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Introduction Preliminaries

Preliminaries: U(d)

» U(d) is the topologically compact and connected group of norm
preserving (unitary) operators on C¢.
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— Introduction Preliminaries

Preliminaries: U(d)

» U(d) is the topologically compact and connected group of norm
preserving (unitary) operators on C¢.

» We can introduce the Haar measure and use it to integrate functions
f of U € U(d) to find their averages:

(F) = /U UCET

» For convenience we normalize integration by assuming that
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Introduction Preliminaries
s

Preliminaries: U(d)

v

U(d) is the topologically compact and connected group of norm
preserving (unitary) operators on C¢.

» We can introduce the Haar measure and use it to integrate functions
f of U € U(d) to find their averages:

(F) = /U UCET

For convenience we normalize integration by assuming that

The goal of unitary t-designs is to evaluate averages of polynomials
via a finite sum.

v

v
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Introduction

Preliminaries: Hom(r, s)

Preliminaries

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of
U € U(d) and homogeneous of degree s in U*.
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Introduction Preliminaries

Preliminaries: Hom(r, s)

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of
U € U(d) and homogeneous of degree s in U*.

Examples
u,v — Uvuv € Hom(2,2)
u — UuUvuv € Hom(1,1)
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— Introduction Preliminaries
Preliminaries: Hom(r, s)
Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of
U € U(d) and homogeneous of degree s in U*.

Examples
u,v.— Uv*uv € Hom(2,2)
u — UuUvuv € Hom(1,1)
U — tr((:j Y) € Hom(1,1)
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Introduction Preliminaries

e

Preliminaries: Hom(r, s)

Definition
Hom(r, s) is the set of polynomials homogeneous of degree r in entries of
U € U(d) and homogeneous of degree s in U*.

Examples
u,v.— Uv*uv € Hom(2,2)
u — UuUvuv € Hom(1,1)
U — %‘:U) € Hom(1,1)
U,Vv. — tr(U*V)U? + VU*VU € Hom(3,1)
U — tr(UV)U? +VU'VU ¢ Hom(2,1)

Hom(2,1) Hom(1,1)
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Introduction Functional definition
s

Functional definition of unitary t-designs
Definition

A function w : X — (0, 1] is a weight function on X if for all U € X we have
w(U) >0and > ,cxw(U) =1
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Functional definition of unitary t-designs

Definition
A function w : X — (0,1] is a weight function on X if for all U € X we have
w(U) >0and > ,cxw(U) =1

Definition
A tuple (X,w) with finite X C U(d) and weight function w on X is a unitary
t-design if

Zw(U)f(U):/ F(U) dU

Uex U(d)

for all f € Hom(t, t).
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2 Introduction Functional definition

Functional definition of unitary t-designs

Definition
A function w : X — (0, 1] is a weight function on X if for all U € X we have
w(U) >0and ) ,cxw(U) =1

Definition
A tuple (X,w) with finite X C U(d) and weight function w on X is a unitary
t-design if

Zw(U)f(U):/ F(U) dU

Uex U(d)

for all f € Hom(t, t).

Definition

A finite X C U(d) is an unweighted t-design if it is a unitary t-design with a

uniform weight function (i.e. w(U) = ﬁ for all U € X).
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Introduction Functional definition

Functional definition is general enough

Proposition

Every t-design is a (t — 1)-design.
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Introduction Functional definition

Functional definition is general enough
Proposition
Every t-design is a (t — 1)-design.

Proposition

For any f € Hom(r,s) with r # s
/ F(U) dU =0
u(d)

Lemma
For any f € Hom(r,s), U € U(d), and ¢ € C we have f(cU) = c"¢°f(U)
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Introduction Functional definition

Strengths and shortcomings of the functional definition

Strengths:

» Average of any polynomial with degrees in U and U* less than t can
be evaluated one summand at a time.

» Multi-variable polynomials can be evaluated:

/---/f(Ul,...,U,,)dUl---dUn
u(a)

= D w(Uh)w(Un)F(Us, ..o, Up).

UieX  UneX
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Introduction Functional definition

Strengths and shortcomings of the functional definition

Strengths:

» Average of any polynomial with degrees in U and U* less than t can
be evaluated one summand at a time.

» Multi-variable polynomials can be evaluated:

/---/f(Ul,...,U,,)dUl---dUn
u(a)

= D w(Uh)w(Un)F(Us, ..o, Up).
U1EX  UnpeX
Shortcomings:
> Not clear how to test if a given (X, w) is a t-design.
» If (X, w) is not a design, then how far away is it?
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Tensor product definition of unitary t-designs

Definition
A tuple (X,w) with finite X C U(d) and weight function w on X is a
unitary t-design if

> w(U)Ut @ (U = Ut @ (U%)®tdU
Uex u(d)
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Introduction Tensor product definition

Tensor product definition of unitary t-designs

Definition
A tuple (X,w) with finite X C U(d) and weight function w on X is a
unitary t-design if

3 w(U)UPt @ (UF)* = / U®t @ (U)®tdU
UeXx U(d)

» More tractable for checking if an arbitrary (X, w) is a t-design.
» Literature has explicit formula for the RHS for many choices of d and
t [Col03, CS06].

» Still not metric.
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Metric definition of unitary t-designs
Definition

A weight function w is a proper weight function on X if for all other choices of
weight function w’ on X, we have:

S w(U)w(V)[er(UsV)PE < Y W/ (U)W (V)]er(U* V)

U,vex U,vex

The trace double sum is a function X defined for finite X C U(d) as:

T(X)= > w(U)w(V)[tr(UT V),

U,Vex

Definition

A finite X C U(d) is a unitary t-design if
Z(X) = (|tr(U)P)
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Introduction Metric definition

Strengths and shortcomings of the metric definition

Strengths:

» (X) > (|tr(U)|?*) if X is not a t-design. This gives us a useful
metric to say how far a set with proper weight function is from being
a design.
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Introduction Metric definition

Strengths and shortcomings of the metric definition

Strengths:

» (X) > (|tr(U)|?*) if X is not a t-design. This gives us a useful
metric to say how far a set with proper weight function is from being
a design.

» {|tr(U)|?*) has a nice combinatorial interpertation: the number of
permutations of {1, ..., t} with no increasing subsequences of order
greater than d [DS94, Rai98].

» If d >t then RHS is t!l.
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Introduction Metric definition

e

Strengths and shortcomings of the metric definition

Strengths:

» (X) > (|tr(U)|?*) if X is not a t-design. This gives us a useful
metric to say how far a set with proper weight function is from being
a design.

» {|tr(U)|?*) has a nice combinatorial interpertation: the number of
permutations of {1, ..., t} with no increasing subsequences of order
greater than d [DS94, Rai98].

» If d >t then RHS is t!l.

» One of the easiest way to test if X is a t-design
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Introduction Metric definition

e

Strengths and shortcomings of the metric definition

Strengths:

» (X) > (|tr(U)|?*) if X is not a t-design. This gives us a useful
metric to say how far a set with proper weight function is from being
a design.

» {|tr(U)|?*) has a nice combinatorial interpertation: the number of
permutations of {1, ..., t} with no increasing subsequences of order
greater than d [DS94, Rai98].

» If d >t then RHS is t!l.
» One of the easiest way to test if X is a t-design
Shortcomings:

» Does not give any insight into what t-designs are useful for.
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Introduction Small designs

Characterization of minimal t-designs

Definition
A minimal (unweighted) t-design X is a t-design such that all Y C X are
not (unweighted) t-designs.
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Introduction Small designs

Characterization of minimal t-designs

Definition
A minimal (unweighted) t-design X is a t-design such that all Y C X are
not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight
function w.
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Introduction Small designs

Characterization of minimal t-designs

Definition
A minimal (unweighted) t-design X is a t-design such that all Y C X are
not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight
function w.

» Useful tool for proving minimality.
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Introduction Small designs

Characterization of minimal t-designs

Definition
A minimal (unweighted) t-design X is a t-design such that all Y C X are
not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight
function w.

» Useful tool for proving minimality.
» Sadly, minimal designs are not necessarily minimum.

» Currently working on finding correspondences between minimal and
minimum designs.
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Introduction Small designs

A lower bound on the size of t-designs

Proposition
If X C U(d) is a t-design then | X| > (|t,gljt)| O
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Introduction Small designs

A lower bound on the size of t-designs

Proposition
If X C U(d) is a t-design then | X| > <|trfﬁt)| -

» Best known bounds are by Roy and Scott [RS08]: | X| > (d2+tt_1)
» Asymptotically, for large d and fixed t, both bounds are ©(d?f)
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Using designs 1-design

1-design construction

> Let |e1)...|eq) be an orthonormal basis of C that is mutually
unbiased with the standard basis.

» Define I; = v/ddiag(|e;)) for 1 < i < d.
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Using designs 1-design

1-design construction

> Let |e1)...|eq) be an orthonormal basis of C that is mutually
unbiased with the standard basis.

» Define I; = v/ddiag(|e;)) for 1 < i < d.

» Consider the cyclic permutation group of order d, represented as
d-by-d matrices: Cl...C¢ where C4 = C% = 1.
> Define C" = C™};
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Using designs 1-design

1-design construction

> Let |e1)...|eq) be an orthonormal basis of C that is mutually
unbiased with the standard basis.

» Define I; = v/ddiag(|e;)) for 1 < i < d.

» Consider the cyclic permutation group of order d, represented as
d-by-d matrices: Cl...C¢ where C4 = C% = 1.

> Define C" = C™};

For any tuple 1 < /,j, m,n < d we have:

d ifi=jandm=n

0 otherwise

tr((C")* C) = tr(fF COmnly) = {
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Using designs — Evaluating ([ -, V])

e

Evaluating the average commutator over U(d)

Theorem
For any V € U(d) and [U, V] = U*V*UV we have:

(-vp="y
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Using designs — Evaluating ([ -, V])

—

Proof of EAC
Consider the diagonalization of V*, i.e. V* = P*DP, with
D= diag()\l, ceey )\d)

/ U*V*UV dU:[ UV*U du]vz[ U*P*DPU du}v
U(d) u(d)

u(d)
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Using designs — Evaluating ([ -, V])

Proof of EAC

Consider the diagonalization of V*, i.e. V* = P*DP, with
D= diag()\l, ceey )\d)

/ U*V*UV dU:[ UV*U du]vz[ U*P*DPU du}v
U(d) u(d)

u(d)

But we know a symmetry that allows substituting PU — U without
changing the average.

/ U*P*DPU dU = / U*DU dU
u(d) u(d)

> Let F(U) = U*DU.
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Using designs — Evaluating ([ -, V])

Proof of EAC

Consider the diagonalization of V*, i.e. V* = P*DP, with
D= diag()\l, ceey )\d)

/ U*V*UV dU:[ UV*U du]vz[ U*P*DPU du}v
U(d) u(d)

u(d)

But we know a symmetry that allows substituting PU — U without
changing the average.

/ U*P*DPU dU = / U*DU dU
u(d) u(d)

» Let f(U) = U*DU.
» Look at the elements of the design: f(C™) = [*(C™)*DC™|;.
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Using designs — Evaluating ([ -, V])

Proof of EAC

Consider the diagonalization of V*, i.e. V* = P*DP, with
D= diag()\l, ceey )\d)

/ UsV*UV dU:[ UrVEU du]vz[ U*P*DPU dU| V
u(d) U(d) u(d)

But we know a symmetry that allows substituting PU — U without
changing the average.

/ U*P*DPU dU = / U*DU dU
u(d) u(d)

» Let f(U) = U*DU.
» Look at the elements of the design: f(C™) = [*(C™)*DC™|;.
> (Cm)*DCm = diag()\cm(l), ceey )\Cm(d))
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Using designs — Evaluating ([ -, V])

Proof of EAC

Consider the diagonalization of V*, i.e. V* = P*DP, with
D= diag()\l, ceey )\d)

/ UsV*UV dU:[ UrVEU du]vz[ U*P*DPU dU| V
u(d) U(d) u(d)

But we know a symmetry that allows substituting PU — U without
changing the average.

/ U*P*DPU dU = / U*DU dU
u(d) u(d)

» Let f(U) = U*DU.
» Look at the elements of the design: f(C™) = [*(C™)*DC™|;.
> (CM)*DC™ = diag(Acm(1)s > Aem(a))
Thus, (f) = dt=tAe g O
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Using designs t-designs are non-commuting

t-designs are non-commuting

Definition
X C U(d) is a non-commuting if there is some U, V € X such that
[U, V] #1.

Theorem
For all d > 2 if X C U(d) is a t-design then X is non-commuting.

Supports our intuition that designs must be well ‘spread out’.
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Conclusion

Concluding remarks

> Introduced 3 definitions of unitary t-designs
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Conclusion

Concluding remarks

> Introduced 3 definitions of unitary t-designs

> Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.
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Conclusion

Concluding remarks

> Introduced 3 definitions of unitary t-designs

> Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

» Used an orthonormal basis of C?*? as a 1-design.
> Evaluated the average commutator on U(d): ([, V]) = V vV y

> Showed that t-designs are non-commuting

School of Computer Science

Introduction to unitary t-designs January 7,2010._



Conclusion

Concluding remarks

> Introduced 3 definitions of unitary t-designs

> Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

» Used an orthonormal basis of C?*? as a 1-design.
> Evaluated the average commutator on U(d): ([, V]) = V vV y

> Showed that t-designs are non-commuting

Thank you for listening!
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