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Abstract— Having accurate knowledge of the positions of
people around a robot provides rich, objective and quantitative
data that can be highly useful for a wide range of tasks, includ-
ing autonomous person following. The primary objective of this
research is to promote the development of robust, repeatable
and transferable software for robots that can automatically
detect, track and follow people in their environment. The
work is strongly motivated by the need for such functionality
onboard an intelligent power wheelchair robot designed to
assist people with mobility impairments. In this paper we
propose a new algorithm for robust detection, tracking and
following from laser data. We show that the approach is
effective in various environments, both indoor and outdoor, and
on different robot platforms (the intelligent power wheelchair
and a Clearpath Husky). The method has been implemented
in the Robot Operating System (ROS) framework and will be
publicly released as a ROS package. We also describe and will
release several datasets designed to promote the standardized
evaluation of similar algorithms.

I. INTRODUCTION

Having accurate knowledge of the positions of people over
time provides rich, objective and quantitative data that can be
highly useful for a wide range of applications. More specifi-
cally, the capability to autonomously detect, track and follow
a person has been identified as an important functionality for
many assistive and service robot systems [1], [2]. Over the
last decade, significant progress has been made in developing
person detection and tracking algorithms, often with the aim
of improving human-robot interaction or robot navigation in
populated environments [3], [4].

Yet most of the work to date is not easily transferable to
new applications: algorithms are tested on a single robot in
a single environment (if at all, sometimes only in simulation
under artificial conditions), in many cases the code has not
been made publicly available, datasets collected during vali-
dation sessions are not shared, and quantitative comparisons
to existing algorithms are not performed. Despite our best
efforts, we have not been able to replicate many of the
published results onboard the SmartWheeler platform [5].
In fact, we have yet to find a robust laser-based person-
following system for a mobile robot that has demonstrated
capability to work indoors, outdoors and in cluttered and
crowded areas.

In this paper we present a novel method for person track-
ing and following with 2D laser scanners. It builds on recent
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results in the literature [3], [4], extending them in several
directions to improve accuracy and reduce the number of er-
rors. One contribution of this work is a novel tracking method
which uses tracking of both legs, rather than an individual
leg such as in [3], [4], to improve reliability, especially in
cases of self-occlusion. We also integrate local occupancy
grid maps to improve data association by disallowing the
initiation or continuation of people tracks in occupied space.
However, unlike the approach in [6] which constructs occu-
pancy grid maps of all scan points, ours only uses non-human
scan points and therefore does not require people to move
continuously to be tracked. Our approach also integrates
the method of cluster tracking present in Robot Operating
System (ROS) leg detector package in which all detected
clusters are tracked in every frame, included non-human
clusters, improving data associated in cluttered environments.
Finally, we incorporate a closed-loop control algorithm to
allow the robot to autonomously follow tracked individuals.

A major asset of our approach is the ability to work on
multiple different robots, under various operating conditions.
We present extensive empirical results, validating the perfor-
mance of our approach on two different robot platforms over
40 minutes of data collected across different environments,
both indoor and outdoor, with moving and stationary robot,
and varied crowd and obstacle conditions. These results
show the benefit of our tracking approach compared to the
existing open-source implementation in ROS, especially in
the application of person following. Another contribution of
this work is a public release of all datasets and code used
during our investigations as an open-source ROS package,
to facilitate ongoing research in this area in future years.
These datasets include, to the best of our knowledge, the
first laser-based person tracking benchmarks collected on a
moving robot.

While the work we report here focuses specifically on
the problem of accurate tracking and following of people
by social and assistive robots, we expect our work to have
significant applications outside of this field, including for
security (e.g. tracking intruders), entertainment (e.g. devel-
oping interacting exhibits), marketing (e.g. location-aware
personalized advertisement), rehabilitation (e.g. assessment
of patients’ locomotion patterns following an injury [7]), and
beyond.

II. PROBLEM DESCRIPTION

The problem of interest can be decomposed into three
sub-problems: (1) detection, (2) tracking, and (3) following.
For reasons of modularity and robustness, these problems
are tackled with three separate (though connected) modules.



Such modularity is consistent with most of the literature
on the topic, and allows development of a solution that is
transferable to a large range of applications. For example,
a security robot may require only detection and tracking; a
social robot on the other hand may ask the user to manually
specify what person to follow (e.g. from an image, or with
a gesture command), and use autonomous behavior only for
tracking and following.

For the purposes of this work, we limit our attention to
systems with planar laser sensors. Such sensors are widely
available on autonomous robots, especially those deployed in
public and urban environments, due to their reliability and
accuracy for mapping and navigation tasks. Laser sensing
is also computationally cheap to process, lighting invariant,
and functional under diverse operating conditions. Further,
the wide field of view of modern laser scanners allows the
robot to follow in close proximity with less risk of losing
people out of frame.

We aim to build and test a system that can achieve person
tracking and following under diverse conditions: different
robot platforms, indoors and outdoors, single or multiple
people, cluttered with stationary or moving obstacles, with-
out an a priori map of the environment. In support of this,
we deploy and validate our system on two different robot
platforms, each in a different environment.

The SmartWheeler robot, shown in Figure 1, is an intel-
ligent powered wheelchair, designed in collaboration with
engineers and rehabilitation clinicians, aimed at assisting
individuals with mobility impairments. The robot is built
upon a commercial power wheelchair base, to which we
have added onboard computing, three Hokoyu UHG-08LX
laser scanners, several sonars, an RGB-D camera, on-wheel
odometry, and a touchscreen for two-way interaction. One of
the important tasks for the robot is to automate navigation in
challenging environments (crowded rooms, narrow spaces)
to reduce physical and cognitive load on the wheelchair
user [2]. The task of moving around with another individual,
whether a friend or caregiver, is also one that requires sub-
stantial concentration, and wheelchair users often comment
that it is difficult for them to simultaneously control their
wheelchair (presumably via joystick) and hold a conversa-
tion, thus having the ability to use autonomous navigation
capabilities for walking side-by-side with (or behind) another
person is highly desirable [2].

A Husky A200 from Clearpath Robotics (shown in Fig. 2)
is used for the outdoor experiments in this work. This robot
has been used for mapping, localization, route following
and autonomous navigation on rugged terrain, such as sand,
gravel and grass. An on-board computer is used to interface
low-level controllers and sensors, as well as to process visual
and range measurements. Typically, an additional computer
is mounted on top of the platform for applications with high
computational requirements. A Hokuyo URG-04LX-UG01
laser sensor, mounted on the front of the robot, is used to
collect the 2D scans used in this study.

Fig. 1. The SmartWheeler robot.

III. RELATED WORK

Most previous work focuses on only one or two of
the three identified sub-problems: detection, tracking and
following. Few papers present integrated systems tackling
all three components. We focus in particular on work that
uses depth sensors, such as laser or RGB-D, as those are the
sensors available on our SmartWheeler robot, as well as on
numerous other assistive robots.

Montemerlo et al. [8] were possibly the first to present a
method for automatically locating and tracking people from
laser data. One drawback of this work is the necessity for an
a priori occupancy grid map of the operational environment,
which is used for background subtraction to detect the
person. The tracking is achieved via a conditional particle
filter.

Schulz et al. [6] proposed to estimate the number of
people in the current scan based on the number of moving
local minima in the scan. Unfortunately, this requires people
move continuously to be tracked, and is susceptible to poor
results in cluttered environments (where the number of local
minima is misleading). They also introduced a Sample Based
Joint Probabilistic Data Association Filter (SJPDAF) over the
observed local minima to improve tracking reliability.

Topp et al. [9] extended [6], by picking out shapes of
legs and person-wide blobs in laser scans using hand-coded
heuristics, to allow detection and tracking of both stationary
and moving people. The approach was also combined with a
person following navigation algorithm, combining both the
tracked person’s position as well as the location of nearby
obstacles to determine suitable control. Gockley et al. [10]
used a similar approach, with a few modifications, including
using a Brownian motion model for the tracking component.
This approach was further extended by Hemachandra [11],
which improved the person-following component by propos-
ing a navigation approach that accounts for personal space,
while avoiding obstacles. Unfortunately these approaches
cite tracking difficulties in cluttered conditions, since they
relied primarily on detecting clusters of a heuristically-
determined size in the laser scan.

More recently, Arras et al. [3] reduced this limitation by
proposing a method that detects legs by first clustering scan
points and then using supervised learning to learn shapes
of leg clusters. Detected legs are tracked over time using



constant-velocity Kalman filters and a multiple-hypothesis
tracking (MHT) data association technique. This approach
benefits from its ability to maintain (but not initiate) tracks
of stationary people, and does not require an a priori occu-
pancy grid map of the environment. Initial results for this
method appear promising, but demonstrations on walking-
speed robots in cluttered and crowded areas have yet to be
performed. Thus, many questions remain about the robust-
ness and generalizability of the approach.

Finally, Lu et al. [4] extended an existing ROS package
originally developed at Willow Garage, that had not been for-
mally published.1 This method first matches scan clusters us-
ing nearest-neighbour (NN) data association, then determines
which clusters are human legs using a supervised learning
approach similar to [3]. In the data association literature, it is
generally agreed that the NN filter is outperformed by more
sophisticated methods, such as the global nearest-neighbour
(GNN) filter, SJPDAF or MHT [12]. Furthermore, the data
association method only considers absolute Euclidian dis-
tances while ignoring valuable uncertainty covariances that
can improve tracking.

Navarro-Serment et al. [13] present the only published
work, which we are aware of, that aims to track people from
a mobile robot in hilly, outdoor environments using only
2D laser scanners. The method’s applicability to cluttered or
crowded environments is questionable since it uses a NN data
association method and clusters scan points with a relatively
large threshold of 80cm.

Person following with other sensors: Munaro et al. [14]
proposed to track people in real-time with an RGB-D sensor
on a mobile robot, demonstrating promising results with high
update rates running on a CPU only. Similarly, Gritti et
al. [15] demonstrated a method for detecting and tracking
people’s legs on a ground plane from a low-lying viewpoint
with the an RGB-D sensor. However the RGB-D sensor’s
narrow field of view, minimum distance requirement, and
inability to cope with sunlight, limit this technique’s appli-
cations for person-following.

Cosgun et al. [1] presented a novel person following
navigation technique which is most similar to a Dynamic
Window Approach [16]. The initial detection was acquired
via a user indicating the desired person they wish to follow
in the an RGB-D sensor’s image. Tracking was then achieved
via lasers using estimated leg positions. This approach can
only track one person, and uses a NN matching over a
small number of laser segment features, thus is not robust in
situations with multiple individuals.

Kobilarov et al. [17] developed a person-following Segway
robot using an omni-directional camera and a laser scanner.
Nonetheless, variable environment lighting, backgrounds and
appearances of people are factors which can be difficult to
control for and can mislead vision-reliant tracking systems.

1http://www.ros.org/news/2009/12/person-following-and-detection-in-an-
indoor-environment.html

IV. JOINT LEG TRACKER

Our proposed system, which we call the Joint Leg Tracker,
includes several components. The autonomous person detec-
tion is achieved using clustering over laser detections; con-
fidence levels are also assessed to help prune false positives.
The autonomous tracking is achieved using a combination
of Kalman filter (for predictive over consecutive scans) and
a GNN method (to resolve the scan-to-scan data association
problem). Finally, a control algorithm is used to follow the
tracked target.

A. Autonomous person detection

The laser scanner returns a vector of distance measure-
ments taken on a plane, roughly 30cm from the ground, at
a resolution of 1/3◦. Scan points returned are first clustered
according to a fixed distance threshold, such that any points
within the threshold are grouped together as a cluster. The
threshold is chosen to be small enough to often separate a
person’s two legs into two distinct clusters, but to rarely gen-
erate more than two clusters per person. To mitigate noise,
clusters containing less than three scan points are discarded
in low-noise environments and clusters containing less than
five scan points are discarded in high-noise environments.
To compensate for egomotion, the position of all detected
clusters are transformed to the robot’s odometry frame.

Detected clusters are used as observations for the tracker.
The observations at timestep k are denoted as zk ={
z1k, z

2
k, ..., z

Mk

k

}
where Mk is the total number of detected

clusters at time k.
Clusters are further classified as human or non-human,

based on a set of geometric features of the clusters. The
features are listed in Table I and extend the set proposed
in [3] and [4]. The classification is done using a random
forest classifier trained on a set of 1700 positive and 4500
negative examples [18]. Positive examples were obtained by
setting up the laser scanner in an open area with significant
pedestrian traffic; all clusters which lay in the open areas
and met the threshold in Sec. IV-A were assumed to be the
result of people and were used as positive training samples.
Negative examples were obtained by moving the sensor
around in an environment devoid of people; all clusters which
met the threshold in Sec. IV-A were used as negative training
samples.

One benefit of using an ensemble classification method
is that a measure of confidence in the classification can be
extracted by considering the number of individual predictors
predicting each class.2 Thus, rather than using the binary
output of the classifier (human/non-human), we consider
the confidence level (from 0-100%) from the classifier and
pass this information (along with the cluster location) to the
tracking module.

B. Autonomous tracking of multiple people

1) Kalman filter tracking: The position of all detected
clusters (regardless of confidence level) are individually

2A function for extracting this confidence is included in the random forest
classifier implementation for OpenCV [19].



TABLE I
FEATURES USED FOR CONFIDENCE CALCULATION OF SCAN CLUSTERS.

Number of points Width Length
Standard deviation Avg dist. from median Occluded (boolean)
Linearity Circularity Radius of best-fit circle
Boundary length Boundary regularity Mean curvature
Mean angular diff. Inscribed angular var. Dist. from laser scanner

tracked over time using a Kalman filter [20]. We refer to
each Kalman filter which tracks a scan cluster over time as
a track denoted as xj

k and the set of all active tracks as
Xk =

{
x1
k,x

2
k, ...,x

Nk

k

}
where Nk is the total number of

tracks at time k. Further, the set of tracks Xk also includes
a single track for each tracked person (their initiation is
introduced in Sec. IV-B.4).

The Kalman filter for each track has a state estimate
xj
k =

[
x y ẋ ẏ

]T
with the position and velocity of the

cluster in 2D coordinates. New tracks are initialized with
a velocity of zero and existing tracks are updated with a
constant velocity motion model. Process noise w is assumed
to be Gaussian white noise with diagonal covariance Q = qI.

The observation matrix H includes only the position of the
cluster and observation noise has a covariance of R = rI. In
tuning the Kalman filter, it was found that a small observation
noise covariance (r = 0.12) is sufficient because position
measurements from the laser scanner are highly accurate.

2) Global nearest neighbour data association: Since the
system is designed to track all detected scan clusters, un-
certainty arises pertaining to how detections zk should be
matched to tracks from the previous time Xk−1 to produce
updated tracks Xk for the current time. To address this,
we use a GNN data association method which is solvable
in polynomial time (O(max(Nk,Mk)

3)), via the Munkres
assignment algorithm [21].

First, all tracks Xk−1 are propagated to produce the state
estimates Xk|k−1 for time k. Next, the Munkres cost matrix
is populated with the cost of assignment between every
propagated track and every detection. The cost metric used
in our tracking system is the Mahalanobis distance3 between
the detection zik and the propagated track xj

k|k−1. The
covariance used to calculate this distance is the innovation
covariance, which, in the case of the linear Kalman filter,
is Sj

k = HPj
k|k−1H

T + R where Pj
k|k−1 is the prediction

covariance of the propagated track xj
k|k−1. Here we use a

higher noise covariance (r = 0.52) to allow more flexibility
in associations.

A threshold is imposed such that detections outside the pth
percentile confidence bounds of the expected observation are
given an arbitrarily high assignment cost, costmax. Since the
Munkres algorithm requires a square matrix and Nk is often
different from Mk, the cost matrix is padded with costmax

to produce the necessary shape. When an assignment is
made between a detection and a track by the Munkres

3Note that other GNN data association approaches have recommended
minimizing the square of this distance [22]. We found best results minimiz-
ing the non-squared distance in our applications.

algorithm and the cost is costmax, the assignment is ignored.
Otherwise, the track is updated with the position and the
confidence-level of the detection. The position is used to
perform an observation update in the track’s Kalman filter
to produce the updated track positions xj

k for the current time
k. Tracks without matched detections are propagated forward
without observations. Detections without matched tracks
spawn new tracks at their current position. The confidence
of each track, denoted cjk, is computed by the exponentially-
weighted moving average cjk = 0.95cjk−1 + 0.05dc(z

i
k),

where dc(z
i
k) is the confidence of the ith detection which

was assigned to the jth track.
Further, since people are represented as a single track

but people’s legs can produce between 0-2 observations
(depending on the number of legs visible to the laser scanner
and whether or not their legs have been clustered together),
an identical temporary track is created for each person
before the data association. If both of the person’s tracks
are matched to detected scan clusters, then the tracked
person’s position is updated with the mean of the detections’
positions. If only one track is matched to a scan cluster,
then the tracked person’s position is updated with the mean
of the detection’s position and the propagated position of
the person’s track. After the person’s original track has been
updated, the temporary track is deleted.

3) Local occupancy grid mapping: To improve robust-
ness, an odometry-corrected local occupancy grid map is
constructed and updated every iteration with any scan clus-
ters not associated with tracked people, on the assumption
that these are non-human detections. The map covers a
20m× 20m square area, at a resolution of 5cm× 5cm/cell,
and is centred at the current position of the laser scanner. By
default, all cells are assumed to be freespace until updated
with a non-human observation.

The local map is used to assist with the data association by
assigning the maximum cost, costmax, to matchings between
clusters in occupied space and human tracks. This is helpful
to prevent situations where a tracked obstacle cluster is split
due to an occlusion, and simultaneously, a nearby person’s
leg is occluded, potentially resulting in a match between the
person track and the obstacle cluster. The map is also used
to disallow person track initiations in occupied space, which
can occasionally arise from non-human objects.

4) Person track initiation and deletion: To keep the
number of person tracks manageable, initiation conditions
are applied, using the following criteria: (1) a pair of tracks
are detected, which move a given distance (0.5m) without
drifting apart, (2) both tracks maintain a confidence level
above a threshold cmin, and (3) both are in freespace
(as computed from the local occupancy grid map). Upon
initiating a person track, the person’s position is estimated
to be the mean of the positions of the pair of associated leg
tracks. Then, the leg tracks are deleted and only one track is
kept representing the position of the person.

Finally, human tracks are deleted when their innovation
covariance S is greater than a threshold, or confidence over
the track drops below the threshold cmin.



C. Autonomous Following: Navigation and Control
To perform person following, a single human track is se-

lected as input to an Object Following Controller (OFC) [23].
The track can be manually selected by the robot operator, or
automatically selected using a predefined decision criteria,
such as picking the human closest to the robot. The OFC
uses the track’s latest state estimate to compute the difference
(position error) from the desired position of the human with
respect to the robot (position goal). The position error is
then used to compute the robot’s velocity setpoints for low-
level actuator controllers. The motion generated decreases
the position error over time and results in a trajectory that
causes the robot to follow the human.

To minimize the position error of the tracked human,
the OFC modulates the robot’s angular and linear velocity
setpoints independently. Two vectors are used for these
calculations: a vector from the robot’s center to the goal
position, and a vector from the robot’s center to the human
position. The first vector is expected to be constant (as long
as the goal position does not change), while the second
vector changes as the human and robot move with respect
to each other. The control actions aim to equalize the
length of these vectors, and drive the angle between them
to zero. A Proportional-Integral-Derivative (PID) controller
was implemented to calculate the angular velocity setpoint
using the angle between the vectors, while a second PID
controller calculates the linear velocity setpoint using the
difference in lengths of the vectors. Both controllers were
tuned using classical Ziegler-Nichols method. A dead-band
zone was defined to address vibrations in the control actions
when the position error is too small.

V. EXPERIMENTAL VALIDATION

A. Benchmark descriptions
Some prior benchmarks for the evaluation of the person

detection and tracking module are available [24], however
to the best of our knowledge, they are collected from a
stationary laser scanner and are at a height of 0.8m, which
is above the leg-region of many pedestrians. The method of
ground-truth annotation is also ambiguous, as it is unclear
under what conditions a person is labelled as visible or
occluded (an issue described in [25]). Further, the datasets
are not ROS-enabled and the person-detection module used
to detect people with the given laser scanner has not been
released, making comparisons difficult on other platforms.

To palliate some of these gaps, and allow thorough eval-
uation both of our own and future methods, we collected
and will be publicly sharing two new benchmarks for person
detection and tracking, detailed in Table II. These provide 40
minutes of data recorded onboard moving robots, are fully
ROS-enabled and include annotated people tracks labelled in
the laser scans using an objective, unambiguous procedure,
with video data to corroborate ground-truth when necessary.

1) General multi-person tracking: The first benchmark,
called General multi-person tracking is designed for evalu-
ating performance of general multi-person tracking of pedes-
trians in natural environments. The benchmark is in fact

composed of two datasets, one collected from a stationary
robot and one collected from a moving robot. The stationary
dataset includes 7 minutes of tracking data, while the moving
dataset includes 5 minutes of data, and both are fully
annotated, including 82 identified people tracks. The data
was recorded onboard the SmartWheeler in the hallways of
a university campus building during normal opening hours.
Each recording includes odometry data published at 100Hz
and laser data published at 7.5Hz. Video data was also
captured, but was only used to as a reference for annotations
of people in the laser scans, and was not included in the final
curated benchmarks (though is available on demand).

All ground-truth people positions were hand-labelled in
each laser scan. To address the issue of whether or not a
person should be labelled as visible if they are partially
occluded (an issue raised in [25]), a consistent and objective
rule was used: if a minimum of at least three laser points
can be clustered with a Euclidean distance of 0.13m, and
that cluster of points corresponds to a person, then they are
marked as visible in the annotations.

2) Tracking for following: The second benchmark, called
Tracking for following, is designed to measure the perfor-
mance of the detection and tracking modules when applied
specifically to the task of tracking an individual person in
the presence of other pedestrians. This benchmark is also
composed of two separate datasets.

In the Following Indoor dataset, the person to be followed
was asked to walk naturally and stop periodically to interact
with objects in the environment while the SmartWheeler
followed either from behind or side-by-side, simulating a
person-following situation (for data collection in this bench-
mark, the robot was manually controlled). The environment
is the same university building as for the General multi-
person tracking benchmark, and includes scenes with natural
crowds and clutter, as well as five instances of pedestrians
walking between the SmartWheeler and the person it was
following. Odometry was collected at a frequency of 100Hz
and laser scans at 15Hz. The position of the person being
followed was hand-labelled in every frame. Altogether, 21
minutes of data were gathered and annotated, including
4.5 minutes of side-by-side following and 16.5 minutes of
following from behind.

The Following Outdoor dataset was collected with a
Clearpath Husky robot at the Canadaian Space Agency in
Saint-Hubert. The laser scanner was mounted level with the
ground, approximately 40cm high. The dataset contains 12
minutes of data, also fully annotated. Laser scans were col-
lected at a frequency of 10Hz. Odometry data was collected
as well but was ultimately not used as it was found to
be detrimentally inaccurate. The challenge in this dataset is
dealing a high degree of sensor noise, as the laser scanner
used is indoor-rated and highly susceptible to interference
from the sun. In this case, the robot was controlled au-
tonomously to follow the person using the navigation system
presented in Sec. IV-C and an earlier version of the Joint
Leg Tracker presented in Sec. IV. During the experiment,
the tracker failed on two separate occasions and steered the



(a) (b) (c) (d) (e) (f)

Fig. 2. The person tracking and following system implemented on a Clearpath Husky during the collection of the Following Outdoor dataset. The robot
autonomously followed the participant in an approximately 500m loop on gravel and grass at the Canadian Space Agency in Saint-Hubert. Two tracking
failures occurred, one of which is shown in (c), which were caused by extensive sensor noise, as the laser scanner used is indoor-rated and highly susceptible
to interference from the sun.

robot such that the person to be tracked was lost out of frame.
Fig. 2 shows sample images from this dataset.

B. Comparison Person Tracking Approaches

Quantitatively comparing to existing methods from the
literature is challenging due to a scarcity of publicly available
code. In our search, we were only able to find one other
open-source ROS-enabled method which could be compared
to ours: the ROS leg detector package used in [4]. To adapt
the ROS leg detector to our benchmarks, all parameters were
kept at their default values except the confidence threshold
was lowered, as the tracker would commonly fail to initiate
people tracks with its default value. Also, the clustering
distance and minimum required points per cluster were set
to be the same as for our method.

A variant of our algorithm, which we call the Individual
Leg Tracker, is also included in the comparison. It is identical
to the Joint Leg Tracker described in Sec. IV, except that all
tracking is performed on an individual-leg level (not pairs of
legs) and it does not use a local occupancy grid map for data
association. In this case, person tracks are deleted when the
two leg tracks separate beyond a distance threshold, one of
the leg tracks has too low of a confidence, or one of the leg
tracks is deleted.

Minor modifications of all methods were made to allow
for repeatable results on the benchmarks. This was necessary
because the tracking methods require coordinate transforma-
tions be made in real-time, which can cause benchmarks
results to vary depending on the exact time these transforma-
tions are made. Each method was therefore set to use the scan
header time to perform the transforms and, when they were
not available, to wait for one second and, if they were still not
available, the current scan was skipped (although, we found
this happened only very rarely). An option was included in
each method to never wait for transforms to become available
but instead to always use the most recent ones. This is how
the system is intended to be used in practice and was the
variation used for runtime profiling.

C. Evaluation metrics

1) General multi-person tracking: We use the CLEAR
MOT metrics for quantitative evaluation of the tracking
system [26]. They are commonly used metrics for multi-
object tracking, and provide scorings of valid assignments,

ID switches, misses, false positives (FPs) and precision of
matchings cumulated from every frame. These scores can
be aggregated into a combined overall multi-object tracking
accuracy (MOTA) score

MOTA = 1−
∑

k(IDk +Missk + FPk)∑
k gk

where IDk, Missk, FPk and gk are number of ID switches,
misses, FPs and ground truth annotations respectively, at time
k. However, the aggregation of the scorings in the combined
MOTA score assumes that three types of errors (ID switches,
misses and FPs) are equally unfavorable, which is arguably
not true in most applications, including ours. We therefore
report the raw count of each error type alongside the MOTA
score.

Another relevant CLEAR MOT metric is the mult-object
tracking precision (MOTP), which is defined as

MOTP =
∑

i,k d
i
k/
∑

k ck

where ck is the number of matchings made between esti-
mated people positions and ground truth positions at time k
and dik is the distance between the ith match. Intuitively,
it provides a measure of how precise a target is tracked
when it is being tracked properly. In the context of person-
following, a lower MOTP score would be beneficial because
a more precise location of the person being followed would
presumably allow the following controller to track the person
more precisely.

A threshold distance of 0.75m was used for the CLEAR
MOT matching to determine whether a tracked person should
be matched to an annotated ground truth person.

2) Tracking for following: For evaluation in the Tracking
for following scenarios, the same CLEAR MOT metrics
are used. However, since we are only concerned with the
tracker’s ability to track a particular person (among several),
only the ground-truth positions of the target person were
labelled. Other pedestrians were ignored, and only person-
tracking events corresponding to the target person are re-
ported (i.e., FPs were ignored because they may have been
due to unlabelled pedestrians).

Under such an evaluation framework, the relevant metrics
are ID switches and misses. ID switches represent cases
where the track of the target person was switched with some-
one or something else, and it would no longer be possible to



TABLE II
OVERVIEW OF BENCHMARKS.

Avg. estimated robot Annotated Avg. dist. to
Benchmark Dataset Duration speed when moving (m/s) people tracks person followed (m)
General multi-person tracking Stationary Robot 7m11s n/a 45 n/a

Moving Robot 5m01s 0.9 37 n/a
Tracking for following Following Indoor 21m24s 0.9 1 1.33± 0.57

Following Outdoor 12m00s 0.6 1 1.68± 0.30

TABLE III
BENCHMARK RESULTS.

Runtime
Dataset Tracker Valid ID Switch Miss FP MOTA MOTP (m) Worst/Avg (Hz)
Stationary Robot leg detector [4] 427 51 1605 28 19.2% 0.28 19/25

Individual Leg 569 10 1504 61 24.4% 0.23 14/25
Joint Leg 703 8 1372 11 33.2% 0.16 15/25

Moving Robot leg detector [4] 149 15 481 294 -22.5% 0.27 19/25
Individual Leg 160 2 483 88 11.2% 0.17 12/24
Joint Leg 163 2 480 97 10.2% 0.15 11/24

Following Indoor leg detector [4] 15425 196 3425 n/a n/a 0.15 18/25
Individual Leg 17295 73 1678 n/a n/a 0.13 4/19
Joint Leg 18554 7 485 n/a n/a 0.09 4/19

Following Outdoor leg detector [4] 4835 1721 1172 n/a n/a 0.09 22/25
Individual Leg 5348 121 819 n/a n/a 0.11 15/25
Joint Leg 6073 21 104 n/a n/a 0.09 18/25

autonomously follow them. Misses represent cases where the
target person was visible in the laser scanner’s field-of-view
but was not tracked. In such cases, the robot user would not
be able to lock into the target person to initiate following.

D. Results

Results from all datasets are shown in Table III. The Joint
Leg Tracker achieves the best results in the Tracking for
following tasks by a large margin. It suffers from only 7 ID
switches in the 21 minutes of the Following Indoor dataset
and makes virtually no ID switch errors in the Following
Outdoor dataset (assuming the 2 ID switches which were
caused by the person being tracked moving out of frame
for a significant amount of time to not be preventable). It
also achieves the lowest MOTP on all datasets, meaning that
when a person is being tracked properly, it provides the most
precise estimate of their location. This would presumably
improve the performance of the following controller, which
uses the location estimate to perform closed-loop control.

Its performance when applied to the General multi-person
tracking benchmark is also favourable but by a lesser margin.
It causes significantly less of every type of error on the
Stationary Robot dataset compared to the others and achieves
similar results to the Individual Leg Tracker on the Moving
Robot dataset.

The leg detector is outperformed in almost all respects by
the other tracking methods and is generally unable to track
anyone persistently in the challenging benchmark environ-
ments, as is shown by its high number of ID switches in all
cases.

Runtime: The average-case runtime of the Joint Leg
Tracker is faster than the maximum scanner frequency in all
cases when run on an Intel Core i7 CPU. In the Following
Indoor dataset, which has frequent open areas containing

many distinct objects to be tracked, the slowest single
update is slower than the scan frequency by a factor of
approximately four, though the average runtime over the
entire dataset is still better than real-time. The bottleneck in
these cases tends to be the tracking and data association step,
which is implemented in Python. In the future we plan to test
a C++ implementation and, if this does not achieve worst-
case, real-time performance, limit the number or distance of
clusters which are tracked.

VI. DISCUSSION

This work presents a novel method for detecting, tracking
and following people using laser scanners at leg-height. The
system integrates a joint leg tracker with local occupancy grid
maps and a method of tracking all scan clusters, including
non-human clusters, to improve tracking in cluttered areas.
Empirically, it has shown to be effective in the target
application of autonomous person following and presents
advantages in general multi-person tracking as well. The
tracking method was tested on the SmartWheeler and also
integrated with an autonomous following navigation system
deployed on a Clearpath Husky. All datasets and code are
publicly available on the first author’s website.

Limitations: Since the Joint Leg Tracker was developed in
the ROS framework, it should be relatively straightforward to
transfer to other robots with laser scanners at similar heights.
One caveat, however, is that the human-confidence learning
algorithm may require re-training for optimal performance
with laser scanners of different resolutions.

Another potential limitation of the presented system is
the GNN data association method. While it is computa-

1Due to the two cases where the person followed was lost out of frame
for a significant amount of time, it is reasonable to expect a minimum of
two ID switches in this dataset.



tionally faster than the MHT, quantitative experiments exist
demonstrating better performance of more sophisticated data
association methods, such as the JPDAF and the MHT, in
other application areas. For example, meta-results reported
by Blackman and Popoli [12] suggest that the JPDAF and
the MHT generally track targets better in high-clutter envi-
ronments with many false positive detections when used in
the task of radar tracking. However, quantitative comparisons
specifically in the area of people tracking in 2D laser scans
would be beneficial because it is a fundamentally different
domain. For example, false positive detections are produced
systematically by objects in the scan, rather than randomly
over the scanning area, as is often assumed in radar tracking,
and can therefore be accounted for explicitly (e.g., as in our
tracker or in Luber et al. [27]).

Evaluation metrics: The overall CLEAR MOT scores
presented in the benchmarks are significantly lower than
those presented in [24]. However, the results are not directly
comparable because of the different sensor configurations
and environments. For example, the laser sensor used in
the General multi-person tracking benchmark has a lower
scanning frequency (7.5Hz vs 37.5Hz) and a shorter range
(8m vs 80m) than the laser sensor from the benchmarks
in [24]. The shorter range naturally increased the number of
misses since pedestrians would enter and leave the field of
view quicker and with fewer detections, and would therefore
spend proportionally more time being tracked as non-persons
before person tracks were initiated.

Impact and future work: The system development and ex-
periments completed thus far indicate that we have achieved
a portable and reliable system. Moving forward, we intend
to verify the usefulness of the system on the SmartWheeler
with the target user population. One goal will be to determine
if the system is capable of allowing a smart wheelchair user
to comfortably carry on a conversation with a companion
while autonomously following them side-by-side in busy
environments. We are also investigating the potential for
using this system to help automatically assess patients’
locomotion patterns following an injury [7] in the context
of a rehabilitation therapy.
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