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Basics of quantum mechanics

I A particle’s state is represented by a vector |ψ〉 ∈ Cd

I Given an orthonormal basis |e1〉, ..., |ed〉, the probability of
finding the particle in state |ei 〉 is |〈ei |ψ〉|2

I Since the particle has to be in one of the d possible states, we
want |〈e1|ψ〉|2 + ...+ |〈ed |ψ〉|2 = 1. This is called a
normalized state.

I States are evolved by acting on them by matrices; i.e.
|ψt+1〉 = M|ψt〉

I However, we want the state to remain normalized. Thus, any
M must be norm-preserving. In Cd this is the set of d-by-d
unitary matrices.
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Important features of unitary matrices

I The identity matrix I is unitary.

I Each unitary U has an inverse U−1 = U∗, where (Uij)
∗ = Uji .

I The d-by-d unitary matrices form a group called U(d).

I Topologically, U(d) is both compact and connected.

I There is a unique left-invariant measure on U(d); known as
the Haar measure.

I Using the Haar measure we can define a calculus on the
unitaries. In particular, we can perform integration.

I For convenience we normalize the Haar measure so that∫
U(d) dU = 1
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Representing transformations

I A series of transformations can be represented visually as a
circuit

V U V ∗ U∗

I Or, as an equation: U∗V ∗UV

I In particular, many transformations we are interested in
studying can be represented as polynomials in U.

I We will let Hom(r , s) denote polynomials homogeneous of
degree r in entries of U ∈ U(d) and homogeneous of degree s
in the entries of U∗.
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Representing transformations

Examples

U,V 7→ U∗V ∗UV ∈ Hom(2, 2)

U 7→ U∗V ∗UV ∈ Hom(1, 1)

U 7→ tr(U∗U)

d
∈ Hom(1, 1)

U,V 7→ tr(U∗V )U2 + VU∗VU ∈ Hom(3, 1)

U 7→ tr(U∗V )U2︸ ︷︷ ︸
Hom(2,1)

+ VU∗VU︸ ︷︷ ︸
Hom(1,1)

/∈ Hom(2, 1)
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A toy theoretical motivation

I Consider the commutator circuit we saw earlier:

V U V ∗ U∗

I What if you select U, but somebody else gets to choose V .
Can we predict how an average transformation will behave?

I To find the average, we can integrate over U(d).

〈U∗V ∗UV 〉 =

∫
U(d)

U∗V ∗UV dV =

∫
U(d)

V ∗UV dV

The difficulty is evaluating such integrals for arbitrary d .
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A toy ‘experimental’ motivation

I Suppose we have a way of learning what a given
transformation does with a finite number of observations.
(Such as by using MUBs)

I Someone gives us a black box, one where we choose a unitary
U and then we can observe some unknown but fixed
polynomial f (U).

I To find the average transformation, we would need to once
again integrate

∫
U(d) f (U)dU - impossible with a finite

number of experiments. It would be nice to replace the
integral with something finite.
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Unitary t-designs

Definition

A tuple (X,w) with finite X ⊂ U(d) and w : X → R is called a
unitary t-design if∑

U∈X

w(U)f (U) =

∫
U(d)

f (U) dU (1)

for all f ∈ Hom(t, t), ∀U ∈ X w(U) > 0, and
∑

U∈X w(U) = 1.

Equivalently, we can replace eq. 1 by:∑
U∈X

w(U)U⊗t ⊗ (U∗)⊗t =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU (2)

To avoid references to an arbitrary f ∈ Hom(t, t).
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Checking if X is a t-design

Theorem

For all finite X ⊂ U(d) and weight functions w : X → R we have:∑
U,V∈X

w(U)w(V )|tr(U∗V )|2t ≥
∫

U(d)
|tr(U)|2tdU (3)

With equality if and only if X is a t-design.

Conveniently, the RHS of ineq. 3 has a relatively simple
combinatorial interpertation and does not need to be evaluated
through integration.
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Symmetries of t-designs

Assume that X = {U1, ...,Un} is a unitary t-design, then the
following are also valid designs:

I Arbitrary phase: {e iφk Uk} for any φk ∈ [0, 2π].
I With (e iφk )d = det(Uk) we have a map U(d)→ SU(d).
I By defining an equality class over phase we have a map

U(d)→ PU(d).

I Inverse: X ∗ = {U∗k}
I Field rotation/reflection: T±θ (re iφ) = re i(2θ±φ) acting on

every entry of every matrix in X

I Unitary action: MX = {MUk} for any M ∈ U(d)

I Change of basis: [X ]P = {P−1UkP} for any P ∈ GL(d ,C)

I XM = {V |UkV = M} for any M ∈ U(d)
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Unitary t-designs can be arbitrarily large

Lemma

If X ,Y are two t-designs then so is X ∪ Y .

I Since we can generate an arbitrary number of designs from
one, we can union them to grow a design of arbitrary size.

I It is important to have a notion of a minimal design

Definition

X is a minimal t-design if there is no t-design Y ⊂ X .

Important current questions:

I Are minimal designs the same size as minimum ones?

I If not, is there a max size for a minimal design?
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Miscellaneous results

Consider a minimum t-design X ⊂ U(d). Let,

S(U; X ) =
∑
V∈X

w(V )|tr(U∗V )|2t .

I If w(U) ≥ w(V ) then S(V ; X −{U,V }) ≥ S(U; X −{U,V })
I If X is unweighted then S(U; X ) =

∫
U(d) |tr(U)|2tdU for all

U ∈ X

I |X | ∈ Ω(d2t)

I There is some U,V ∈ X such that U∗V ∗UV 6= I
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Conclusion and Future Directions

Past

I Found simple proofs for classical results

I Constructed a set of symmetries.

I Related weights and unitary’s contribution

I Derived lower bounds that agree with current results.

I Showed that a design can not be a commuting set

Current and Future

I See if proofs can be extended in novel ways

I Prove that the set of symmetries is complete

I Introduce and study greedy algorithms for constructing designs

I Find constructions close to bounds

I Use commuting classes to construct small designs
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