted trees. We will use the arXiv version of their

paper [5].

Given an undirected graph G = (V,E), we want to randomly generate a spanning tree

that is chosen uniformly at random from the set of spanning trees of G. This problem is

interesting mainly from theoretical point of view. Recently, random spanning trees have

also been used to build efficient sparsifiers.

In the following, n and m denote the number of vertices and edges of G, respectively.

We hide the log n factors by using the Õ notation.

There are two general approaches to this problem. The first one is based on a theorem

of Kirchhoff, which reduces the problem of counting the number of spanning trees to the

evaluation of a determinant. After a sequence of papers, this approach resulted in an
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algorithm by Colbourn, Myrvold, and Nuefeld [4], whose running time is the amount of

time necessary to multiply two n×n matrix, the best known bound for which is O(n2.376).

The second approach, which is the one taken here, is by using random walks. Consider

a person standing at a vertex of the graph in the beginning. In each step, she chooses one

of her neighbours, uniformly at random, and goes there. She continues doing this forever.

This is called a random walk on graph G. One can find a random spanning tree by using

the following theorem, proved independently by Broder [2] and Aldous [1].

Theorem 1. Suppose that you simulate a random walk in G starting from an arbitrary

vertex s until all vertices have been visited. For each v ∈ V \{s}, let ev be the edge through

which v was visited for the first time. Then T = {ev : v ∈ V \{s}} is a uniformly random

spanning tree of G.

This theorem immediately gives an algorithm for generating a random spanning tree:

just simulate a random walk, storing the edges ev for all vertices v, until all vertices

are visited. The expected running time of this algorithm is asymptotically equal to the

expected number of steps the random walk takes before every vertex of G is visited. The

latter quantity is called the cover time of G, and is Õ(mn). Thus we get an Õ(mn)

algorithm for generating a random spanning tree. There are graphs whose cover time is

indeed Θ̃(mn), so the bound on the running time is tight.

Here we give an algorithm with expected running time Õ(m
√
n log 1/δ) for generating

a δ-random spanning tree. This means that if G has a total of t spanning trees, and T is

an arbitrary spanning tree of G, then the probability that the algorithm generates T is

between (1 − δ)/t and (1 + δ)/t. For sparse graphs, this is faster than the algorithm of

Colbourn et al., which has running time O(n2.376)

To get an idea about how can we improve upon the basic simulation algorithm, let

us consider a typical situation in which the cover time can be large. Suppose that the

graph G has two large cliques A and B with a long path connecting them. If the random

walk starts at A, it is likely that it covers the whole A quickly, and then to cover B, it

needs to take the long path to B. It is possible that before reaching B, the walk reverses

its direction and returns to A, and spend quite a lot of time in A again. However, in

this second visit, it does not give us any new information about the spanning tree we are

going to build, because it is not visiting any vertex in A for the first time. This may

happen again and again, and the walk may visit A (and move around) many times before

eventually reaching B and covering it. If we could somehow shortcut the walk’s trajectory
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when it is visiting A for the j-th time, j > 1, then we could decrease the total simulation

time.

In general, let D be a highly connected subgraph in G (that will be covered quickly).

Let e1, . . . , ek be the edges with exactly one endpoint in D. Suppose that the walk has

covered D. The next time it enters D, its actual trajectory inside D is not important (it

does not reveal any of the ev’s in Theorem 1), and the only important thing is, through

which edge does it exit D. Of course this is a random walk, and it does not exit through a

deterministic edge, so let us say it exits through ei with probability pi. If we could compute

the probabilities p1, . . . , pk, then we could omit the simulation of the walk inside D, and

when the walk enters D (for the j-th time, j > 1), choose a random edge e ∈ {e1, . . . , ek}
according to the known probability distribution, and let the walk exit D through the edge

ei.

We will present an Õ(m2 log(1/δ)/
√
n) algorithm first. We will describe how to de-

compose G into highly connected subgraphs in Section 2, explain how to compute the

shortcutting probabilities in Section 3, and show how to bound the expected simulation

time in Section 4. Finally, in Section 5, we will describe briefly how the running time can

be improved to Õ(m
√
n log(1/δ)).

2 Building Strong Decompositions

Let G = (V,E) be a graph, S ⊆ V and D1, . . . , Dk be the connected components of G−S.

Then (S,D1, . . . , Dk) is a strong (φ, γ)-decomposition if the following hold.

(1) |C| ≤ φ|E|, where C = E \ (∪E(Di)).

(2) |P (S)| ≤ φ|V |, where P (S) is the set of vertices in S that have a neighbour out of

S.

(3) For i = 1, . . . , k, the diameter of Di is at most γ.

(4) For i = 1, . . . , k, |∂(Di)| ≤ |E(Di)|, where ∂(Di) is the set of edges with exactly one

endpoint in Di, and E(Di) is the set of edges with both endpoints in Di.

If we have such a decomposition, then D1, . . . , Dk are the highly connected subgraphs

discussed in the introduction. Next we show such a decomposition can be found quickly.

Lemma 2. For any graph G = (V,E) and φ small enough, a strong (2φ,O(log |E|/φ))-

decomposition of G can be found in linear time.
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Proof. The algorithm uses the ball-growing technique of Leighton and Rao [7]. We will

need a few definitions first. For a vertex v and a nonnegative integer j, let

• B(v, j) be the set of vertices whose distance from v is at most j.

• R(v, j) be the set of vertices whose distance from v is exactly j.

• R+(v, j) = E(B(v, j + 1))\E(B(v, j)).

• R−(v, j) = E(B(v, j))\E(B(v, j − 1)).

• t = φ/(2− 2φ).

Now, consider the following algorithm.

while G is nonempty do

choose an arbitrary vertex v and set j = 0

while |R (v, j+1)| > t |V(B(v,j))|

OR |R+(v, j+1)| > t |E(B(v,j))|

OR |R-(v, j+1)| > t |E(B(v,j))| do

j = j + 1

Suppose that you stop at j=j(i)

Add R(v, j(i)+1) to S and the ball B(v, j(i)) as a new component Di

Delete S, Di, and all their incident edges

It is not hard to see that the algorithm can be implemented to run in linear time.

Next we show that if φ is small enough, then the resulting decomposition is a strong

(2φ,O(log |E|/φ))-decomposition.

(1) Fix some i and j = j(i). When we build the component Di, we set Di = B(v, j).

We also added R(v, j + 1) to S, so R−(v, j + 1) ∪ R+(v, j + 1) is added to C. The

number of edges added to C is

|R−(v, j+1)∪R+(v, j+1)| ≤ |R−(v, j+1)|+|R+(v, j+1)| ≤ 2t|E(B(v, j))| = 2t|E(Di)|.

If we write this inequality for all i and add them up, we get |C| ≤ 2t(|E| − |C|),
which gives |C| ≤ 2t|E|/(1 + 2t) = φ|E|.
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(2) Fix some i and j = j(i). When we build the component Di, we set Di = B(v, j).

We also added R(v, j + 1) to S. The number of vertices added to S is R(v, j + 1) ≤
t|V (Di)|. If we write this inequality for all i and add them up, we get |S| ≤
t(|V | − |S|), which gives |S| ≤ t|V |/(1 + t) < φ|V |.

(3) Fix some i and j = j(i). We claim that the diameter of Di is at most

6
1 + ln |E|
ln(1 + t)

= O

(
ln |E|

− ln(1− φ)

)
= O(log |E|/φ),

where we have used − ln(1 − φ) = Θ(φ) for φ small enough. Assume that the

diameter is larger than this. So j > 3(1 + ln |E|)/ ln(1 + t), thus a particular one of

the conditions in the second while has been triggered more than (1+ln |E|)/ ln(1+t)

times. Let a = (1 + ln |E|)/ ln(1 + t). If it was the first condition, then since

B(v, 0) = 1, the ball B(v, j) would have more than (1 + t)a ≥ |E| vertices, which

is not possible. If it was the second (or the third) one, then since |E(B(v, 1))| ≥ 1,

the ball B(v, j) would have more than (1 + t)a−1 ≥ |E| edges, which is impossible

as well.

(4) For all i with |∂(Di)| > |E(Di)|, add V (Di) to S. The size of C becomes at most

twice, because for each i, we add |E(Di)| new edges to C, and C already contained

|∂(Di)| edges that connect it with Di. Moreover, the size of P (S) do not change,

because the vertices added to S do not have a neighbour out of S. The diame-

ters of other Di’s do not change. Hence the result is a strong (2φ,O(log |E|/φ))-

decomposition.

3 Computing the Shortcutting Probabilities

Fix a D = Di. For v ∈ D and e ∈ ∂D, let Pv(e) be the probability that a random walk

starting at v, exits D through e. Assuming these probabilities are known, we shortcut

our random walk as follows. Before the walk has visited all vertices of D, we do not do

any shortcutting. Suppose that the walk has covered D. Now, assume that in some step

the walk enters D through some vertex v ∈ D. In the next step, instead of following the

usual definition of a random walk, we choose an edge e ∈ ∂D according to the probability

distribution imposed by {Pv(e) : e ∈ ∂D}. Suppose that e = uu′ with u ∈ V (D). Then

the “modified” random walk jumps from v to u in the next step, and traverses the edge
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uu′ in the next step. The rest is the same as the basic simulation algorithm: we continue

until all vertices of G have been visited.

We will show how to compute approximate values for Pv(e) quickly, using the known

connection between random walks and electrical networks, and a recently developed effi-

cient linear system solver.

Lemma 3. Given a strong (φ, γ)-decomposition of G, we can compute multiplicative (1 +

ε)-approximations of all values Pv(e) in time Õ(φm2 log(1/ε)).

Proof. Fix a D = Di and e = uu′ ∈ ∂D with u ∈ V (D). Build a multigraph D′ from

D as follows. Add vertices u′ and u∗ to D, where u∗ is a dummy vertex. Also add the

edge uu′. For every ww′ ∈ ∂(D) \ {e} with w ∈ V (D), add an edge wu∗. (Notice that we

might have w′ = u′.) Observe that for every v ∈ V (D), Pv(e) is precisely the probability

that a random walk in D′, started at v, hits u′ before u∗.

Now, if we treat D′ as an electrical circuit with unit resistance on each edge, in which

we impose voltage +1 at u′ and 0 at u∗, then the voltage achieved at v is equal to Pv(e)

(see, e.g., [8]). The formulas describing this circuit can be written as a linear system with

the voltages at each vertex being its variables, and Kirchhoff’s current law at each vertex

being its equations. We put two external current generators so that an external current

of 1 is going into vertex u′, and an external current of -1 is going into vertex u∗. This

system can be written in the form Ax = b, where A is a symmetric, diagonally dominant

|V (D′)|×|V (D′)| matrix and has |V (D′)|+ |E(D′)| nonzero elements. Thus multiplicative

(1 + ε)-approximations for the voltages can be found in time Õ(|E(D′)| log(1/ε)) using

the linear system solver of Spielman and Teng [6].

We should solve the linear systems for all e ∈ C, so the total running time is

Õ
(
|C|
∑
|E(D′i)| log 1/ε

)
= Õ

(
|C|
∑
|E(Di)| log 1/ε

)
= Õ ((φm)m log 1/ε) ,

where we have used property (1) of strong decompositions |C| ≤ φm, and also property

(4) of strong decompositions to get |E(D′i)| = O(|E(Di)|).

4 Bounding the Expected Simulation Time

In the previous two sections, we explained how our simulation works. In this section we

bound the expected simulation time. The steps in our modified random walk are of three

type:
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1. The steps in which we traverse an edge of C.

2. The steps in which we traverse an edge of Di, while Di has not been covered yet.

3. The steps in which we “jump” from a vertex v ∈ Di to a vertex u ∈ Di (so that in

the next step we traverse some edge uu′ ∈ ∂D), after Di has already been covered.

Notice that C contains at most a φ fraction of the edges of G, by property (1) of strong

decompositions. The basic random walk (without shortcuts) takes an expected number of

O(mn) steps before covering the whole graph, and so, intuitively, in at most a φ fraction

of those steps, we would traverse an edge in C. (To make this precise, we need our

starting vertex to be chosen according to the stationary distribution of the Markov chain

associated with the random walk; but for simplicity we avoid this.) Thus, the expected

number of steps of type 1 in our simulation is O(φmn). Notice that every step of type 3

is followed by a step of type 1. Hence the expected number of steps of type 3 is O(φmn)

as well, and we just need to bound the expected number of type 2 steps we take.

For bounding the expected number of steps of type 2, fix a D = Di. It is known

[3] that the expected cover time of a graph H with diameter ` is O(`|E(H)| log |V (H)|).
Our walk is not really a random walk in D, since it may go out of D. However, using

some random walk techniques, which we omit here (see the proof of Lemma 6 in Kelner-

Madry’s paper [5]), it can be shown that the expected number of steps taken inside D

before it is covered is Õ(|E(D)|γ(D)). Here γ(D) is the diameter of D, which is at most

γ by property (3) of strong decompositions. In the proof, the fact |∂D| ≤ |E(D)| is used,

implied by property (4) of strong decompositions (the necessity of such a condition makes

sense, because we want to look at those steps of the random walk on G that are taken

inside D, and for this to be similar to a real random walk on D, we do not want it to go

out of D most of the time).

Consequently, the expected total number of steps in our walk, which asymptotically

equals the running time of the simulation, is bounded by O(φmn) + Õ(mγ) +O(φmn) =

Õ(mγ + φmn).

Now, we present an Õ(m log(1/δ)/
√
n) algorithm to generate a δ-random spanning

tree. Set φ = 1/
√
n. By Lemma 2, a strong (1/

√
n, Õ(

√
n))-decomposition of G can be

found in linear time. Then, by Lemma 3, (1 + δ/mn)-approximations of the probabilities

Pv(e) can be found in time Õ(m2 log(1/δ)/
√
n). It can be verified (see Lemma 10 in

[5]) that taking the value δ/mn for ε ensures that our approximate simulation is good

enough, and the resulting tree is δ-random. Then, we can run the simulation, whose
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expected running time is Õ(m
√
n) by the discussion above. Therefore, the expected total

running time of the algorithm is Õ(m2 log(1/δ)/
√
n) as desired. In the next section, we

describe how to improve the running time to Õ(m
√
n log(1/δ)).

5 Obtaining a Faster Algorithm

The bottleneck of the algorithm presented in the previous sections is finding the probabil-

ities Pv(e). Recall that in the shortcutting procedure, for each i, when we enter some Di

(after we have already covered Di), we choose a random edge uu′ ∈ ∂D with u ∈ V (Di)

and jump to u and traverse the edge uu′. What if instead of doing this, we jump directly

to u′? This may cause problems in building our spanning tree, because it may be the first

time that we are visiting u′, and if so, then the edge eu′ in Theorem 1 is undefined.

Let us get into details. For a given i, some v ∈ V (Di), and u /∈ Di, define Qv(u) to be

the probability that u is the first vertex out of Di that is reached by a random walk in G

that starts at v. Note that Qv(u) = 0 if u /∈ P (S), so we only need to consider u ∈ P (S).

We show that these probabilities can be computed more quickly than the values Pv(e).

Lemma 4. Multiplicative (1 + ε)-approximations for all values Qv(u) can be computed in

time Õ(φmn log(1/ε)).

Proof. Fix D = Di and u ∈ P (S). Let D′ be the multigraph obtained from G[D ∪
P (S)] by identifying all vertices in P (S) \ {u}, and naming the resulting vertex u∗. Note

that |E(D′)| = |E(D)| + |∂(D)| ≤ 2|E(D)| = O(|E(D)|) by property (4) of strong

decompositions. Then Qv(u) is precisely the probability that a random walk in D′ starting

from v hits u before u∗. We can find multiplicative (1 + ε)-approximations for all such

probabilities in time Õ(|E(D′)| log(1/ε)) by treating the graph as an electrical network

and using the linear system solver of [6] (as in the proof of Lemma 3).

We need to do this for all u ∈ P (S), so we can find multiplicative (1+ε)-approximations

for all values Qv(u) in time

Õ(|P (S)|
∑
|E(Di)| log(1/ε)) = Õ(φnm log(1/ε)),

where we have used the property (2) of strong decompositions |P (S)| ≤ φn.

Now, we present an Õ(m
√
n log(1/δ)) algorithm for generating a δ-random spanning

tree. Set φ = 1/
√
n. By Lemma 2, a strong (1/

√
n, Õ(

√
n))-decomposition of G can be
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found in linear time. Then, by Lemma 4, (1 + δ/n5)-approximations of the probabilities

Qv(u) can be found in time Õ(m
√
n log(1/δ)).

Now, we run a simulation of the random walk described in the beginning of this section.

We simulate (δ-approximately) this walk until it visits all vertices of G, which takes an

expected number of Õ(m
√
n) steps. Having done this, let ev be, as in Theorem 1, the first

edge through which we have entered v for the first time. Note that ev may be undefined

for some vertices, but this can happen only if v ∈ P (S). So, we need to define some of

the ev’s manually. To describe precisely how to do this, we need to work with directed

rooted trees, which we have tried to avoid in this article. Thus, we will give a procedure

which is the undirected analogous of what is really done, and the details can be found in

the proof of Lemma 15 of [5]. Let F = {ev : v /∈ P (S) ∪ {s}}. Then F is a forest with

|P (S)| connected components. Contract each of its connected component into a single

vertex. The remaining graph has |P (S)| vertices, and |P (S)| ≤ φn by property (2) of

strong decompositions. Now, using the algorithm of Colbourn et al. [4], build a random

spanning tree T of this graph in time O((φn)2.376) = O(n1.188). Return the tree T ∪F as a

δ-random spanning tree of G. Therefore, the expected total running time of the algorithm

is Õ(m
√
n log(1/δ)).
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