
Structure of exact and approximate unitary t-designs

Artem Kaznatcheev

May 9, 2010

Abstract

When studying “random” operators it is essential to be able to integrate over the Haar measure, both
analytically and algorithmically. Unitary t-designs provide a method to simplify integrating polynomials
of degree less than t over U(d). In particular, by replacing averages over the Haar measure by averages
over a finite set, they allow applications in algorithms. We provide three equivalent definitions for unitary
t-designs and introduce group and approximate designs. The main tool in this note is our generalization
of an important result - the trace double sum inequality - into the trace 2p-sum inequality. We use the
trace double sum inequality to produce a correspondence between minimal designs and unique minimal
weight functions. We culminate our exploration of the structure of t-designs by showing that t-designs
span {U⊗t|U ∈ U(d)}. This result produces two conjectures which we believe are an important step in
the classification of minimum unitary t-designs.

1

Contents

1 Introduction 3

2 Background 5
2.1 Homogeneous polynomials . 5
2.2 Functional definitions of unitary t-designs . 5
2.3 Tensor product definition and existence of unitary t-designs 7
2.4 Approximate unitary t-designs . 8
2.5 Implementation errors . 9

3 Trace 2p-sum inequality 10
3.1 Metric definition and minimal unitary t-designs . 11
3.2 Three basic symmetries of unitary t-designs . 15
3.3 Group t-designs . 17

4 Structure of unitary t-designs 19
4.1 Simple lower bounds for the Frobenius norm . 19
4.2 Orthonormal bases for Cd×d are 1-designs . 19
4.3 Spaces spanned by t-designs . 21

5 Conclusion 23

List of theorems

Definition 2.2 Functional definition of unitary t-designs . 6

Definition 2.3 Unweighted unitary t-designs . 6

Definition 2.7 Tensor product definition of unitary t-designs . 7

Proposition 2.8 Equivalence of definitions . 7

Theorem 2.9 Seymour and Zaslavsky 1984 . 8

Corollary 2.10 Existence of designs . 8

Definition 2.11 Approximate unitary t-design . 8

Theorem 3.1 Trace 2p-sum inequality . 10

Corollary 3.2 Metric definition of unitary t-designs . 11

Theorem 3.6 Equivalence of minimal designs and unique weight functions 12

Definition 3.11 Metric definition for unweighted unitary t-designs 14

Definition 3.22 Group t-design . 17

Definition 3.24 Approximate group t-design . 17

Proposition 4.1 Simple lower bounds . 19

Definition 4.3 Mutually unbiased bases . 20

Theorem 4.4 Construction for 1-designs . 20

Theorem 4.6 Spaces spanned by t-designs . 21

Conjecture 4.8 |X| = dim(span({U⊗t|U ∈ U(d)})) . 22

Conjecture 4.10 t-designs contain (t− 1)-designs . 22

2

1 Introduction

In classical computation, we represent a state of a computer as a string of n bits b = b1...bn where each
bi ∈ {0, 1}. If the model of computation is deterministic, then each bit string b produces a unique bit
string b′ at the next time step. In a probabilistic model, a bit string b produces a probability distribution
over all possible outcome strings. In this general model of classical computation we can think of the
state of the computer as a vector s on the unit (2n − 1)-simplex. In other words, with each bit string b
is associated a probability pb and the sum of probabilities over all possible bit strings is 1. This is seen
as the most general model of classical computation, and it is in this framework that we model current
computers.

Quantum computation, or more generally quantum information processing, proposes an extension of
this model - a transition from bit to qubit. Instead of thinking of each bit as either a 0 or a 1 we can start
to think of them as existing in a superposition of the two: α|0〉+β|1〉. We represent the computer’s state
as a vector |ψ〉 ∈ Cd (for n qubits we would have d = 2n). At the end of the computation (or sometimes
at intermediate steps) we want to observe the state of the computer through measurement. When we
perform a measurement, we consider an orthonormal basis {|ei〉...|ed〉} as a set of possible outcomes. The
probability that the computer is in state |ei〉 is then given by |〈ei|ψ〉|2. Since the particle must be in one
of the d states, we want our state to be normalized:

|〈e1|ψ〉|2 + ...+ |〈ed|ψ〉|2 = 1 (1)

For any choice of orthonormal basis. If we consider the standard basis then equation 1 simply
corresponds to the norm of |ψ〉 and can be rewritten as || |ψ〉 || = 1.

To carry out the next operation and change a computer’s state we act on it with matrices. For
example, |ψt+1〉 = M |ψt〉 is a discrete time-step evolution of a state |ψt〉 at time t to a state |ψt+1〉 at
time t+ 1. Throughout the evolution of a state, we want it to remain normalized. Thus, our matrix M
must be norm-preserving.

In Cd the set of norm-preserving matrices corresponds to U(d) - the d-by-d unitary matrices. Thus,
every step of a computation can be described by a unitary transformation. However, we might want
to borrow ideas from the correspondence between discrete and probabilistic classical computation and
sometimes apply a “random” transformation. Such transformations are useful for quantum data hid-
ing [DLT02], pseudo random operators [EWS+03, Dan05], and approximately encrypting quantum
states [HLSW04] among others. The difficulty is in implementing this “randomness” and doing so
efficiently.

To even discuss “random” operators we need to first define a measure. U(d) forms a group that is
topologically compact and connected. This permits us to introduce a unique left-invariant measure - the
Haar measure - on U(d). Having a measure allows us to integrate functions f of U ∈ U(d) to find their
averages 〈f〉 by computing

〈f〉 =

∫
U(d)

f(U) dU.

For convenience, and to have 〈f〉 correspond to the average as we are used to, we need to normalize
integration by assuming that: ∫

U(d)

dU = 1

The primary goal of unitary t-designs is to replace integration over the space of unitaries with a finite
sum. This provides us with an easier method for finding the average of functions over unitaries and
proving theorems about such functions. Unitary t-designs in particular are used to evaluate the average
of polynomials.

In section 2 we introduce the necessary background by elaborating on what we mean by ‘polynomials’
and introduce our first two definitions of unitary t-designs. We prove the equivalence of the two defini-
tions, and use the tensor product definition to prove the existence of designs for all values of d and t. In
subsection 2.4, we introduce approximate designs and show how approximation might arise due to faulty
implementation of design elements. In section 3 we generalize the earlier trace double-sumSecond, we
generalize the trace double-sum inequality [Sco08, Kaz09] into the trace 2p-sum inequality. We use the

3

restriction to p = 1 to provide a metric definition. In working with the metric definition we observe the
importance of minimal designs and their characterization in terms of unique minimal weight functions.
In subsection 3.3 we pursue another strategy for working with the trace 2p-sum inequality - restricting
it to group designs. We definite both exact and approximate group designs and derive some simple
properties. Finally, in section 4 we explore the structure of designs. We provide simple lower bounds
for approximate designs with respect to the Frobenius norm and show how to construct 1-designs. We
highlight the section with our most important result - theorem 4.6 - describing the spaces designs span.
Through out the sections, we raise open questions for future research. Culminating, in subsection 4.3,
with a presentation of our two most promising conjectures.

4

2 Background

The most popular models of quantum computation is the circuit model [NC00]. In this model, we
represent a quantum computation as a circuit acting on n registers. Each element of the circuit is
selected from a finite universal gate set. In terms of operators, we can multiply out each element of the
circuit, and represent the whole circuit as a single unitary operator from the group generated by the
universal gate set [NC00]. If we want to select some of the transformations “randomly” then we can
instead write down the circuit as a polynomial in the variable U , where U is the random operation we
select. To understand the expected result of the computation, we need to evaluate the expected value of
the polynomial. To physically realize the computation, we do not have the luxury of selecting a “random”
unitary, and instead need a finite set from which to select the transformation. Unitary t-designs provide
such finite sets, and homogeneous polynomials are the first thing we need to understand in order to
discuss them.

2.1 Homogeneous polynomials

We will let Hom(r, s) denote polynomials homogeneous of degree r in entries of U ∈ U(d) and homoge-
neous of degree s in the entries of U∗. As an example we can look at the universal commutator:

U, V 7→ U∗V ∗UV ∈ Hom(2, 2)

Here the total power of U, V is 2, same with U∗, V ∗. If we fix V and only vary U then we get:

U 7→ U∗V ∗UV ∈ Hom(1, 1) (2)

Since the action of a fixed V, V ∗ is linear, their presence does not increase the degree of the polynomial.
In particular, we can consider any linear function of U acting on a polynomial without increasing its
degree, thus:

U 7→ tr(U∗U)

d
∈ Hom(1, 1) (3)

Since tr, and division by a constant are linear functions.
As a last example consider:

U, V 7→ tr(U∗V)U2 + V U∗V U ∈ Hom(3, 1)

Here, the degree is simply the sum of the powers in each summand. However, if we fix V then the
polynomial becomes inhomogeneous:

U 7→ tr(U∗V)U2︸ ︷︷ ︸
Hom(2,1)

+V U∗V U︸ ︷︷ ︸
Hom(1,1)

/∈ Hom(2, 1)

Understanding Hom(r, s) allows us to present the most useful definition of t-designs from the point
of view of applications.

2.2 Functional definitions of unitary t-designs

First we introduce an important component of designs:

Definition 2.1 A function w : X → (0, 1] is a weight function on X if for all U ∈ X we have w(U) > 0
and: ∑

U∈X

w(U) = 1

This allows to define designs:

5

Definition 2.2 (Functional definition of unitary t-designs) A tuple (X,w) with finite X ⊂ U(d)
and weight function w on X is a unitary t-design if∑

U∈X

w(U)f(U) =

∫
U(d)

f(U) dU (4)

for all f ∈ Hom(t, t).

Further, there is a special subtype of designs:

Definition 2.3 (Unweighted unitary t-designs) A finite X ⊂ U(d) is an unweighted t-design if it
is a unitary t-design with a uniform weight function (i.e. w(U) = 1

|X| for all U ∈ X).

This definition might seem a bit restrictive since it limits us to functions in a single variable in
Hom(t, t). However, with simple arguments we can show that definition

is rather flexible. In particular, we can use t-designs to evaluate all polynomials in a finite number of
variables with degrees less than or equal to t.

First, we need to know how to evaluate polynomials of lower degree:

Proposition 2.4 Every t-design is a (t− 1)-design.

Proof Consider any f ∈ Hom(t− 1, t− 1) then multiplying by the polynomial in equation 3:

g := U 7→ tr(U∗U)

d
f(U) ∈ Hom(t, t)

However, we know that equation 3 is equal to 1 for all U ∈ U(d). Thus, g(U) = f(U) for all
U ∈ U(d). �

For the other cases, we need to establish basic property of polynomials over unitaries.

Lemma 2.5 For any f ∈ Hom(r, s), U ∈ U(d), and c ∈ C we have f(cU) = cr c̄sf(U)

Proof We will prove this by induction on r and s.
For the base case, consider Hom(1, 0) and Hom(0, 1). Any f ∈ Hom(1, 0) is a linear function, thus

f(cU) = cf(U). For any f ∈ Hom(0, 1), the conjugate f̄ is linear, thus f(cU) = c̄f(U).
Now consider f ∈ Hom(r, s) (which we assume, without loss of generality, to be a single summand).

We can represent it as f(U) = L(g(U)h(U)) for some linear function L and g ∈ Hom(r1, s1), h ∈
Hom(r2, s2) with r1 + s1 ≥ 1, r2 + s2 ≥ 1, s1 + s2 = s and r1 + r2 = r. So, by induction we have:

f(cU) = L(g(cU)h(cU))

= L(cr1 c̄s1g(U)cr2 c̄s2h(U))

= cr1+r2 c̄s1+s2L(g(U)h(U))

= cr c̄sf(U) �

Proposition 2.6 For any f ∈ Hom(r, s) with r 6= s∫
U(d)

f(U) dU = 0

Proof For each r and s and any U ∈ U(d) by Lemma 2.5 we have f(e
iπ
r−sU) = −f(U). Since U 7→ e

iπ
r−sU

is a bijection we can write our integral:

∫
U(d)

f(U)dU =
1

2

∫
U(d)

f(U) + f(e
iπ
r−sU) dU

=
1

2

∫
U(d)

f(U)− f(U) dU

= 0 �

6

The average of any polynomial with degrees in U and U∗ less than t can be evaluated one summand
at a time using a t-design by Proposition 2.4 or set to zero by Proposition 2.6. Note that using a t-design
to evaluate f ∈ Hom(r, s) with r 6= s will not always yield zero. Thus we must set such terms to zero by
Proposition 2.6.

If we have a polynomial f(U1, ..., Un) of several independent variables U1, ..., Un ∈ U(d) then we can
evaluate the average over all of them by computing the averages over one variable at a time:∫

· · ·
∫

U(d)

f(U1, ..., Un)dU1...dUn =
∑
U1∈X

...
∑
Un∈X

w(U1)...w(Un)f(U1, ..., Un)

Where X ⊂ U(d) is a t-design and f has degree si ≤ t in each Ui and U∗i with 1 ≤ i ≤ n. Therefore,
definition 2.2 is general enough for applications.

2.3 Tensor product definition and existence of unitary t-designs

The downside of definition 2.2 is that it is not very easy to check if a given X ⊂ U(d) can form a t-design.
In particular, to verify that X is a t-design we would need to prove that it evaluates to the integral of
each function in Hom(t, t). For the most naive approach to this, we would need to know the average of
all the functions we are trying to use t-designs to evaluate. Thus, we need an alternative definition.

Definition 2.7 (Tensor product definition of unitary t-designs) A tuple (X,w) with finite X ⊂
U(d) and weight function w on X is a unitary t-design if∑

U∈X

w(U)U⊗t ⊗ (U∗)⊗t =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU (5)

This definition is much more tractable for verification and the literature has explicit formula for the
RHS for many choices of t and d [Col03, CS06]. The equivalence of the two definitions is not self-evident,
and we provide a proof:

Proposition 2.8 (Equivalence of definitions) Definitions 2.2 and 2.7 are equivalent.

Proof (⇒) It is easy to see that def. 2.2 implies def. 2.7 because U 7→ U⊗t ⊗ (U∗)⊗t is in Hom(t, t).
Hence, any (X,w) that satisfies the former definition, will also satisfy the latter.

(⇐) For the reverse direction, we need to understand arbitrary functions in Hom(t, t) in terms of their
arguments. It is easiest to do this by considering an arbitrary element e(f(U)) given a specific function
f ∈ Hom(t, t) and input unitary U ∈ U(d). In general, e can be written in terms of elements of U as:

e(f(U)) =
∑

µ={(i1,j1),(k1,l1),...,(it,jt),(kt,lt)}

vµ(Ui1,j1 ...Uit,jt)(U
∗
k1,l1 ...U

∗
kt,lt) (6)

Where we have the indexes 1 ≤ i, j, k, l ≤ d and vµ an arbitrary complex number that depends only
on the particular choice of function f and not on U . Further, note that the product over elements of U
for each µ will correspond to one entry in U (t,t) := U⊗t ⊗ (U∗)⊗t. Thus, we can talk about the entry

U
(t,t)
µ and rewrite eq. 6 as:

e(f(U)) =
∑
µ

vµU
(t,t)
µ (7)

Thus, we can think of f ◦ e as a linear function on a larger vector space that U (t,t) inhabits as a
column vector. By linearity, we can find the average from eq. 7:

〈f ◦ e〉 =
∑
µ

vµ〈U (t,t)〉µ (8)

Since def. 2.7 ensures that 〈U (t,t)〉 is a linear combination of design elements, everything else in eq. 8
is linear and commuting, and e is arbitrary, we can produce every term of the average for any function
f ∈ Hom(t, t) as def. 2.2 requires. �

7

With this equivalence in hand, we can also prove that unitary t-designs exist in every dimension, by
using a powerful theorem of Seymour and Zaslavsky [SZ84]:

Theorem 2.9 (Seymour and Zaslavsky 1984) Let Ω be a path-connected topological space endowed
with a measure dΩ with full support and normalized to unity and let f : Ω → Cn×m be a continuous,
integrable function. Then there exists a finite set X ⊆ Ω such that:

1

|X|
∑
x∈X

f(x) =

∫
Ω

f(x)dΩ

|X| may be any number, with a finite number of exceptions.

From this result and definition 2.7, the existence of t-designs follows as a corollary:

Corollary 2.10 (Existence of designs) A minimum unitary t-design (X ⊂ U(d), w) exists for all
d, t ≥ 1.

Proof Since U(d) is a compact, topologically connected group we can set Ω = U(d) and dΩ = dU where
dU is the normalized Haar measure on U(d). Further, U⊗t ⊗ (U∗)⊗t is a polynomial in U and hence
continuous and integrable, so we set f = U 7→ U⊗t ⊗ (U∗)⊗t and it follows from thm. 2.9 that there
exists a finite X ⊂ U(d) that is a unweighted unitary t-design by def. 2.7. Since there are only a finite
number of exceptions for the size of X there must be a minimum one. �

Our overall goal is to find constructions for these minimum designs (since our proof also shows that
designs can be arbitrarily large) or bounds on their size. However, it would be advantageous to have a
definition that not only tells us when something is a t-design but also how far a given set is from being
a design. For this we will define approximate designs by building on definition 2.7 and prove the trace
2p-sum inequality from which we can derive a metric definition.

2.4 Approximate unitary t-designs

Due to how hard designs are to construct, and how fast they increase in size as the dimensionality d
and power t increase, it has been of paramount importance to discuss approximate designs. Most of
the literature on approximate designs, usually deals with constructions and not bound. It it our goal to
provide lower bounds on the size of not only actual designs, but also approximate ones.

Usually, the notion of an approximate design is introduces at the level of definition 2.7 and not
definition 2.2 since for the latter we would need to renormalize by some norm of the function, while in
the former we might only need to normalize by dimension (depending on our choice of norm). Since the
literature does not yet have a widely accepted definition of approximate unitary t-designs we introduce
one. Our definition is based on similar ones used for approximate quantum t-designs [AE07].

Definition 2.11 (Approximate unitary t-design) A tuple (X,w) with finite X ⊂ U(d) and weight
function w on X is an ε-approximate unitary t-design if

‖
∑
U∈X

w(U)U⊗t ⊗ (U∗)⊗t −
∫
U(d)

U⊗t ⊗ (U∗)⊗tdU‖ < ε (9)

A glaring omission in definition 2.11 is a specification of which norm to use on the left-hand side
of eq. 9. There are many operator norms from which to chose, but in quantum information theory the
important norms are the Schatten norms. In particular the trace (1-norm), Frobenius (2-norm), and
spectral (∞-norm) norms are important. Of the above three norms, the most useful one is probably the
spectral norm.

An alternative approach, is to formulate unitary t-designs as super-operators. For this approach we
would have to provide a slight alternative to definition 2.7 in terms of super-operators. In this framework
we can use either the trace super-operator norm, or the diamond norm [Kit97]. The diamond norm is of
particular interest because it is the most useful for applications in quantum computing and cryptography.
For future approaches we will concentrate on the diamond norm to generalize the constructions provided
by Dankert et.al. [DCEL09] for 2-designs.

8

2.5 Implementation errors

As mentioned in the introduction, quantum circuits are constructed from a finite set of gates. Any
transformation realized by a quantum circuit is an element of the group generated by this set of gates.
Since the set is finite, it can only generate countable groups. The unitary group, however, is uncountable,
thus any choice of gates will miss elements of U(d). A gate set is universal if the group it generates is
dense in U(d), in simpler terms: if it can approximate any element of U(d) to arbitrary precision [NC00].
It is important to understand the effect of such an error in implementation of a design element on the
precision of the whole design:

Proposition 2.12 If (X,w) is a unitary t-design and we implement each gate U ∈ X imperfectly as U ′

with ‖U ′ − U‖ = ε then the resulting design will be ε2t-approximate.

Here, we assume that the norm of ‖U ′ − U‖ and definition 2.11 are the same and fixed. We provide
a sketch of the derivation:

Proof The first step is to consider what ‖U ′ − U‖ ≤ ε means for U ′
⊗t ⊗ (U ′

∗
)⊗t:

‖U ′⊗t ⊗ (U ′
∗
)⊗t − U⊗t ⊗ (U∗)⊗t‖ ≤ ‖(U ′ − U)⊗t ⊗ ((U ′ − U)∗)⊗t‖

≤ ‖U ′ − U‖2t

≤ ε2t

Now, we can consider the whole design:

‖
∑
U∈X

w(U)(U⊗t ⊗ (U∗)⊗t + U ′
⊗t ⊗ (U ′

∗
)⊗t − U⊗t ⊗ (U∗)⊗t)−

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU‖

≤ ‖
∑
U∈X

w(U)(U ′
⊗t ⊗ (U ′

∗
)⊗t − U⊗t ⊗ (U∗)⊗t)‖

≤ ε2t

Where the first inequality comes from the triangle inequality and the assumption that (X,w) is a
t-design. �

Proposition 2.12 allows us to bound the error of the implemented design based on the error of our
implementation of the individual components.

9

3 Trace 2p-sum inequality

A candidate for a metric classification is the trace double sum. In this section we will prove a general the-
orem relating the trace 2p-sum of an arbitrary finite X ⊂ U(d) and an integral with a direct combinatorial
interpretation. This theorem generalized the previous trace double sum inequality [Wel74, Sco08, Kaz09].

Theorem 3.1 (Trace 2p-sum inequality) A tuple (X,w) is an ε-approximate unitary t-design (with
respect to the Schatten 2p-norm) if and only if∫
U(d)

|tr(U)|2t dU ≤
∑

U1,V1,...,Up,Vp∈X

w(U1)w(V1)...w(Up)w(Vp)|tr(U∗1 V1...U
∗
pVp)|2t ≤

∫
U(d)

|tr(U)|2t dU+ε2p

Proof Consider an arbitrary finite X ⊂ U(d) with a weight function w, define matrices S and Σ as:

S =
∑
U∈X

w(U)U⊗t ⊗ (U∗)⊗t

Σ =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU

Now, consider the matrix D = S−Σ; observe that D = 0 if and only if X is a t-design and ‖D‖2p ≤ ε
if X is an ε-approximate t-design with respect to the Schatten 2p-norm. If we consider the definition of
the Schatten norm, we can see that for the even cases, we have:

‖D‖2p = 2p
√
tr((D∗D)p)

Expanding:

tr((D∗D)p) = tr(((S∗ − Σ∗)(S − Σ))p)

= tr((S∗S − Σ∗S − S∗Σ + Σ∗Σ)p) (10)

Look at the four summands individually. For instance the fourth term in eq. 10 reduces to:

Σ∗Σ = (

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU)∗(

∫
U(d)

V ⊗t ⊗ (V ∗)⊗tdV)

=

∫
U(d)

∫
U(d)

((U∗)⊗t ⊗ U⊗t)(V ⊗t ⊗ (V ∗)⊗t) dUdV

=

∫
U(d)

∫
U(d)

(UV ∗)⊗t ⊗ (U∗V)⊗t dUdV (11)

In general, the summands/integrands of all four terms in eq. 10 are the same as the integrand in
eq. 11. However, instead of two integrals we have two sums (for the Σ∗Σ term) or a sum and an integral
(for the other two terms). A nice trick can be done with any term containing an integral, we will illustrate
this with the Σ∗Σ term. Define f as

f(V) =

∫
U(d)

(UV ∗)⊗t ⊗ (U∗V)⊗t dU

Clearly, f(V) is the inner integral of eq. 11. No matter which unitary is selected for V the product
U∗V and UV ∗ will still equal each element of U(d) exactly once as U varies through the whole group.
This is easy to see since for every W in the group we have exactly one U = VW . Thus f(U) = f(V) for
all V ∈ U(d). Hence, we have:

10

Σ∗Σ =

∫
U(d)

f(V)dV

= f(I)

∫
U(d)

dV

=

∫
U(d)

U⊗t ⊗ (U∗)⊗t dU

= Σ

We can repeat a similar argument for Σ∗S and S∗Σ. Observe that by definition of weight function∑
U∈X w(U) = 1, thus f(I)

∑
U∈X w(U) = f(I). In general, this argument can be used to reduce the

product of one or more Σ (or Σ∗) and any number of S (or S∗) to a single Σ. With this in mind, eq. 11
becomes:

tr((D∗D)p) = tr((S∗S − Σ)p)

= tr((S∗S)p +

p∑
k=1

(−1)k
(
p

k

)
Σ))

= tr((S∗S)p)− tr(Σ) (12)

Noting that trace is linear, we see that:

tr(Σ) =

∫
U(d)

tr(U⊗t ⊗ (U∗)⊗t) dU

=

∫
U(d)

tr(U)ttr(U∗)t dU

=

∫
U(d)

|tr(U)|2t (13)

Similarly, we can expand the first term of eq. 12 as:

tr((S∗S)p) =
∑

U1,V1,...,Up,Vp∈X

w(U1)w(V1)...w(Up)w(Vp)tr(((U1V
∗
1)⊗t ⊗ (U∗1 V1)⊗t)...((UpV

∗
p)⊗t ⊗ (U∗pVp)

⊗t))

=
∑

U1,V1,...,Up,Vp∈X

w(U1)w(V1)...w(Up)w(Vp)tr((U1V
∗
1 ...UpV

∗
p)⊗t ⊗ (U∗1 V1...U

∗
pVp)

⊗t)

=
∑

U1,V1,...,Up,Vp∈X

w(U1)w(V1)...w(Up)w(Vp)|tr(U∗1 V1...U
∗
pVp)|2t (14)

�

To conclude the proof, we combine equations 12, 13 and 14, that the choice of X is arbitrary,
tr((D∗D)p) ≥ 0 for all choices of X, and tr((D∗D)p) ≤ ε2p iff X is an ε-approximate unitary t-design
with respect to the 2p-norm.

3.1 Metric definition and minimal unitary t-designs

As a corollary of theorem 3.1 we recover the trace double-sum inequality [Sco08, Kaz09] as the simplest
case of p = 1 or the Frobenius norm:

Corollary 3.2 (Metric definition of unitary t-designs) For all finite X ⊂ U(d) we have∑
U,V ∈X

w(U)w(V)|tr(U∗V)|2t ≥
∫
U(d)

|tr(U)|2t dU (15)

With equality if and only if X is a t-design.

11

At first it might seem that corollary 3.2 is not much more tractable than definition 2.7. However,
the RHS of the inequality 15 has a relatively simple combinatorial interpretation. We know that the
RHS is the number of permutations of {1, ..., t} with no increasing subsequences of order greater than
d [DS94, Rai98]. Thus for d ≥ t it has a particularly simple form of t!. In general, we will call this
number σ(t,d), σt, or just σ depending on the context.

Corollary 3.2 suggests an important definition:

Definition 3.3 Given a finite X ⊂ U(d) we call w a minimal weight function if for all other choices of
weight function w′ on X, we have:∑

U,V ∈X

w(U)w(V)|tr(U∗V)|2t ≤
∑

U,V ∈X

w′(U)w′(V)|tr(U∗V)|2t

.

This allows us to introduce a third definition of unitary t-designs that eliminates the need of thinking
of designs as tuples:

Definition 3.4 A finite X ⊂ U(d) is a unitary t-design if∑
U,V ∈X

w(U)w(V)|tr(U∗V)|2t =

∫
U(d)

|tr(U)|2t dU

Where w is the minimal weight function on X.

X is called an unweighted t-design if the minimal weight function on X is the uniform distribution.
In general, minimal weight functions are not unique unless we only consider minimal designs.

Definition 3.5 A minimal (unweighted) t-design X is a t-design such that all Y ⊂ X are not (un-
weighted) t-designs.

This definition is particularly friendly since the property of minimality can be tested algorithmically.
One approach is to considering all subsets of X and the minimal weight functions on them. A second (an-
alytic) approach is possible by noticing an important relationship between minimal designs and minimal
weight functions:

Theorem 3.6 (Equivalence of minimal designs and unique weight functions) A t-design X is
minimal if and only if it has a unique minimal weight function w.

Proof (⇒) To prove the forward direction, we will consider the contrapositive: if there are two distinct
minimal weight functions w and w′ on X then X is not a minimal t-design. Let:

α = min
U∈X

w′(U)

w(U)
.

Let Z = {U ∈ X : w′(U)−αw(U) = 0}. We know that |Z| ≥ 1 since for V = argminU∈Xw
′(U)/w(U)

we will have w′(V)− αw(V) = 0. Thus, Y = X − Z ⊂ X. We will now show that

w′′ =
w′ − αw

1− α

is a minimal weight function on Y . First, we check that w′′ is indeed a weight function. Clearly, by
our choice of α and Y we have w(U) > 0 for all U ∈ Y , and

∑
U∈Y

w′′(U) =
∑
U∈X

w′ − αw
1− α

=
1

1− α (
∑
U∈X

w′ − α
∑
U∈X

w)

=
1− α
1− α = 1

12

By letting 〈f〉wX be the average of f ∈ Hom(t, t) over X with weight function w (the LHS of equation

) we can show that for arbitrary f ∈ Hom(t, t):

〈f〉w
′′

Y =
〈f〉w

′
X − α〈f〉wX

1− α

=
〈f〉 − α〈f〉

1− α
= 〈f〉

Thus, (Y,w′′) is a t-design. Since Y ⊂ X, X is not a minimal t-design.

(⇐) For the other direction we will prove that if (X,w), (Y,w′) are t-designs such that Y ⊂ X then
there are infinitely many minimal weight functions on X.

Assuming that w′(U) = 0 for U 6∈ Y , let w′′ = pw + (1 − p)w′ for any choice of p ∈ (0, 1). Clearly,
w′′ is a minimal weight function on X. �

Thus, an analytic test is to show that there is only one minimum for the LHS of equation 15 as you
optimize over w.

Sadly, a minimal t-design is not necessarily the minimum one mentioned in corollary 2.10. It is
important to understand if there is a simple correspondence between minimal and minimum designs.
In particular, if the two are one and the same, then minimum designs are as easy to find as arbitrary
t-designs. In the more likely case where no simple correspondence exists, it is not even clear if there is
an upper bound on the size of minimal designs for a given d and t.

Combining minimal weight functions and corollary 3.2 we can characterize unweighted t-designs in a
particularly salient way. For shorthand, we introduce some notation:

Definition 3.7 The trace double sum is a function Σ2 : F(U(d)) 7→ R+ defined for finite X ⊂ U(d) as:

Σ2(X) =
∑

U,V ∈X

w(U)w(V)|tr(U∗V)|2t

Further, we introduce notation for the internal sum:

Definition 3.8 The contribution of U to X is a function S : U(d)× F(U(d)) 7→ R+ defined as:

S(U ;X) =
∑
V ∈X

w(V)|tr(U∗V)|2t

This definition is useful since there exists a simple relation between S and Σ2 given by:

Σ2(X) =
∑
U∈X

w(U)S(U ;X) (16)

It is easy to see that S(U ;X) ≥ 0 for all choices of U and X. For a set with a minimal weight function
w, we can also derive a relation between S and w:

Lemma 3.9 For a set X ⊂ U(d) with minimal weight function w, and any pair of elements U, V ∈ X,
if w(U) ≥ w(V) then S(U ;X − {U, V }) ≤ S(V ;X − {U, V }).

Proof Assume that w(U) ≥ w(V). Consider Σ2(X):

Σ2(X) = w2(U)d2t + 2w(U)w(V)|tr(U∗V)|2t + 2w(U)S(U ;X − {U, V }) (17)

= w2(V)d2t + 2w(V)w(U)|tr(V ∗U)|2t + 2w(V)S(V ;X − {U, V }) (18)

Now consider Σ′2(X) which uses an alternative weight function w′ with the weights of U and V
permuted:

13

Σ′2(X) = w2(V)d2t + 2w(V)w(U)|tr(U∗V)|2t + 2w(V)S(U ;X − {U, V }) (19)

= w2(U)d2t + 2w(U)w(V)|tr(V ∗U)|2t + 2w(U)S(V ;X − {U, V }) (20)

Since w was a minimal weight function on X, Σ′2(X) ≥ Σ2(X), taking the difference of equa-
tion 19 + 20 and equation 17 + 18, we have:

Σ′2(X)− Σ2(X) = w(V)S(U ;X − {U, V }) + w(U)S(V ;X − {U, V })
− w(U)S(U ;X − {U, V })− w(V)S(V ;X − {U, V })

= (w(U)− w(V))S(V ;X − {U, V })
− (w(U)− w(V))S(U ;X − {U, V })
≥ 0

Thus, we can conclude that S(U ;X − {U, V }) ≤ S(V ;X − {U, V }) �

This provides an important corollary for unweighted sets:

Proposition 3.10 For a set X ⊂ U(d) for which the uniform distribution is a minimal weight function,
and all elements U, V ∈ X, S(U ;X) = S(V ;X) ≥

∫
U(d)
|tr(U)|2t dU with equality if and only if X is a

t-design.

Proof Consider any pair U, V ∈ X, since w(U) ≥ w(V) and w(V) ≥ w(U) by Lemma 3.9 we have
S(U ;X − {U, V } = S(V ;X − {U, V }). Thus, we have:

S(U ;X) =
1

|X| (d
2t + |tr(U∗V)|2t + S(U ;X − {U, V }))

=
1

|X| (d
2t + |tr(V ∗U)|2t + S(V ;X − {U, V }))

= S(V ;X)

By using eq. 16, cor. 3.2, and the fact we just observed, we have:

Σ2(X) =
1

|X|
∑
W∈X

S(W ;X)

=
1

|X|
∑
W∈X

S(U ;X)

= S(U ;X)

≥
∫
U(d)

|tr(U)|2t dU

With equality if and only if X is a t-design. �

This allows the simpler definition:

Definition 3.11 (Metric definition for unweighted unitary t-designs) A finite set X ⊂ U(d) is
an unweighted unitary t-design if

1

|X|
∑
U∈X

|tr(U)|2t =

∫
U(d)

|tr(U)|2t dU

Where we implicitly assumed that without loss of generality a design contains the identity element
(this is verified by proposition 3.17).

14

3.2 Three basic symmetries of unitary t-designs

When studying any novel mathematical object it is often enlightening to understand the group of sym-
metries corresponding to the object. Symmetries often allow us to simplify proofs or make WLOG
assumptions. In this subsection we study the symmetries of t-designs and how they can be used to
expand designs.

Proposition 3.12 If X = {U1, ..., Un} is a t-design then Y = {eiφ1U1, ..., e
iφnUn} is also a t-design for

all φ1, ..., φn ∈ [0, 2π].

This proposition can be seen as a consequence of Lemma 2.5 for all f ∈ Hom(t, t), or we can prove
it from definition 2.7:

Proof Consider the sum in equation 5 for Y :

S =

n∑
k=1

w(Uk)(eiφkUk)⊗t ⊗ (e−iφkU∗k)⊗t

=

n∑
k=1

(eiφk)t(e−iφk)tw(Uk)U⊗tk ⊗ (U∗k)⊗t

=

n∑
k=1

w(Uk)U⊗tk ⊗ (U∗k)⊗t (21)

Clearly, equation 21 is just the sum in equation 5 for X. �

If we chose (eiφk)d = det(Uk) then we have a map U(d) → SU(d). In general, we can also simply
define an equality class over phase, giving us a map U(d)→ PU(d). This gives us an important corollary:

Corollary 3.13 If we have a t-design X then we can always assume X ⊂ PU(d) ⊂ SU(d) ⊂ U(d).

For shorthand, we will represent rotating the k-th element of a set X by a phase θ as Pθ,k(X).

Proposition 3.14 If (X,w) is a t-design then (X∗ = {U∗ : U ∈ X}, w) is also a t-design.

Proof Consider the sum in inequality 15 for the set X∗:

S =
∑

U,V ∈X∗
w(U)w(V)|tr(U∗V)|2t

=
∑

U∗,V ∗∈X

w(U)w(V)|tr(U∗V)|2t

=
∑

U,V ∈X

w(U)w(V)|tr(UV ∗)|2t

=
∑

V,U∈X

w(V)w(U)|tr(V ∗U)|2t (22)

Clearly, equation 22 is the sum over X in inequality 15. �

Shorthand for inverting every element in a set X will be Inv(X).
Since trace is invariant under transpose, the above proof also shows that t-designs are invariant under

complex conjugate. Combining this with the phase property, we can define a complex field transformation.

Definition 3.15 A reflection through θ is a transformation Rθ : C → C for θ ∈ [0, 2π] such that
Rθ(re

iφ) = rei(θ+(θ−φ))

We can abuse the above notation by writing Rθ(U) for a matrix U as shorthand for applying Rθ(Uij)
to each element of U and R(X) for a set X of matrices as applying Rθ (with arbitrary θ) to the elements
of X.

15

Corollary 3.16 If (X,w) is a t-design then so is (R(X), w)

Proposition 3.17 If (X ⊂ U(d), w) is a t-design then ∀M ∈ U(d),MX = {MU : U ∈ X} is also a
t-design with the minimal weight function w′(U) = w(M−1U).

Proof Consider the sum over MX in inequality 15:

S =
∑

U,V ∈MX

w′(U)w′(V)|tr(U∗V)|2t

=
∑

U,V ∈X

w′(MU)w′(MV)|tr((MU)∗(MV))|2t

=
∑

U,V ∈X

w(U)w(V)|tr(U∗V)|2t (23)

Clearly, equation 23 is the sum over X in the inequality 15. �

A similar argument can be used for multiplication on the right.

Proposition 3.18 If X ⊂ U(d) is a t-design then ∀M ∈ U(d), XM = {UM : U ∈ X} is also a t-design
with the same proper weight function w.

Combining both left and right multiplication of a set X we can write UMV (X) for UXV . Using
U = P ∗ and V = P we get the change of basis:

Corollary 3.19 If X ⊂ U(d) is a t-design then ∀P ∈ U(d), [X]P = {P ∗UP : U ∈ X} is also a t-design
with the same proper weight function w.

We can also combine Proposition 3.14 and 3.17 to draw a curious corollary.

Corollary 3.20 If X ⊂ U(d) is a t-design then ∀M ∈ U(d), XM = {U : V ∈ X, UV = M} is a t-design
with the same proper weight function w.

Proof An equivalent definition of X∗ from Proposition 3.14 is X∗ = {U : V ∈ X, UV = I}. Now,
consider MX∗ which we can define as:

MX∗ = {MU : V ∈ X, UV = I}
= {U : V ∈ X, UV = M}
= XM �

Together, the symmetries we found form a group H generated by 〈Rθ,k, UMV , Inv〉. A more elegant,
albeit more sophisticated, approach to finding H is possible. We can see Proposition 3.12 as a consequence
of Lemma 2.5 - a property of all f ∈ Hom(t, t). Propositions 3.14, 3.17, and 3.18 can be seen as a
consequence of the compactness of U(d). In particular, by a significantly more sophisticated argument in
representation theory, we can conclude that for a Haar measure µ on a compact group G, any measurable
S ⊆ G, and any g ∈ G we have µ(S) = µ(gS) = µ(Sg) = µ(S−1). Regardless of the approach, an
important question is if there is a strictly larger group G such that for all t-designs X and g ∈ G the set
g(X) is also a t-design. Stated in a simpler form: is H the complete set of symmetries for t-designs?

Even without an answer to this question we can expand beyond corollary 2.10 and use the above
symmetries to constructively show that t-designs are not unique and can be arbitrarily large.

Lemma 3.21 If (X,wX), (Y,wY) are two t-designs then so is X ∪ Y with some proper weight function
w.

Proof Let Z = X ∩ Y , X ′ = X − Z, and Y ′ = Y − Z. From equation 5 we have:

16

S =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU

=
∑
U∈X′

wX(U)U⊗t ⊗ (U∗)⊗t +
∑
U∈Z

wX(U)U⊗t ⊗ (U∗)⊗t

=
∑
U∈Y ′

wY (U)U⊗t ⊗ (U∗)⊗t +
∑
U∈Z

wY (U)U⊗t ⊗ (U∗)⊗t

and thus we can choose an arbitrary p ∈ (0, 1) and generate a new proper weight function w:

w(U) =


pwX(U) ifU ∈ X ′

(1− p)wY (U) ifU ∈ Y ′

pwX(U) + (1− p)wY (U) ifU ∈ Z

Clearly, this will complete our new design. �

In the special case of two unweighted designs X, Y such that X ∩ Y = ∅, we can select p = |X|
|X|+|Y |

to make a new unweighted design X ∪ Y .
The symmetries in the section alongside lemma 3.21 concretize the results of corollary 2.10 and show

that t-designs can be arbitrarily large.

3.3 Group t-designs

Another approach to working with theorem 3.1 is to simplify it by considering group designs.

Definition 3.22 (Group t-design) A pair (G, ρ) with a finite group G and unitary representation ρ
of G is a group t-design if ρ(G) is a t-design.

The interest in group designs stemps from a practical consideration: most designs that have been
found are group designs [RS09]. Definition 3.22 can be made stricter, in particular it is easy to show
that if this definition holds, then we can assume that ρ(G) is an unweighted t-design.

Proposition 3.23 If (G, ρ) is a t-design then ρ(G) is an unweighted unitary t-design.

Proof Assume that (ρ(G), w) is not an unweighted design. Then there exists two U, V ∈ ρ(G) such that
w(U) < 1

|ρG| < w(V). Consider the set X = V U−1ρ(G), by prop. 3.17 we know that X is a t-design with

weight function w′(W) = w(UV −1W). However, since ρ(G) forms a group, we know that X = ρ(G),
thus we have the same set with two weight functions w and w′. Using the same arguments as in the
proof of thm. 3.6 we can see that w′′ = pw+(1−p)w′ is also a minimal weight function for any p ∈ [0, 1].
Since w(U) < 1

|ρ(G)| < w′(U) we can chose a p such that w′′(U) = 1
|ρ(G)| . The choice of U ,V ,w, and w′

was arbitrary, so we can repeat until we have the uniform weight function. �

This allows us to simplify the 2p-sum to a single sum and use it as a definition that extends to
approximate designs with respect to 2p-norm:

Definition 3.24 (Approximate group t-design) A pair (G, ρ) with a finite group G and unitary
representation ρ of G is an ε-approximate group t-design with respect to the Schatten 2p-norm if

σ ≤ 1

|G|
∑
g∈G

|χρ(g)|2t ≤ σ + ε2p (24)

This definition provides a nice simplification of theorem 3.1 for the case of group designs. However
the validity of equation 24 and thus equivalence of definitions 3.22 and 3.24 must be proved:

17

Proof Since ρ is a homomorphism, we know that |G| = |Ker(ρ)||ρ(G)| and for every U ∈ ρ(G) we have
exactly |Ker(ρ)| many g ∈ G such that ρ(g) = U . Noting that χρ is tr, we can rewrite the summation in
the middle of eq. 24 as:

1

|Ker(ρ)||ρ(G)|
∑

U∈ρ(G)

|Ker(ρ)||tr(U)|2t =
1

|ρ(G)|
∑

U∈ρ(G)

|tr(U)|2t (25)

Now, let us apply thm. 3.1 to def. 3.22 assuming that ρ(G) is an unweighted design by prop. 3.23:

∫
U(d)

|tr(U)|2t dU ≤ 1

|ρ(G)|2p
∑

U1,V1,...,Up,Vp∈ρ(G)

|tr(U∗1 V1...U
∗
pVp)|2t ≤

∫
U(d)

|tr(U)|2t dU + ε2p (26)

Consider the inner-most sum (over Vp ∈ ρ(G)) with U1, V1..., Up fixed. Let W = U∗1 V1...U
∗
p Since all

the elements are in ρ(G), so is W . The inner sum becomes:∑
Vp∈ρ(G)

|tr(WVp)|2p

Since W ∈ ρ(G) the sum is the same for all choices of W we can rewrite the middle term of eq. 26 as:

|ρ(G)|2p−1

|ρ(G)|2p
∑
Vp

|tr(Vp)|2p

This is the same as eq. 25 and thus eq. 24 and def. 3.24 follow. �

A nice feature about definition 3.24 is that it allows us to show that ρ has to be an irreducible
representation:

Proposition 3.25 If (G, ρ) is a group design then ρ is irreducible representation and if ρ is an irreducible
unitary representation of a finite group G then (G, ρ) is a 1-design.

Proof This results follows from a lemma in representation theory (see, for instance theorem A2.3 in
[NC00]) that states that ρ is an irreducible representation of G if and only if:

1

|G|
∑
g∈G

|χρ(g)|2 = 1 (27)

This also happens to be the condition for G being a 1-design concluding the reverse direction. For
the forward direction, note that by prop. 2.4 every t-design is a 1-design. �

18

4 Structure of unitary t-designs

In this section we study the structure of unitary t-design and the implications of these structures for
lower bounds. We classify 1-designs and show a relation between t-design and bases of specific spaces.
We report a novel conjecture and its implications for lower bounds.

4.1 Simple lower bounds for the Frobenius norm

In this subsection we generalize our earlier lower bounds [Kaz09] to the case of ε-approximate unitary
t-designs with respect to the Frobenius norm. We present our proof in a much more compact form,
without resorting to convoluted ‘greedy algorithms’ that we relied on earlier.

Proposition 4.1 (Simple lower bounds) If (X ⊂ U(d), w) is an ε-approximate unitary t-design with

respect to the Frobenius norm, then |X| ≥ d2t

σ+ε2
.

Proof To prove this theorem we will consider how quickly we can reduce Σ2 below σ + ε2. By cor. 3.2
we know that if Σ2(X) > σ + ε2 then X is not an ε-approximate design with respect to the Frobenius
norm. Let’s use this:

Σ2(X) =
∑
U∈X

w(U)S(U ;X)

≥
∑
U∈X

(w(U))2d2t (28)

Clearly, eq.

is minimized by the uniform distribution, so we can conclude:

Σ2(X) ≥ d2t

|X| > σ + ε2

Thus, X is definitely not a t-design if |X| < d2t

σ+ε2
. �

The bounds of proposition 4.1 look too high to be meaningful, but this is mostly due to the fact
that the Frobenius norm is very sensitive to the dimensionality of the space. In particular, to be more
realistic, we would have to account for the fact that ε2 goes as the dimensionality of the space, d2t, and
thus, a more realistic way to write down the bound is:

|X| ≥ d2t

σ + ε2d2t

For fixed t and large d this bound is approximately 1
ε2

. The independence from dimension and t-ness
suggests that the Frobenius norm is not the best norm to use for approximate designs.

4.2 Orthonormal bases for Cd×d are 1-designs

Let Cd×d be the space of all d-by-d matrices with complex entries. Clearly, this is a vector space over C.
To make it into an inner product space, we will define the trace inner product:

〈M |N〉 =
tr(M∗N)

d

With this definition, it is clear that all unitaries have norm 1. Our goal becomes to find an orthonormal
basis |E1〉, ..., |Ed2〉 of Cd×d such that each Ei ∈ U(d).

At first it might not seem obvious that we can find any basis of unitaries; but we can easily dispel
such thoughts. Consider the standard basis {|Eij〉} of matrices that are 0 everywhere except a 1 in the
i-th row and j-th column. These are clearly not unitary.

Let P ij be the matrix that permutes the i-th and j-th columns of the identity. In a similar fashion,
let P−ij be P ij with the entry in the j − th column changed to a −1. Both P ij and P−ij are unitary

19

matrices and Eij = P ij−P−ij
2

. Thus {P ij , P−ij : 1 ≤ i, j ≤ d} ⊂ U(d) spans Cd×d. By eliminating the
linearly dependent ones we form a basis of unitaries. This is not the only basis possible, but it shows
that it is not hard to find some basis - now, we just want to find an orthonormal one. The importance
of unitary orthonormal bases is in their relation to 1-designs:

Proposition 4.2 For any X ⊂ U(d), X is a unitary orthonormal basis of Cd×d if and only if X is a
minimum unweighted 1-design.

Proof (⇒) X is a unitary orthonormal basis of Cd×d, consider the contribution of each U ∈ X to X:

S(U ;X) =
1

|X|
∑
V ∈X

|tr(U∗V)|2

Since X is orthonormal basis, for all U 6= V the trace is zero. Thus, S(U ;X) = d2

|X| . From this we

can calculate Σ(X) = d2

|X| by equation 16 or Proposition 3.10. We get Σ(X) = 1 and by cor. 3.2 X is a
1-design. Further, by the bounds in Proposition 4.1 X is a minimum unweighted 1-design.

(⇐) If X is a minimum unweighted 1-design then by Proposition 3.10 we have S(U ;X) = 1 for all
U ∈ X. Rewriting the definition of S(U ;X) in a more suggestive form:

S(U ;X) =
1

|X| |tr(U
∗U)|2 + S(U ;X − {U}) = 1

By the ⇒ part of this proof we know Proposition 4.1 is tight for 1-designs. Thus |X| = d2 and
S(U ;X − {U}) = 0. Since every term in S(U ;X − {U}) is greater than or equal to zero, we must have
each term equal to zero. Thus, tr(U∗V) = 0 for all U, V ∈ X with U 6= V and |X| = d2. �

Proposition 4.2 provides an interesting relationship between minimum 1-designs and orthonormal
bases of Cd×d, supporting the intuitive notion that the elements of a t-design must be evenly/well
‘spread’ out.

A subtle part of Proposition 4.2 is that it is prefaced on the existence of unitary orthonormal bases.
It might seem obvious since a priori we know that there must be some orthonormal bases of Cd×d.
However, our basis is restricted to elements from U(d), thus we have to prove that there exist such sets
for every d. Here, we present more than a proof - a simple construction - for the existence of such bases.
For our construction, we need to introduce the basic ideas of mutually unbiased bases (MUBs).

Definition 4.3 (Mutually unbiased bases) Two orthonormal bases {|ei〉 : 1 ≤ i ≤ d} and {|e′i〉 :
1 ≤ i ≤ d} of Cd are mutually unbiased if |〈ei|e′j〉|2 = 1

d
for all 1 ≤ i, j ≤ d.

A current open question is to determine the maximum number M(d) of pairwise mutually unbiased
bases for Cd. If we write the prime decomposition of d = pn1

1 ...p
nk
k such that pnii ≤ p

ni+1

i+1 then pn1
1 + 1 ≤

M(d) ≤ d + 1. In particular, for our purposes it is important that M(d) ≥ 2 for all d ≥ 1 and that
without loss of generality, we can assume one of the bases to be the standard basis.

Theorem 4.4 (Construction for 1-designs) For every d ≥ 1 there is an orthonormal bases X ⊂
U(d) of Cd×d.

Proof Let |e1〉...|ed〉 be an orthonormal basis of Cd that is mutually unbiased with the standard basis.
Thus, for every entry eij of |ei〉 we have |eij |2 = 1

d
. Let Ii =

√
d diag(|ei〉) be a diagonal matrix with

diagonal entries corresponding to the elements of
√
d|ei〉. Since Ii is diagonal and every entry has norm

1 we have a unitary matrix. Further, we have:

tr(I∗i Ij) = d〈ei|ej〉 (29)

Now, consider the cyclic permutation group of order d, represented as d-by-d matrices: C1...Cd where
Cd = C0 = I. Since the cyclic permutation matrices are all unitary, we have (Cm)∗ = Cd−m for all
1 ≤ m ≤ d. Now, define Cmi = CmIi. For any tuple 1 ≤ i, j,m, n ≤ d we have:

(Cmi)∗Cnj = I∗i C
d−m+nIj

20

If m = n then this simplifies to I∗i Ij . By equation 29 we know that that the trace is not equal to zero
only if i = j.

If m 6= n then Cd−m+n = Cr for some 1 ≤ r < d. Since the cyclic permutations have no fixed points,
we know that the diagonal entries of Cr will be zero. Thus trace will always be zero.

If we set X = {Cmi : 1 ≤ i,m ≤ d} then we have an orthonormal basis of unitaries. �

As an example, we can consider C2×2. One choice of a basis of C2 unbiased with the standard basis
is: { 1√

2

(
1
1

)
,

1√
2

(
1
−1

)}
This generates basis: {[1 0

0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
(30)

4.3 Spaces spanned by t-designs

In this section we generalize the relationship between designs and vector spaces suggested by proposi-
tion 4.2. To do so, we first provide the evaluation of a special integral as a lemma:

Lemma 4.5 For any V ∈ U(d) and a fixed c ∈ C independent of V , we have:∫
U(d)

tr(U∗⊗tV ⊗t)U⊗tdU = cV ⊗t

with |c| ≥ dt.

Proof Consider the following integral:∫
U(d)

tr(U∗⊗tV ⊗t)U⊗tV ∗⊗tdU =

∫
U(d)

tr((V U∗)⊗t)(UV ∗)⊗tdU

By the simple substitution UV ∗ 7→ U the integral simplifies to:∫
U(d)

tr(U∗⊗t)U⊗tdU (31)

Now, consider an arbitrary W ∈ U(d) and conjugate eq. 31 by W⊗t:

W⊗t
∫
U(d)

tr(U∗⊗t)U⊗tdU W ∗⊗t =

∫
U(d)

tr(U∗⊗tW ∗⊗tW⊗t)W⊗tU⊗tdU W ∗⊗t

=

∫
U(d)

tr(W⊗tU∗⊗t)U⊗tW ∗⊗tdU

=

∫
U(d)

tr(U∗⊗t)U⊗tdU

Thus, the integral in eq. 31 commutes with all W ∈ U(d) and must be proportional to the identity
where the constant of proportionality c is independent of V . Further, note that if we used the inner-
product 〈M |N〉 = tr(M∗N)

dt
then U⊗t would have norm 1 and then the projection onto all the U⊗t would

have norm greater than or equal to 1. Thus |c| ≥ dt. �

We are pretty sure that the constant of proportionality is dt but that specificity is irrelevant to the
main result:

Theorem 4.6 (Spaces spanned by t-designs) If X is a t-design then span(X) = span({U⊗t|U ∈
U(d)}).

21

Proof Consider any W ∈ span({U⊗t|U ∈ U(d)}). We can rewrite W as:

W = c1V
⊗t
1 + ...+ cnV

⊗t
n

Where each Vi ∈ U(d). By linearity, and lem. 4.5 we have:∫
U(d)

tr(U∗⊗tW)U⊗t dU = cW (32)

Since X is a t-design, we can replace the integral by a sum over the design:∑
U∈X

w(U)tr(U∗⊗tW)U⊗t = cW (33)

Thus, any W ∈ span({U⊗t|U ∈ U(d)}) is a linear combination of elements U ∈ X with weights

cWU = w(U)
c
tr(U∗⊗tW). �

Note that this space is larger than Cd×d since in general U⊗t+V ⊗t 6= (U +V)⊗t. However, the space
is smaller than (Cd×d)⊗t since span({U⊗t|U ∈ U(d)}) has an extra symmetry that the larger space lacks.
In particular, the standard basis for (Cd×d)⊗t cannot be generated. If we knew the dimensionality of
span({U⊗t|U ∈ U(d)}) then we would have another source of lower bounds. However, even without this
knowledge we can use theorem 4.6 to produce fun corollaries. For instance, by combining proposition 3.25
with the restriction of theorem 4.6 to 1-designs we have a result for group designs:

Corollary 4.7 Every unitary irreducible representation ρ of a finite group spans Cdρ×dρ .

In general, we believe that analogous to proposition 4.2 there exist generalizations of ‘orthonormal’
bases to the space span({U⊗t|U ∈ U(d)}) such that these bases are t-designs. Thus, our conjecture is:

Conjecture 4.8 (|X| = dim(span({U⊗t|U ∈ U(d)}))) For a minimum t-design X ⊂ U(d) we have
|X| = dim(span({U⊗t|U ∈ U(d)})).

We can take the ideas of theorem 4.6 and use them to look at spaces spanned by subsets of designs:

Proposition 4.9 If X is a unitary (t+1)-design, then for any V ∈ X span(X−{V }) = span({U⊗t|U ∈
U(d)}).

Proof Consider eq. 32 and 33 from before, except instead of having W arbitrary, use the W = V ⊗t

from the theorem statement. From proposition 2.4 we know that X can serve as a t-design and hence
replace the integral. Now, expand the sum:

dtw(U)

c
V ⊗t +

∑
U∈X−{V }

cWU U
⊗t = W (34)

By lem. 4.5 |c| ≥ dt and w(U) < 1, thus | d
tw(U)
c
| < 1 and

∑
U∈X−{W} c

W
U U = αW for some non-zero

α. Thus, W is not linearly independent from X − {V }. �

Although proposition 4.9 only holds for unweighted designs, we are confident that the result can be
generalized to weighted ones. In fact, our intuition is that a much stronger result holds:

Conjecture 4.10 (t-designs contain (t− 1)-designs) If X is a unitary t-design (with t ≥ 2), then
for any V ∈ X there exists some Y ⊂ X − {V } such that Y is a (t− 1)-design.

We still lack the mechanisms to relate subsets directly to (t−1)-designs. The missing step is showing
that an appropriate type of basis for span({U⊗t|U ∈ U(d)}) forms a t-designs. Of course, this result is
far from trivial, and by itself provides a perfect characterization of t-designs (via conjecture 4.8). An
alternative, would be to prove the conjecture directly, without making the basis connection.

22

5 Conclusion

Throughout this note, we introduced tools for working with and finding t-designs. We provided many
definitions of designs, including the functional, tensor, and metric definition. We also studied approxi-
mate and group designs stressing connections to linear algebra. In applications, 2-designs are currently
generating the most interest [Dan05, Sco08, DCEL09]. No applications are known for arbitrary t-designs.
We outlined several directions in our current research. In particular, our primary goal is to study the
connection between bases for spaces like span({U⊗t|U ∈ U(d)}), t-designs, and the applications to lower
bounds.

An important focus for future research is finding applications for arbitrary t-designs. We are con-
fident that as researchers become more comfortable with random unitaries we will see more and more
applications of t-designs to randomized quantum algorithms and codes. To help with this, it is important
to find simple constructions for designs with any choice of t and d. The final goal, though, is a simple
classification (if possible) of minimum designs.

References

[AE07] Andris Ambainis and Joseph Emerson. Quantum t-designs: t-wise independence in the quan-
tum world. Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity, pages 129–140, 2007, arXiv:quant-ph/0701126.

[Col03] B. Collins. Moments and cumulants of polynomial random variables on unitary groups, the
Itzykson-Zuber integral, and free probability. International Mathematics Research Notices,
pages 953–982, 2003.

[CS06] B. Collins and P. Śniady. Integration with respect to the haar measure on unitary, orthogonal
and symplectic group. Communications in Mathematical Physics, 264:773–795, 2006.

[Dan05] Christoph Dankert. Efficient simulation of random quantum states and operators. Master’s
thesis, University of Waterloo, 2005.

[DCEL09] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and approxi-
mate unitary 2-designs and their application to fidelity estimation. Physical Review A, 80,
2009.

[DLT02] D.P. DiVincenzo, Debbie Leung, and B.M. Terhal. Quantum data hiding. IEEE transactions
on information theory, 48, 2002.

[DS94] P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. Journal of Applied
Probability, 31A:49–62, 1994.

[EWS+03] Joseph Emerson, Y.S. Weinstein, Marcos Saraceno, Seth Lloyd, and D.G. Cory. Psudo-
random unitary operators for quantum information processing. Science, 303:2098–2100, 2003.

[HLSW04] Patrick Hayden, Debbie Leung, P.W. Shor, and Andreas Winter. Randomizing quan-
tum states: Constructions and applications. Communications in Mathematical Physics,
250(2):371–391, 2004.

[Kaz09] Artem Kaznatcheev. Unitary t-designs. http://www.cs.mcgill.ca/~akazna/AK_

UnitaryDesigns20090929.pdf, 2009.

[Kit97] A.Y. Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical
Surveys, 52:1191–1249, 1997.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information.
Cambridge university press, 2000.

[Rai98] E. M. Rains. Increasing subsequences and the classical groups. Electronic Journal of Combi-
natorics, 5:Research Paper 12, 9 pp., 1998.

[RS09] Aidan Roy and A.J. Scott. Unitary designs and codes. Designs, Codes and Cryptography, 53,
2009, arXiv:0809.3813v1.

[Sco08] A. J. Scott. Optimizing quantum process tomography with unitary 2-designs. Journal of
Physics A: Mathematical and Theoretical, 41:055308 (26 pp.), 2008.

23

[SZ84] P.D. Seymour and T. Zaslavsky. Averaging sets: a generalization of mean values and spherical
designs. Advances in Mathematics, 52:213–240, 1984.

[Wel74] W. Welch. Lower bounds on the maximum cross correlation of signals. IEEE Transactions
on Information Theory, 20:397–399, 1974.

24

