Calculus, Combinatorics, and (Quantum)
Computation

Artem Kaznatcheev

August 31, 2009

School of Computer Science

> «Er-< =i

==
Basics of quantum mechanics

» A particle’s state is represented by a vector [p) € C?

School of Computer Science

==
Basics of quantum mechanics

» A particle’s state is represented by a vector [p) € C?

» Given an orthonormal basis |e1), ..., |eq), the probability of
finding the particle in state |e;) is |(ej|v)|?

School of Computer Science

==
Basics of quantum mechanics

» A particle’s state is represented by a vector [p) € C?
» Given an orthonormal basis |e1), ..., |eq), the probability of
finding the particle in state |e;) is |(ej|v)|?

» Since the particle has to be in one of the d possible states, we
want |(er]|)|? + ... + |[(eq|¥)|?> = 1. This is called a
normalized state.

School of Computer Science

= - a3
Basics of quantum mechanics

» A particle’s state is represented by a vector [p) € C?
» Given an orthonormal basis |e1), ..., |eq), the probability of
finding the particle in state |e;) is |(ej|v)|?

» Since the particle has to be in one of the d possible states, we
want |(er]|)|? + ... + |[(eq|¥)|?> = 1. This is called a
normalized state.

» States are evolved by acting on them by matrices; i.e.

|7/}t+1> = MWt)

School of Computer Science

Basics of quantum mechanics

v

A particle's state is represented by a vector [1) € C¢

» Given an orthonormal basis |e1), ..., |eq), the probability of

finding the particle in state |e;) is |(ej|v)|?

Since the particle has to be in one of the d possible states, we
want |(er]|)|? + ... + |[(eq|¥)|?> = 1. This is called a
normalized state.

States are evolved by acting on them by matrices; i.e.
|7/}t+1> = MWt)
However, we want the state to remain normalized. Thus, any

M must be norm-preserving. In C9 this is the set of d-by-d
unitary matrices.

&%) School of Computer Science

«O>» «F>

= —
Important features of unitary matrices

» The identity matrix / is unitary.
» Each unitary U has an inverse U~! = U*, where (U;)* = Uj;.

» The d-by-d unitary matrices form a group called U(d).

School of Computer Science

> «Er-< =i

= —
Important features of unitary matrices

» The identity matrix / is unitary.

» Each unitary U has an inverse U~! = U*, where (U;)* = Uj;.
» The d-by-d unitary matrices form a group called U(d).

» Topologically, U(d) is both compact and connected.

School of Computer Science

> «Er-< =i

= _ 5 -/ =
Important features of unitary matrices

The identity matrix [is unitary.

Each unitary U has an inverse U~! = U*, where (U;)* = Uj.
The d-by-d unitary matrices form a group called U(d).
Topologically, U(d) is both compact and connected.

vV vVv.v. v Yy

There is a unique left-invariant measure on U(d); known as
the Haar measure.

School of Computer Science

40> «F»>» «=E» 4«

Important features of unitary matrices

vV vVv.v. v Yy

The identity matrix [is unitary.

Each unitary U has an inverse U~! = U*, where (U;)* = Uj.
The d-by-d unitary matrices form a group called U(d).
Topologically, U(d) is both compact and connected.

There is a unique left-invariant measure on U(d); known as
the Haar measure.

Using the Haar measure we can define a calculus on the
unitaries. In particular, we can perform integration.

For convenience we normalize the Haar measure so that
fU(d) dU=1

, ,q = School of Computer Science

«O>» «F>

== —
Representing transformations

» A series of transformations can be represented visually as a
circuit

Vv —v]

School of Computer Science

== —
Representing transformations

» A series of transformations can be represented visually as a
circuit

1 [/1 [+ [%]
V U V 9

[L~
» Or, as an equation: U*V*UV

== —
Representing transformations

» A series of transformations can be represented visually as a
circuit

Vv —u]
» Or, as an equation: U*V*UV
» In particular, many transformations we are interested in
studying can be represented as polynomials in U.

School of Computer Science

== —
Representing transformations

» A series of transformations can be represented visually as a
circuit

Vv —u]
» Or, as an equation: U*V*UV
» In particular, many transformations we are interested in
studying can be represented as polynomials in U.

» We will let Hom(r, s) denote polynomials homogeneous of
degree r in entries of U € U(d) and homogeneous of degree s
in the entries of U*.

School of Computer Science

== —
Representing transformations

Examples
u,v — U*v*uv € Hom(2,2)
u — uUvuv € Hom(1,1)

School of Computer Science

== —
Representing transformations

Examples
uv — Uvuv € Hom(2,2)
u — uUvuv € Hom(1,1)
Uu — %.,U) € Hom(1,1)

School of Computer Science

== —
Representing transformations

Examples
u,v.— Uv*uv € Hom(2,2)
u — uUvuv € Hom(1,1)
U %:U) € Hom(1,1)
U,V — tr(U*V)U? + VU*VU € Hom(3,1)
U — tr(UV)U?+ VU'VY ¢ Hom(2,1)

—_——
Hom(2,1) Hom(1,1)

School of Computer Science

== . —
A toy theoretical motivation

» Consider the commutator circuit we saw earlier:

v By By I ey
7 e 0 e A0 e LA

School of Computer Science

> «Er-< =i

== . —
A toy theoretical motivation

» Consider the commutator circuit we saw earlier:
/1 71 /] []
LV WV U
» What if you select U, but somebody else gets to choose V.

Can we predict how an average transformation will behave?

School of Computer Science

A toy theoretical motivation

» Consider the commutator circuit we saw earlier:
M1 7] /x| [+]
VUV U
» What if you select U, but somebody else gets to choose V.
Can we predict how an average transformation will behave?

» To find the average, we can integrate over U(d).

urvruv dV:/ VUV dv
U(d)

(U VUV :/

U(d)

The difficulty is evaluating such integrals for arbitrary d.

) School of Computer Science

40> «F»>» «=E» 4«

== . —
A toy ‘experimental’ motivation

» Suppose we have a way of learning what a given
transformation does with a finite number of observations.
(Such as by using MUBs)

== . —
A toy ‘experimental’ motivation

» Suppose we have a way of learning what a given
transformation does with a finite number of observations.
(Such as by using MUBs)

» Someone gives us a black box, one where we choose a unitary
U and then we can observe some unknown but fixed
polynomial f(U).

School of Computer Science

A toy ‘experimental’ motivation

» Suppose we have a way of learning what a given
transformation does with a finite number of observations.
(Such as by using MUBs)

» Someone gives us a black box, one where we choose a unitary
U and then we can observe some unknown but fixed
polynomial f(U).

» To find the average transformation, we would need to once
again integrate fU(d) f(U)dU - impossible with a finite
number of experiments. It would be nice to replace the
integral with something finite.

&%) School of Computer Science

«O>» «F>

= . -
Unitary t-designs

Definition
A tuple (X,w) with finite X C U(d) and w : X — R is called a
unitary t-design if

S w(U)F(U) = /U ULl (1)

veX
for all f € Hom(t,t), VU € X w(U) >0, and > cx w(U) = 1.

S—@ School of Computer Science

40> «F»>» «=E» 4«

= . -
Unitary t-designs

Definition
A tuple (X,w) with finite X C U(d) and w : X — R is called a
unitary t-design if

Zw(U)f(U):/ F(U) dU (1)

Uex U(d)

for all f € Hom(t,t), VU € X w(U) >0, and > cx w(U) = 1.

Equivalently, we can replace eq. 1 by:

w(U)U®t U*)®t — Ut Us®tdu 2
3 MU e W) /U(d) ® (U"))

To avoid references to an arbitrary f € Hom(t, t).

& School of Computer Science

«O>» «F» « = =2

Checking if X is a t-design

Theorem
For all finite X C U(d) and weight functions w : X — R we have:

* 2t 2t
> wuwv)lerurvy = [CUIETE

U,Vex

With equality if and only if X is a t-design.

g—’@ School of Computer Science

40> «F > «E»

Checking if X is a t-design

Theorem
For all finite X C U(d) and weight functions w : X — R we have:

> w(U)w(W)|tr(U V)Pt > / tr(U)[*dU - (3)
U,vex u(d)
With equality if and only if X is a t-design.

Conveniently, the RHS of ineq. 3 has a relatively simple
combinatorial interpertation and does not need to be evaluated

through integration.

%@ School of Computer Science

40> «F > «E»

= - > ==
Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:

School of Computer Science

= - > ==
Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:

» Arbitrary phase: {e/®<U,} for any ¢ € [0, 27].

School of Computer Science

> «Er-< =i

= - > ==
Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:
» Arbitrary phase: {e/% Uy} for any ¢, € [0,27].
» With (e'?*)9 = det(Uy) we have a map U(d) — SU(d).

» By defining an equality class over phase we have a map
U(d) — PU(d).

School of Computer Science

> «Er-< =i

= - > ==
Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:
» Arbitrary phase: {e/% Uy} for any ¢, € [0,27].
» With (e'?*)9 = det(Uy) we have a map U(d) — SU(d).

» By defining an equality class over phase we have a map
U(d) — PU(d).

> Inverse: X* = {U}}

School of Computer Science

> «Er-< =i

= - > ==
Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:
» Arbitrary phase: {e/% Uy} for any ¢, € [0,27].
» With (e'?*)9 = det(Uy) we have a map U(d) — SU(d).
» By defining an equality class over phase we have a map
U(d) — PU(d).
> Inverse: X* = {U}}
> Field rotation/reflection: T;"(re'¢) = re/(?*9) acting on
every entry of every matrix in X

School of Computer Science

40> «F»>» «=E» 4«

= - > ==
Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:
» Arbitrary phase: {e/% Uy} for any ¢, € [0,27].
» With (e'?*)9 = det(Uy) we have a map U(d) — SU(d).
» By defining an equality class over phase we have a map
U(d) — PU(d).
> Inverse: X* = {U}}
> Field rotation/reflection: T;"(re'¢) = re/(?*9) acting on
every entry of every matrix in X
» Unitary action: MX = {MU} for any M € U(d)

» School of Computer Science

40> «F»>» «=E» 4«

Symmetries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:
» Arbitrary phase: {e/% Uy} for any ¢, € [0,27].
» With (&%) = det(Uy) we have a map U(d) — SU(d).
» By defining an equality class over phase we have a map
U(d) — PU(d).
> Inverse: X* = {U}}
> Field rotation/reflection: T;"(re'¢) = re/(?*9) acting on
every entry of every matrix in X
» Unitary action: MX = {MU} for any M € U(d)
» Change of basis: [X]p = {P~1UxP} for any P € GL(d,C)

School of Computer Science

40> «F»>» «=E» 4«

Sym metries of t-designs

Assume that X = {Uy, ..., U,} is a unitary t-design, then the
following are also valid designs:
» Arbitrary phase: {e/% Uy} for any ¢, € [0,27].
» With (e'?*)9 = det(Uy) we have a map U(d) — SU(d).

» By defining an equality class over phase we have a map
U(d) — PU(d).

Inverse: X* = {U}}

Field rotation/reflection: Tei(re"gb) = re(29%%) acting on
every entry of every matrix in X

Unitary action: MX = {MUj} for any M € U(d)

Change of basis: [X]p = {P~1UxP} for any P € GL(d,C)
Xm = {V|UV = M} for any M € U(d)

v

v

v

v

v

&%) School of Computer Science

40> «F»>» «=E» 4«

Unitary t-designs can be arbitrarily large
Lemma
If X, Y are two t-designs then so is X U'Y.

» Since we can generate an arbitrary number of designs from
one, we can union them to grow a design of arbitrary size.

School of Computer Science

Unitary esigns can be arbitrarily large

Lemma
If X, Y are two t-designs then so is X U'Y.

» Since we can generate an arbitrary number of designs from
one, we can union them to grow a design of arbitrary size.

» It is important to have a notion of a minimal design

Definition
X is a minimal t-design if there is no t-design Y C X.

&%) School of Computer Science

«O>» «F>

Unitary t-designs can be arbitrarily large

Lemma
If X, Y are two t-designs then so is X U'Y.

» Since we can generate an arbitrary number of designs from
one, we can union them to grow a design of arbitrary size.

» It is important to have a notion of a minimal design

Definition
X is a minimal t-design if there is no t-design Y C X.
Important current questions:

» Are minimal designs the same size as minimum ones?

» If not, is there a max size for a minimal design?

%@ School of Computer Science

«O>» «F>

- - s
Miscellaneous results

Consider a minimum t-design X C U(d). Let,

S(U; X) =Y w(W)er(Ur V).
veX

School of Computer Science

- - s
Miscellaneous results

Consider a minimum t-design X C U(d). Let,

S(U; X) =Y w(W)er(Ur V).
veX

> If w(U) > w(V) then S(V; X — {U, V}) > S(U; X — {U, V})

School of Computer Science

> «Er-< =i

- - s
Miscellaneous results

Consider a minimum t-design X C U(d). Let,

S(U; X) =Y w(W)er(Ur V).
veX

> 1f w(U) = w(V) then S(V; X — {U, V}) > S(U; X — {U, V'})
» If X is unweighted then S(U; X) = fU(d) [tr(U)|?tdU for all
UeX

School of Computer Science

> «Er-< =i

- - s
Miscellaneous results

Consider a minimum t-design X C U(d). Let,

S(U; X) =Y w(W)er(Ur V).
veX

> 1f w(U) = w(V) then S(V; X — {U, V}) > S(U; X — {U, V'})

» If X is unweighted then S(U; X) = fU(d) [tr(U)|?tdU for all
UeX

> |X| € Q(d*)

School of Computer Science

> «Er-< =i

- - s
Miscellaneous results

Consider a minimum t-design X C U(d). Let,

S(U; X) =Y w(W)er(Ur V).
veX

> If w(U) > w(V) then S(V; X —{U,V}) > S(U; X —-{U, V})

» If X is unweighted then S(U; X) = fU(d) [tr(U)|?tdU for all
UeX

> |X| € Q(d*)

» There is some U, V € X such that U*V*UV # |

School of Computer Science

> «Er-< =i

Conclusion and Future Directions

Past

» Found simple proofs for classical results

School of Computer Science

Conclusion and Future Directions

Past
» Found simple proofs for classical results

» Constructed a set of symmetries.

School of Computer Science

Conclusion and Future Directions

Past
» Found simple proofs for classical results

» Constructed a set of symmetries.

» Related weights and unitary’s contribution

Conclusion and Future Directions

Past

v

Found simple proofs for classical results

» Constructed a set of symmetries.

» Related weights and unitary’s contribution
>

Derived lower bounds that agree with current results.

School of Computer Science

Conclusion and Future Directions

Past

v

Found simple proofs for classical results
Constructed a set of symmetries.
Related weights and unitary’s contribution

Derived lower bounds that agree with current results.

vV v v Y

Showed that a design can not be a commuting set

School of Computer Science

Conclusion and Future Directions

Past

» Found simple proofs for classical results

» Constructed a set of symmetries.

» Related weights and unitary’s contribution

» Derived lower bounds that agree with current results.

» Showed that a design can not be a commuting set
Current and Future

» See if proofs can be extended in novel ways

School of Computer Science

Conclusion and Future Directions

Past

» Found simple proofs for classical results

» Constructed a set of symmetries.

» Related weights and unitary’s contribution

» Derived lower bounds that agree with current results.

» Showed that a design can not be a commuting set
Current and Future

» See if proofs can be extended in novel ways

» Prove that the set of symmetries is complete

School of Computer Science

Conclusion and Future Directions

Past

» Found simple proofs for classical results

» Constructed a set of symmetries.

» Related weights and unitary’s contribution

» Derived lower bounds that agree with current results.

» Showed that a design can not be a commuting set
Current and Future

» See if proofs can be extended in novel ways

» Prove that the set of symmetries is complete

» Introduce and study greedy algorithms for constructing designs

School of Computer Science

Conclusion and Future Directions

Past

» Found simple proofs for classical results

» Constructed a set of symmetries.

» Related weights and unitary’s contribution

» Derived lower bounds that agree with current results.

» Showed that a design can not be a commuting set
Current and Future

» See if proofs can be extended in novel ways

» Prove that the set of symmetries is complete

» Introduce and study greedy algorithms for constructing designs

» Find constructions close to bounds

Conclusion and Future Directions

Past
» Found simple proofs for classical results
» Constructed a set of symmetries.
» Related weights and unitary’s contribution
» Derived lower bounds that agree with current results.
» Showed that a design can not be a commuting set

Current and Future

v

See if proofs can be extended in novel ways

Prove that the set of symmetries is complete

>
» Introduce and study greedy algorithms for constructing designs
» Find constructions close to bounds

>

Use commuting classes to construct small designs

&%) School of Computer Science

2/

«O>» «F>

