Evolution and Cognitive Cost of Ethnocentrism

Artem Kaznatcheev

McGill University

August 9th, 2010

Kaznatcheev (2010) 32nd Annual Meeting of Cog. Sci. Society

Kaznatcheev (2010) CAS – AAAI Fall Symposium

Seeing in-group as superior and out-groups as inferior

Cashdan (2001) *Current Anthropology*

Brown (2004) Daedalus

- Seeing in-group as superior and out-groups as inferior
- Commonly thought to involve substantial cognitive ability

Cashdan (2001) *Current Anthropology*

LeVine & Campbell (1972) "Ethnocentrism"

Brown (2004) Daedalus

Hewstone, Rubin & Willis (2002) A. Rev. of Psyc.

- Seeing in-group as superior and out-groups as inferior
- Commonly thought to involve substantial cognitive ability
- But ethnocentrism is observed in individuals with minimal cognition!
 - Human placenta, ants, microbes (Biology: known as Greenbeard effect)

Cashdan (2001) Current Anthropology	Brown (2004) Daedalus
LeVine & Campbell (1972) "Ethnocentrism"	Hewstone, Rubin & Willis (2002) A. Rev. of Psyc.
Haig (1996) <i>PNAS</i>	Keller & Ross (1998) <i>Nature</i>
Lenski & Velicer (2000) Selection	West et al (2006) Nature Rev. Microbiology

- Seeing in-group as superior and out-groups as inferior
- Commonly thought to involve substantial cognitive ability
- But ethnocentrism is observed in individuals with minimal cognition!
 - Human placenta, ants, microbes (Biology: known as Greenbeard effect)
- Ethnocentrism may have a basis in evolution

Cashdan (2001) Current Anthropology	Brown (2004) Daedalus
LeVine & Campbell (1972) "Ethnocentrism"	Hewstone, Rubin & Willis (2002) A. Rev. of Psyc.
Haig (1996) <i>PNAS</i>	Keller & Ross (1998) <i>Nature</i>
Lenski & Velicer (2000) Selection	West et al (2006) Nature Rev. Microbiology

Method

• How can we ask theoretical questions about evolution?

Method

- How can we ask theoretical questions about evolution?
- Build computational models and simulate them

Method

- How can we ask theoretical questions about evolution?
- Build computational models and simulate them
- Use tools from evolutionary game theory to model interactions between agents

Competitive Environment Prisoner's dilemma

Competitive Environment Prisoner's dilemma Bob

Competitive Environment Prisoner's dilemma Bob

Competitive Environment Prisoner's dilemma Bob

Competitive Environment Prisoner's dilemma Bob **b** - benefit of cooperation **b** - c -C Alice **c** - cost of cooperating

Competitive Environment Prisoner's dilemma Bob **b** - benefit of cooperation **b** - **c -C** Alice **c** - cost of cooperating Nash equilibrium

Strategy Space

Strategy Space

Strategy Space

Spatial Model

Previous Results

ptr = 0.1 **death** = 0.1 **b** = 0.025 **c** = 0.01

Hammond & Axelrod (2006) Journal of Conflict Resolution

Previous Results

ptr = 0.1 **death** = 0.1 **b** = 0.025 **c** = 0.01

Shultz, Hartshorn & Hammond (2008) 30th Annual Meeting of Cog. Sci. Society Hammond & Axelrod (2006) Journal of Conflict Resolution

Previous Results

ptr = 0.1
death = 0.1
b = 0.025
c = 0.01

Shultz, Hartshorn & Hammond (2008) 30th Annual Meeting of Cog. Sci. Society Hammond & Axelrod (2006) Journal of Conflict Resolution

Cognitive Complexity

Cognitive Complexity

Cognitive Complexity

Associate a cost **k** with the extra complexity

ptr = 0.1 **death** = 0.1 **b** = 0.025 **c** = 0.01

Vary the Game

1

Conclusion

- Ethnocentrism evolves in a very simple model
- Low cost of cognition for phase transition suggests ethnocentrism is not robust against cognitive complexity
- Cognitive mechanism must be
 - Really inexpensive, or
 - Be in place already
- Ethnocentrism maintains higher levels of cooperative interactions: should we rethink or biases?
- Ethnocentrism evolves under many games