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Abstract—In this paper, the effects of employing different
noise estimation strategies on the performance of noise artifact
suppression techniques in achieving high image quality has
been investigated. Most literature on the subject tends to use
the true noise level of the noisy image when performing noise
artifact suppression. However, this approach does not reflect
how such techniques would be used in practical situations
where the true noise level is unknown, which is common in most
image and video processing applications. Therefore, in practical
situations, the noise level must first be estimated before a
noise artifact suppression technique can be applied using the
estimated noise level. Through a comprehensive analysis of
different noise estimation strategies using empirical testing on
a variety of images with different characteristics, the MAD
wavelet noise estimation technique was found to be the overall
preferred noise estimation technique for all popular noise
artifact suppression techniques investigated (BM3D, bilateral,
NeighShrink, BLS-GSM and non-local means). Furthermore,
the BM3D noise artifact suppression technique, combined with
the MAD wavelet noise estimation technique, was found to offer
the best performance in achieving high image quality in situa-
tions where the noise level is unknown and must be estimated.
The outcome of this research is clear recommendations that can
be used in practise when suppressing noise artifacts exhibited
in digital imagery and video.
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I. INTRODUCTION

A continuous area of research in the field of image and
video processing is noise artifact suppression, where an
image or video that has been contaminated by some form of
noise is processed in an attempt to recover the original image
or video. Noise artifact suppression has numerous image
and video processing applications including photographic
enhancement, video enhancement, edge detection [1], object
recognition [2] and video tracking [3]. Given the importance
of noise artifact suppression on various image and video
processing applications, many different noise artifact sup-
pression techniques have been presented over the years and
while significant progress has and is continually being made,
no techniques have completely addressed this problem.

In literature pertaining to image noise artifact suppression
it is often assumed that noise present in images is additive
white Gaussian noise. In this way, the intensity of noise can
be specified in terms of its standard deviation σ. This value

is the most important parameter in virtually all image noise
artifact suppression techniques as it has the greatest effect on
the overall quality of the denoised image. The overestimation
of the noise level typically leads to excessive smoothing of
the image and loss of image detail, while the underestimation
of the noise level results in insufficient noise removal.

When images are denoised in practical, real-world situa-
tions the exact value of the noise standard deviation is un-
known and must be estimated. However, in much of existing
research literature, noise artifact suppression techniques are
commonly tested using the true noise level of the image.
One significant effect this method of testing fails to take
into consideration is the robustness of the noise artifact
suppression techniques to the noise level determined using
a noise estimation strategy, which is often inaccurate when
compared to the true noise level. For example, some noise
artifact suppression techniques may appear to perform better
than others when the exact true noise level is used as the
input parameter, but other techniques might perform better
in practice when the noise level must be estimated since they
are more robust to inaccurate input noise levels.

The purpose of this paper is to perform a comprehensive
analysis that explores the effects of using different noise
estimation strategies on the performance of noise artifact
suppression techniques and on final denoised image quality.
The rest of the paper is organized as follows. A back-
ground overview on noise estimation strategies as well as
popular noise artifact suppression methods are presented
in Section II. The methodology used in the comprehensive
analysis is described in Section III. Experimental results are
presented and discussed in Section IV. Finally, conclusions
are drawn in Section V.

II. BACKGROUND

While image noise artifact suppression techniques have
been thoroughly studied in the research literature, noise
estimation techniques are not as prevalent. The existing
estimation techniques can either be classified as those which
look at multiple images from the same source to estimate
the intensity of noise and those which use only one image to
estimate the intensity of noise. In this study, we will focus
on noise estimation techniques that use only a single image.



For this study, let us assume that an observed, noisy image
g of size N×M is composed of the noise-free image f and
an additive white Gaussian noise source n following the
distribution N (0, σ2), where σ2 is the noise variance,

g(x, y) = f(x, y) + n(x, y). (1)

One class of noise estimation techniques make use of
wavelet characteristics to estimate the noise variance in the
image. A common wavelet-based technique for estimating
the parameter σ is the median absolute deviation (MAD)
method, which is based on the assumption that the MAD
of the wavelet coefficients of g in the highest frequency
subband is proportional to the noise standard deviation [4],
[5], which can be defined as

σ̂noise,MAD =
1

0.6745
×MAD(yHi,j) (2)

where yHi,j are the wavelet coefficients in the highest fre-
quency subband. The MAD operation, for some dataset Xi,
is defined as the median of the absolute deviations from the
median of the dataset:

MAD =Mediani(‖Xi −Medianj(Xj)‖). (3)

Another class of noise estimation techniques use local
variances of pixel intensity to estimate the noise variance in
the image. This involves starting at a position on the image
and calculating the variance of pixel intensity of all pixels
within a specified range. The position is then shifted by one
pixel and the process is repeated until the local variances
are known for all possible positions on the image. Using
this approach, one common technique is to use the mean of
the local variances as the noise variance of the image,

σ̂noise,meanlv =
1

NM

∑
x

∑
y

[
(g2(x, y) ∗ w)− (g(x, y) ∗ w)2

]
.

(4)
where ∗ denotes a convolution and w is a box kernel of size
S × S. Other common noise estimation techniques based
on local variances include using the maximum, minimum,
median, and mode local variances as the noise variance of
the image,

σ̂noise,minlv =Min
[
(g2(x, y) ∗ w)− (g(x, y) ∗ w)2

]
,
(5)

σ̂noise,maxlv =Max
[
(g2(x, y) ∗ w)− (g(x, y) ∗ w)2

]
,
(6)

σ̂noise,medlv =Median
[
(g2(x, y) ∗ w)− (g(x, y) ∗ w)2

]
,

(7)

σ̂noise,modelv =Mode
[
(g2(x, y) ∗ w)− (g(x, y) ∗ w)2

]
.

(8)
In terms of image noise artifact suppression techniques,

they can either be classified as spatial techniques or trans-
form techniques. Spatial techniques analyze and modify the
pixel intensity values directly while transform techniques
transform the image into another domain, such as the Fourier
domain, and then analyze and modify the resulting spectrum
before transforming the image back to the spatial domain.

One of the current leading spatial techniques is the bilat-
eral filter [6]. It is an extension of the Gaussian smoothing
filter, which replaces the value of each pixel with a weighted
average of nearby pixel values with the weighting being
dependent on spatial proximity. The bilateral filter extends
on this by basing the weights not only on spatial proximity,
but also on similarities in pixel intensities, where pixels with
more similar pixel intensities begin assigned a higher weight.
This results in the bilateral filter having significantly better
edge preservation than the Gaussian smoothing filter. To
further improve noise artifact suppression performance in the
spatial domain, the non-local means filter [7] was introduced,
and is considered one of the leading edge spatial techniques
available. A non-local technique, the non-local means filter
utilizes redundant structures throughout the noisy image to
estimate the original image.

Some of the leading transform techniques include the
Bayes least squares-Gaussian scale mixture (BLS-GSM)
filter [8], BM3D filter [9] and the NeighShrink filter [10].
More specifically, the BLS-GSM and NeighShrink filters are
wavelet techniques, where coefficients in the decomposed
wavelet sub-bands that are associated with noise energy are
suppressed. The BM3D technique is a non-local technique
that utilizes groups of similar structures and employs them
to perform noise artifact suppression in a collaborative
transform domain.

In this comprehensive analysis, all of the aforementioned
noise estimation strategies and noise artifact suppression
techniques are considered to examine the effects of using
different noise estimation strategies on both types of noise
artifact suppression techniques for different types of images.

When using these techniques in practice one would first
take a noisy image and use a noise estimation technique to
estimate the intensity of noise present and then use a noise
artifact suppression technique with the noise level used as a
parameter to denoise the image. Where maximum denoised
image quality is the goal, pertinent questions that would then
arise would be:

1) Which noise estimation technique results in the best
performance for each noise artifact suppression tech-
nique?

2) Which noise artifact suppression technique performs
best when an estimated noise level is used?



(a) AERIAL (256x256) (b) AIRPLANE (256x256) (c) BARBARA (512x512) (d) BOAT (512x512)

(e) CAMERAMAN (256x256) (f) CLOCK (256x256) (g) COUPLE (512x512) (h) FACTORY (256x256)

(i) FINGERPRINT (512x512) (j) HILLS (512x512) (k) HOUSE (256x256) (l) LENA (512x512)

(m) LENA (256x256) (n) MAN (512x512) (o) MONTAGE (256x256) (p) MOON (256x256)

(q) PEPPERS (256x256)

Figure 1. Test images used in the comprehensive analysis.



(a) Original image with
no noise

(b) σapplied = 5,
PSNR = 34.1dB

(c) σapplied = 10,
PSNR = 28.3dB

(d) σapplied = 20,
PSNR = 22.4dB

(e) σapplied = 40,
PSNR = 16.6dB

(f) σapplied = 60,
PSNR = 13.5dB

Figure 2. Sample noise application to CAMERMAN image.

III. METHODOLOGY

One possible approach to measuring the performance of
noise estimation techniques is to apply them to a noisy
image where the true noise level (σtrue) is known and
compare the resulting estimated noise (σ̂noise) with σtrue.
We opted to not to use this approach for this study because
when estimators are coupled with noise artifact suppression
techniques their individual contributions are masked. For
example, there may be an estimation technique that consis-
tently overestimates the noise level that is combined with a
noise artifact suppression technique that performs well with
overestimated noise levels but together they still produce
high quality denoised images. For this reason, we used the
difference in the final image quality as the performance
metric for the estimators, rather than directly comparing
σ̂noise with σtrue.

To determine which noise estimation technique offers
the best performance for each denoising technique we
first gathered a sample of 17 stock greyscale images,
ten of which were 256×256 pixels in size (AERIAL,
AIRPLANE, CAMERMAN, CLOCK, FACTORY, HOUSE,
LENA, MONTAGE, MOON and PEPPERS) and seven of
which were 512×512 pixels in size (BARBARA, BOAT,
COUPLE, FINGERPRINT, HILL, LENA and MAN). This
set of test images, shown in Fig. 1, was chosen with a
sizable variety so that it would be possible to reasonably
generalize the results. Noisy images were then created by
contaminating the stock images with different degrees of
additive white Gaussian noise. We used standard deviations
of σapplied = 5, 10, 20, 40 and 60 for the contaminating noise
so a wide range of different noise levels would be covered.
Note that the pixel intensities had to be constrained to values
between 0 and 255 after the noise was applied, thus the
resulting σtrue in the images was usually slightly less than
σapplied. A sample of the resulting noisy images is shown
in Figure 2.

With each of the stock noisy images, we first determined
the optimal noise parameter σopt for each noise suppression
technique that maximizes the peak signal-to-noise ratio
(PSNR) achieved for that technique,

σopt = argmax
σ

PSNR(σ). (9)

The value σopt was obtained via a search technique where
we inputted incremental values from 0 up to 80 for the σ
parameter into each of the noise artifact suppression tech-
niques, covering the range we would expect the maximum
PSNR to occur in. As an aside, we noticed that σopt usually
occurred within 1 value of σtrue and returned a PSNR that
was usually no greater than 1% of the value returned from
when using σtrue.

The denoised images were then evaluated to determine the
PSNR achieved using the estimated noise parameter σ̂noise.
To evaluate the performance of each noise estimation method
in a quantitative manner, we computed the ratio between the
PSNR achieved using the estimated noise parameter σ̂noise
and the PSNR achieved using the optimal noise parameter
σopt,

perf =
PSNR(σ̂noise)

PSNR(σopt)
. (10)

There are two main advantages to using such a perfor-
mance metric. First, such a performance metric allows for
easy interpretation of the relative performance of the noise
estimation methods. Second, this performance metric makes
it possible to average the results across all images. Plots of
this performance metric for the different noise estimation
methods when used with different noise artifact suppression
techniques are shown in Figures 3 and 4.

To determine the best noise artifact suppression tech-
nique when using an estimated noise level we utilized the
results from the previous test that showed which is the
preferred estimation technique for each noise artifact sup-
pression technique. We then simply ran each noise artifact
suppression technique on each of the noisy stock images
using an estimated noise level generated from the preferred
noise estimation technique. The denoised images were then
evaluated for their PSNR and the results were averaged
across all stock images.

Each of the noise artifact suppression algorithms was
implemented in MATLAB and was acquired through ex-
isting libraries available online. We kept as much of the
default configurations as possible for each noise artifact
suppression algorithm with the exception of the bilateral
filter. It required significant configuration because rather than
having a straightforward input parameter for the noise level,



as with the other techniques, it requires a spatial parameter
σs, which may remain fixed, and an intensity parameter σi,
which should be based on the noise level. There are no
universally agreed optimal values for these but we found
best results when using a spatial parameter of σs = 3 and
an intensity parameter of σi = 1.95 × σnoise. These are
also the values recommended in [11]. Finally, each of the
noise estimation methods were implemented in MATLAB as
well, with the Daubechies 4 (db4) wavelet transform used
for the MAD noise estimation method [4], [5], and a 7× 7
normalized box kernel used for w for the noise estimation
methods based on local variances.

IV. RESULTS

Subfigures (a) to (e) of Fig. 3 show the performances of
the estimation techniques for each noise artifact suppression
technique and for each level of applied noise. The results
in these subfigures would be useful to someone who has
selected a noise artifact suppression technique and knows the
general amount of noise in an image so they could select an
estimation technique that performs the best for that general
noise range. In these subfigures we can see that the MAD
wavelet and the mode variance techniques performed the
best overall and consistently produced images with quality
that was within 5% of the maximum PSNR across all
levels of noise. We can also see that the minimum and
maximum variance techniques resulted in overall very poor
performance while the mean and median variance techniques
performed reasonably well in general.

The data from the subfigures in Fig. 3 is further summa-
rized in Fig. 4 where the performances of the estimation
techniques are averaged across all five levels of applied
noise. This gives a more general idea of how well each
noise estimation technique performs when used with each
noise artifact suppression technique across a wide range of
noise levels.

From this figure we can see a fairly consistent pattern
across all noise artifact suppression techniques were the
MAD wavelet technique offers the best overall performance,
followed by the mode variance, median variance, mean
variance and finally, with maximum and minimum variance
returning the overall poorest results.

The computational requirements for all estimation tech-
niques was quite low as each estimation was completed in
well under one second per image.

Fig. 5 provides an illustrative answer to the question
regarding which noise artifact suppression technique per-
forms the best when using an estimated noise level. From
the results in Question 1 we knew that the MAD noise
estimator resulted in the overall best performance for all
noise artifact suppression techniques, thus it was the noise
estimator used for their comparison. The test showed that
the BM3D noise artifact suppression technique combined
with the MAD noise estimator performed the best overall

since it produced the highest PSNR images in all noise
levels. In contrast, the bilateral filter had the lowest average
performance of the tested methods. In this figure it can
also be observed that the relative performance of each noise
artifact suppression technique is consistent across the noise
levels.

The computational requirements of BM3D, bilateral,
BLS-GSM and Neighshrink were all fairly mild as each
was able to denoise a 512×512 pixel image in under 20
seconds. Non-local means, however, was drastically more
demanding and usually required an order of magnitude more
computational time.

V. CONCLUSION

In this paper we carried out a comprehensive analysis to
explore the effects of different noise estimation strategies on
the performance of noise artifact suppression techniques and
final image quality. Through an empirical testing process
we determined that the MAD wavelet noise estimation
technique is the overall preferred noise estimation tech-
nique for all noise artifact suppression techniques presented
(BM3D, bilateral, Neighshrink, BLS-GSM and non-local
means). We also found the BM3D noise artifact suppression
technique, when combined with the MAD wavelet noise
estimation technique, performed the best of the all noise
artifact suppression techniques presented when an estimated
noise level is used.
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Figure 5. Performance of noise artifact suppression techniques when using an estimated noise level generated from the MAD estimator.


