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Introduction Preliminaries

Preliminaries: U(d)

I U(d) is the topologically compact and connected group of norm
preserving (unitary) operators on Cd .

I We can introduce the Haar measure and use it to integrate functions
f of U ∈ U(d) to find their averages:

〈f 〉 =

∫
U(d)

f (U) dU.

I For convenience we normalize integration by assuming that∫
U(d) dU = 1.

I The goal of unitary t-designs is to evaluate averages of polynomials
via a finite sum.
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Introduction Preliminaries

Preliminaries: Hom(r , s)

Definition

Hom(r , s) is the set of polynomials homogeneous of degree r in entries of
U ∈ U(d) and homogeneous of degree s in U∗.

Examples

U,V 7→ U∗V ∗UV ∈ Hom(2, 2)

U 7→ U∗V ∗UV ∈ Hom(1, 1)

U 7→ tr(U∗U)

d
∈ Hom(1, 1)

U,V 7→ tr(U∗V )U2 + VU∗VU ∈ Hom(3, 1)

U 7→ tr(U∗V )U2︸ ︷︷ ︸
Hom(2,1)

+ VU∗VU︸ ︷︷ ︸
Hom(1,1)

/∈ Hom(2, 1)
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Introduction Functional definition

Functional definition of unitary t-designs

Definition

A function w : X → (0, 1] is a weight function on X if for all U ∈ X we have

w(U) > 0 and
∑

U∈X w(U) = 1

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is a unitary
t-design if ∑

U∈X

w(U)f (U) =

∫
U(d)

f (U) dU

for all f ∈ Hom(t, t).

Definition

A finite X ⊂ U(d) is an unweighted t-design if it is a unitary t-design with a

uniform weight function (i.e. w(U) = 1
|X | for all U ∈ X ).
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Introduction Functional definition

Functional definition is general enough

Proposition

Every t-design is a (t − 1)-design.

Proposition

For any f ∈ Hom(r , s) with r 6= s∫
U(d)

f (U) dU = 0

Lemma

For any f ∈ Hom(r , s), U ∈ U(d), and c ∈ C we have f (cU) = c r c̄s f (U)
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Introduction Functional definition

Strengths and shortcomings of the functional definition

Strengths:

I Average of any polynomial with degrees in U and U∗ less than t can
be evaluated one summand at a time.

I Multi-variable polynomials can be evaluated:∫
· · ·
∫

U(d)

f (U1, ...,Un)dU1...dUn

=
∑
U1∈X

...
∑
Un∈X

w(U1)...w(Un)f (U1, ...,Un).

Shortcomings:

I Not clear how to test if a given (X ,w) is a t-design.

I If (X ,w) is not a design, then how far away is it?
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Introduction Tensor product definition

Tensor product definition of unitary t-designs

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is a
unitary t-design if∑

U∈X
w(U)U⊗t ⊗ (U∗)⊗t =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU

I More tractable for checking if an arbitrary (X ,w) is a t-design.

I Literature has explicit formula for the RHS for many choices of d and
t [Col03, CS06].

I Still not metric.
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Trace double sum inequality

Trace double sum inequality

Theorem

For all finite X ⊂ U(d) we have∑
U,V∈X

w(U)w(V )|tr(U∗V )|2t ≥
∫
U(d)
|tr(U)|2t dU

With equality if and only if X is a t-design.

I Proved earlier by Scott [Sco08].

I RHS is the number of permutations of {1, ..., t} with no increasing
subsequences of order greater than d [DS94, Rai98].

I If d ≥ t then RHS is t!.

I We will call the RHS σ.
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Trace double sum inequality

Proof of TDSI, Part 1

Consider an arbitrary finite X ⊂ U(d) with a weight function w , define
matrices S and Σ as:

S =
∑
U∈X

w(U)U⊗t ⊗ (U∗)⊗t

Σ =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU

Consider the matrix D = S − Σ:

tr(D∗D) = tr((S∗ − Σ∗)(S − Σ))

= tr(S∗S)− tr(Σ∗S)− tr(S∗Σ) + tr(Σ∗Σ)
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Trace double sum inequality

Proof of TDSI, Part 2

Trace is linear, thus can be brought past the integrals, summations and
weights.

tr((U⊗t ⊗ (U∗)⊗t)∗(V⊗t ⊗ (V ∗)⊗t))

= tr((U∗V )⊗t ⊗ (UV ∗)⊗t)

= tr(U∗V )ttr(UV ∗)t

= |tr(U∗V )|2t
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Trace double sum inequality

Proof of TDSI, Part 3

Consider the fourth summand tr(Σ∗Σ):

tr(Σ∗Σ) =

∫
U(d)

∫
U(d)
|tr(U∗V )|2tdVdU

Let f (U) =
∫
U(d) |tr(U∗V )|2tdV be the inner integral.

tr(Σ∗Σ) =

∫
U(d)

f (U)dU =

∫
U(d)

f (I )dU =

∫
U(d)
|tr(V )|2tdV
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Trace double sum inequality

Metric definition of unitary t-designs

Definition

A weight function w is a proper weight function on X if for all other choices of
weight function w ′ on X , we have:∑

U,V∈X

w(U)w(V )|tr(U∗V )|2t ≤
∑

U,V∈X

w ′(U)w ′(V )|tr(U∗V )|2t .

The trace double sum is a function Σ defined for finite X ⊂ U(d) as:

Σ(X ) =
∑

U,V∈X

w(U)w(V )|tr(U∗V )|2t ,

Definition

A finite X ⊂ U(d) is a unitary t-design if

Σ(X ) = 〈|tr(U)|2t〉
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Symmetries and minimal designs Symmetries

Four symmetries of t-designs

Proposition

If X = {U1, ...,Un} is a t-design then Y = {e iφ1U1, ..., e
iφnUn} is also a

t-design for all φ1, ..., φn ∈ [0, 2π].

Proposition

If X is a t-design then X ∗ = {U∗ : U ∈ X} is also a t-design.

Proposition

If X ⊂ U(d) is a t-design then ∀M ∈ U(d), MX = {MU : U ∈ X} and
XM = {UM : U ∈ X} are also a t-design.
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Symmetries and minimal designs Minimal designs

Minimal designs

Lemma

If X ,Y are two t-designs then so is X ∪ Y .

I Designs can be arbitrarily large

I We are interested in smaller designs

Definition

A minimal (unweighted) t-design X is a t-design such that all Y ⊂ X are
not (unweighted) t-designs.
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Symmetries and minimal designs Minimal designs

Characterization of minimal t-designs

Theorem

A t-design X is minimal if and only if it has a unique proper weight
function w.

I Useful tool for proving minimality.

I Sadly, minimal designs are not necessarily minimum.

I Currently working on finding correspondences between minimal and
minimum designs.
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Symmetries and minimal designs Minimal designs

Proof of CMD, Part 1

(⇒) Consider the contrapositive: if there are two distinct proper weight
functions w and w ′ on X then X is not a minimal t-design.

Define:

α = min
U∈X

w ′(U)

w(U)
.

Let Y = X − {U ∈ X : w ′(U)− αw(U) = 0}, with weight function

w ′′ =
w ′ − αw

1− α
Let 〈f 〉wX be the average of f ∈ Hom(t, t) over X with weight function w :

〈f 〉w ′′Y =
〈f 〉w ′X − α〈f 〉wX

1− α
=
〈f 〉 − α〈f 〉

1− α
= 〈f 〉
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Symmetries and minimal designs Minimal designs

Proof of CMD, Part 2

(⇐) Consider a strengthened contrapositive: if (X ,w), (Y ,w ′) are
t-designs such that Y ⊂ X then there are infinitely many proper weight
functions on X .

Assuming that w ′(U) = 0 for U 6∈ Y , let w ′′ = pw + (1− p)w ′ for any
choice of p ∈ (0, 1).
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Greedy algorithms Introduction

Introducing greedy ‘algorithms’

Proposition

A finite X ⊂ U(d) is a t-design if and only if for all finite Y ⊂ U(d),
Σ(X ) ≤ Σ(X ∪ Y )

Lemma

For every finite X ⊂ U(d) there is some t-design Z such that X ⊆ Z

Definition

The contribution of U to X is a function S defined as
S(U; X ) =

∑
V∈X w(V )|tr(U∗V )|2t

I Σ(X ) =
∑

U∈X w(U)S(U; X ).

I Total amount U ∈ X contributes to Σ(X ) is d2t + 2S(U; X − {U}).

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 17 / 28



Greedy algorithms Introduction

Introducing greedy ‘algorithms’

Proposition

A finite X ⊂ U(d) is a t-design if and only if for all finite Y ⊂ U(d),
Σ(X ) ≤ Σ(X ∪ Y )

Lemma

For every finite X ⊂ U(d) there is some t-design Z such that X ⊆ Z

Definition

The contribution of U to X is a function S defined as
S(U; X ) =

∑
V∈X w(V )|tr(U∗V )|2t

I Σ(X ) =
∑

U∈X w(U)S(U; X ).

I Total amount U ∈ X contributes to Σ(X ) is d2t + 2S(U; X − {U}).

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 17 / 28



Greedy algorithms Introduction

Introducing greedy ‘algorithms’

Proposition

A finite X ⊂ U(d) is a t-design if and only if for all finite Y ⊂ U(d),
Σ(X ) ≤ Σ(X ∪ Y )

Lemma

For every finite X ⊂ U(d) there is some t-design Z such that X ⊆ Z

Definition

The contribution of U to X is a function S defined as
S(U; X ) =

∑
V∈X w(V )|tr(U∗V )|2t

I Σ(X ) =
∑

U∈X w(U)S(U; X ).

I Total amount U ∈ X contributes to Σ(X ) is d2t + 2S(U; X − {U}).

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 17 / 28



Greedy algorithms Introduction

p-adjustment greedy algorithm

1. If X is not a t-design select a U 6∈ X that minimizes S(U; X ).

2. Let X ′ = X ∪ {U} with w ′(U) = p and for V ∈ X
w ′(V ) = (1− p)w(V )

3. Repeat with X ← X ′ until we have a t-design

If we adjust only p and our choice of U, then the new trace double sum is:

Σ(X ′) = (1− p)2Σ(X ) + p2d2t + 2p(1− p)S(U; X )

Which is minimized by:

p =
Σ(X )− S(U; X )

Σ(X )− 2S(U; X ) + d2t

Dangers:

I Weight function w ′ might not be proper weight function on X ′.

I Might be able to lower the contribution of S(U; X ) at the expense of
small increase in Σ(X )
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Greedy algorithms Lower bounds

A lower bound on the size of t-designs

I Note that S(U; X ) ≥ 0 for any U and X .

I If we assume that S(U,X ) = 0 at each time step, then the
p-adjustment algorithm produces a proper weight function w ′.

I Use this observation to find lower bounds.

Proposition

If X ⊂ U(d) is a t-design then |X | ≥ d2t

σ .

I Best known bounds are by Roy and Scott [RS08]: |X | ≥
(d2+t−1

t

)
I Asymptotically, for large d and fixed t, both bounds are Θ(d2t)
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Greedy algorithms Lower bounds

Proof of LB

Consider our algorithm with the best case of S(Uk ; Xk) = 0 for every time
step k:

Σ(Xk+1) =
d2tΣ(Xk)

Σ(Xk) + d2t

Making some changes of variable, we obtain the recurrence x(1) = 1 and:

x(k + 1) =
x(k)

x(k) + 1

Recurrence is solved by x(k) = 1
k

Until d2tx(k) falls below the value σ we know that there is no possible
way to construct a t-design X with |X | ≤ k .
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Greedy algorithms Limitations

Limitations of greedy algorithms

Theorem

A p-adjustment greedy algorithm cannot construct an unweighted t-design.

Proposition

For an unweighted X ⊂ U(d), and all elements U,V ∈ X ,
S(U; X ) = S(V ; X ) ≥ σ with equality if and only if X is a t-design.

Lemma

For X ⊂ U(d) with proper weight function w, and any pair of elements
U,V ∈ X , if w(U) ≥ w(V ) then S(U; X − {U,V }) ≤ S(V ; X − {U,V }).
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Ouroboros application Pairwise traceless sets

Orthonormal bases for Cd×d

Goal: find an orthonormal basis |E1〉, ..., |Ed2〉 of Cd×d such that each
Ei ∈ U(d)

Definition

X ⊂ U(d) is pairwise traceless if for every U,V ∈ X with U 6= V we have
tr(U∗V ) = 0.
A pairwise traceless X ⊂ U(d) is maximum pairwise traceless if |X | = d2.

Orthonormal bases of unitaries for Cd×d are maximum pairwise traceless
sets.

Proposition

For any X ⊂ U(d), X is maximum pairwise traceless if and only if X is a
minimum unweighted 1-design.
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Ouroboros application Maximum pairwise traceless sets

Very brief introduction to MUBs

Definition

Two orthonormal bases {|ei 〉 : 1 ≤ i ≤ d} and {|e ′i 〉 : 1 ≤ i ≤ d} of Cd

are mutually unbiased if |〈ei |e ′j〉|2 = 1
d for all 1 ≤ i , j ≤ d .

I Open question: determine the maximum number M(d) of pairwise
mutually unbiased bases for Cd .

I If we write the prime decomposition of d = pn1
1 ...p

nk
k such that

pni
i ≤ p

ni+1

i+1 then pn1
1 ≤M(d) ≤ d + 1.

Important features for us:
I M(d) ≥ 2 for d ≥ 1.
I Without loss of generality, can assume one of the bases to be the

standard basis.

Example{(1
0

)
,

(
0
1

)}
,
{ 1√

2

(
1
1

)
,

1√
2

(
1
−1

)}
,
{ 1√

2

(
1

+i

)
,

1√
2

(
1
−i

)}
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Ouroboros application Maximum pairwise traceless sets

Maximum pairwise traceless set construction

I Let |e1〉...|ed〉 be an orthonormal basis of Cd that is mutually
unbiased with the standard basis.

I Define Ii =
√

ddiag(|ei 〉) for 1 ≤ i ≤ d .

I Consider the cyclic permutation group of order d , represented as
d-by-d matrices: C 1...Cd where Cd = C 0 = I .

I Define Cm
i = CmIi

For any tuple 1 ≤ i , j ,m, n ≤ d we have:

tr((Cm
i )∗Cn

j ) = tr(I ∗i Cd−m+nIj) =

{
d if i = j and m = n

0 otherwise
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Ouroboros application Evaluating 〈[ · , V ]〉

Evaluating the average commutator over U(d)

Theorem

For any V ∈ U(d) and [U,V ] = U∗V ∗UV we have:

〈[ · ,V ]〉 =
tr(V ∗)

d
V
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Ouroboros application Evaluating 〈[ · , V ]〉

Proof of EAC
Consider the diagonalization of V ∗, i.e. V ∗ = P∗DP, with
D = diag(λ1, ..., λd).

∫
U(d)

U∗V ∗UV dU =
[ ∫

U(d)
U∗V ∗U dU

]
V =

[ ∫
U(d)

U∗P∗DPU dU
]
V

But we know a symmetry that allows substituting PU → U without
changing the average.∫

U(d)
U∗P∗DPU dU =

∫
U(d)

U∗DU dU

I Let f (U) = U∗DU.

I Look at the elements of the design: f (Cm
i ) = I ∗i (Cm)∗DCmIi .

I (Cm)∗DCm = diag(λcm(1), ..., λcm(d))

Thus, 〈f 〉 = (λ1 + ...+ λd)I
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I (Cm)∗DCm = diag(λcm(1), ..., λcm(d))

Thus, 〈f 〉 = (λ1 + ...+ λd)I
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Ouroboros application t-designs are non-commuting

t-designs are non-commuting

Definition

X ⊂ U(d) is a non-commuting if there is some U,V ∈ X such that
[U,V ] 6= I .

Theorem

For all d ≥ 2 if X ⊂ U(d) is a t-design then X is non-commuting.

Supports our intuition that designs must be well ‘spread out’.

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 27 / 28



Conclusion

Outline

Introduction

Trace double sum inequality

Symmetries and minimal designs

Greedy algorithms

Ouroboros application

Conclusion

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 28 / 28



Conclusion

Concluding remarks

I Introduces 3 definitions of unitary t-designs

I Proved the trace double sum inequality: Σ(X ) ≥ 〈|tr(U)|2t〉 with equality if
and if X is a t-design

I Discussed symmetries of designs: phase, X ∗, MX , and XM.

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Introduced a ‘greedy algorithm’ for constructing designs.

I Used greedy algorithm to derive lower bounds on the size of t-designs:

X ≥ d2t

σ .

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

Thank you for listening!

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 28 / 28



Conclusion

Concluding remarks

I Introduces 3 definitions of unitary t-designs

I Proved the trace double sum inequality: Σ(X ) ≥ 〈|tr(U)|2t〉 with equality if
and if X is a t-design

I Discussed symmetries of designs: phase, X ∗, MX , and XM.

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Introduced a ‘greedy algorithm’ for constructing designs.

I Used greedy algorithm to derive lower bounds on the size of t-designs:

X ≥ d2t

σ .

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

Thank you for listening!

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 28 / 28



Conclusion

Concluding remarks

I Introduces 3 definitions of unitary t-designs

I Proved the trace double sum inequality: Σ(X ) ≥ 〈|tr(U)|2t〉 with equality if
and if X is a t-design

I Discussed symmetries of designs: phase, X ∗, MX , and XM.

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Introduced a ‘greedy algorithm’ for constructing designs.

I Used greedy algorithm to derive lower bounds on the size of t-designs:

X ≥ d2t

σ .

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

Thank you for listening!

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 28 / 28



Conclusion

Concluding remarks

I Introduces 3 definitions of unitary t-designs

I Proved the trace double sum inequality: Σ(X ) ≥ 〈|tr(U)|2t〉 with equality if
and if X is a t-design

I Discussed symmetries of designs: phase, X ∗, MX , and XM.

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Introduced a ‘greedy algorithm’ for constructing designs.

I Used greedy algorithm to derive lower bounds on the size of t-designs:

X ≥ d2t

σ .

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

Thank you for listening!

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 28 / 28



Conclusion

Concluding remarks

I Introduces 3 definitions of unitary t-designs

I Proved the trace double sum inequality: Σ(X ) ≥ 〈|tr(U)|2t〉 with equality if
and if X is a t-design

I Discussed symmetries of designs: phase, X ∗, MX , and XM.

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Introduced a ‘greedy algorithm’ for constructing designs.

I Used greedy algorithm to derive lower bounds on the size of t-designs:

X ≥ d2t

σ .

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

Thank you for listening!

Artem Kaznatcheev (McGill University) Properties of unitary t-designs October 7, 2009 28 / 28



Conclusion

References I

B. Collins.
Moments and cumulants of polynomial random variables on unitary
groups, the Itzykson-Zuber integral, and free probability.
International Mathematics Research Notices, pages 953–982, 2003.

B. Collins and P. Śniady.
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