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Chapter 1

Introduction

Proof mechanization provides strong trust guarantees towards the validity of theorems. Con-

trary to informal proofs, expressing a theorem and its proof formally requires absolute pre-

cision. The resulting statement can thus become riddled with technicalities, which obscures

their relation to their informal counterparts. This work combines two approaches to type sys-

tems that significantly reduce the added complexity from formalization, namely refinement

types and higher-order abstract syntax (HOAS).

Datasort refinement types (Freeman and Pfenning, 1991; Freeman, 1994) provide ways to

define subtypes (called datasorts or just sorts) by imposing constraints on the constructors

of (inductive) types. Intuitively, a sort S refines a types A if it is defined by a subset of its

constructors. The idea originated in the simply-typed setting, where refinements enhance

the expressive power of the type system. Later, Lovas and Pfenning (2010); Lovas (2010)

extended datasort refinements to the dependently-typed Edinburgh logical framework LF

(Harper et al., 1993). They provide an equivalence between their system of refinements,
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LFR, and another extension of LF with proof-irrelevance. An immediate conclusion here is

that refinements do not increase the expressive power of dependently-typed calculi. Rather,

Lovas (2010) observes that refinements may significantly reduce the verbosity of mechanized

proofs, which is demonstrated through several case studies.

Beluga is a two-level programming language based on contextual modal type theory

(CMTT) (Nanevski et al., 2008). It uses the Edinburgh logical framework LF (Harper et al.,

1993) as a specification logic (data-level), with an intuitionistic first-order reasoning logic

(computation-level). The data-level is embedded in the computation-level via a (contextual)

box modality similar to the one in the modal logic S4. From a logical point of view, the

formula □A (read box A) expresses that A is true under no assumptions, i.e. in the empty

context. The contextual box modality generalizes this idea to arbitrary contexts, yielding

formulas of the form [Ψ ⊢ A] expressing that A holds in context Ψ. This allows us to represent

LF objects (and types) together with a context in which they are meaningful. To handle this

representation, LF contexts are restricted using a notion of schema that acts as classifiers

of contexts, similarly to how types classify terms. In addition, LF substitutions are first-

class objects of Beluga and they can be used to move objects from one context to another

while preserving their meaningfulness. These features allow the expression of an object

language (OL) using HOAS (Pfenning and Elliott, 1988) and provide several substitution

lemmas for free in our mechanizations.

We present Beluga and its extension with refinement types in chapters 3 and 4, which

discuss the data-level and computation-level, respectively. The core of the extension consists

of replacing the LF layer of Beluga with a variation on the LFR system of Lovas and
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Pfenning (2010); Lovas (2010). We then lift the refinement relations to the computation-

level through straightforward congruence rules and show that the extension is conservative,

meaning that every well-sorted program of our extension is well-typed in conventional Bel-

uga. However, this result only applies if we consider Beluga as a general-purpose language

rather than a proof environment. This is because a Beluga proof is a recursive function that

terminates on every inputs and refinements allow specifying more precise domains. Thus,

the types that we obtain from conservativity can extend the domain of a function, leading

to undefined behaviour on certain inputs. In this sense, the extension permits interpreting

some partial recursive functions as proofs. While termination is an important part of our

work, we focus here on defining the refinements and leave termination checking for future

work.

Once the system is defined, we argue for its usefulness through several case studies,

detailed in chapter 5. The most stricking example is a benchmark challenge taken from

Felty et al. (2015). These benchmarks use relations between contexts as a way to specify

lemmas and theorem in a reusable fashion. Our notion of refinement schema coincides nicely

with some of these context relations and this leads to significant improvements in the formal

statements of theorem.

Finally, we survey the litterature in chapter ?? and conclude in chapter 6.
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Chapter 2

Preliminaries

This chapter aims to introduce the background information needed to understand our work.

We present first a detailed overview of the structure of Beluga. Then, we discuss previous

work on refinement types. In the process, we introduce several of the key components of

our system. We also discuss the modifications that were made to previous work so as to

facilitate a smooth integration of refinements to Beluga.

2.1 Beluga

Beluga is a dependently-typed functional programming language inspired by contextual

modal type theory (CMTT) (Nanevski et al., 2008). It allows direct manipulation of higher-

order abstract syntax (HOAS) representation of object languages (OLs). In particular,

this means that the mechanized OL inherits the correct behaviour of substitutions from

Beluga’s specification language. This provides important benefits in concisely mechanizing

the meta-theory of programming languages, since substitution properties tend to require
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long, technical proofs.

This section describes the structure of Beluga’s type system and programs, with the

goal of making our presentation of refinement types for Beluga more accessible. Beluga

consists of two levels: a specification language (also called the data-level), and a computation

language (also called the computation-level). The data-level is an extension of the Edinburgh

logical framework LF (Harper et al., 1993) with contextual types, which we therefore call

Contextual LF. The computation-level is an ML-style functional language in which types can

depend on Contextual LF objects, but not other computation-level objects. The ability to

manipulate contextual objects allows pattern matching on open code, which further enhances

the clearness of proofs. We will start by reviewing LF itself, before extending it to Contextual

LF, and finally presenting the computation-level.

The formulation of Beluga has varied somewhat significantly over the years of its devel-

opment. Here, we present a further variation closely inspired by the one of Pientka and Abel

(2015), although we will discuss, in this chapter, how the definition has evolved over time.

Throughout the presentation, we include a mechanization of the simply-typed λ-calculus

and some of its meta-theory. Later, we will revisit this mechanization to see how it can be

improved with refinement types.

2.1.1 LF

The Edinburgh logical framework LF (Harper et al., 1993) is a dependently-typed specifica-

tion language specialized in representing formal systems, such as logics and typed λ-calculi.

The key idea behind LF is its “judgments-as-types” principle, which identifies, through a
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Curry-Howard correspondence, LF types with judgments of the mechanized OL. Well-typed

LF objects then correspond to proofs of the OL judgments.

LF is separated into three levels, terms (or objects), types, and kinds. Intuitively, terms

are programs, types are classifiers of terms, and kinds are classfiers of types. The presence of

kinds ensures that LF types are predicative, meaning here that LF types may only depend

on objects that do not inhabit them.

We adopt here a canonical form presentation (Watkins et al., 2002), although Harper et al.

(1993)’s original formulation of LF is more permissive in allowing reductions to occur. For

our purposes, LF serves only as a specification language, so it is not too restrictive to require

from our users that they write normal forms. Moreover, Harper et al. (1993) shows that LF

is strongly normalizing, implying that any (well-typed) LF term has a unique normal form.

Thus, in requiring normal forms only, we lose none of LF’s power. Additionally, canonical

forms go hand-in-hand with bi-directional type checking, which allows us to get rid of type

annotations in function abstractions. This means that types never appear directly within

terms, which is compatible with an extrinsic view of typing. Extrinsic typing has limited

impact here since LF (and the entire Beluga) has type uniqueness, but it will play an

important role when we introduce refinement types later on.

Syntax

We also differ from Harper et al. (1993) by defining terms using a head and spine syntax.

Given the simplicity of LF, this leads to a somewhat verbose presentation. However, the

use of heads and spines facilitates extending the language of terms since we only need to add
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new heads. With this in mind, we define the syntax of terms as follows :

Head H ::= c | x

Spine M⃗ ::= nil |M ; M⃗

Neutral term R ::= H M⃗

Normal term M ::= R | λx.M

The head c represents constants, while x represents variables. A spine M⃗ is simply a list

of normal terms. Neither heads nor spines are valid terms on their own.

To construct a term, we first apply a head H to a spine M⃗ , yielding the neutral term

H M⃗ . We will write simply H when M⃗ = nil is the empty spine. Intuitively, heads are

functions that cannot be evaluated when applied to arguments: c is a constructor so it is

generative, while x must be substituted by an actual function before we can evaluate it.

Spines are used to pass multiple arguments to a head at once.

A normal term is either a neutral term of a function abstraction λx.M . The fact that

applications may only be used in the neutral phase ensures that a function λx.M is never

directly applied to arguments. Since heads do not represent concrete computations, the

separation of terms into neutral and normal ensures that no evaluation is possible.

Now, our syntax of terms encodes an untyped λ-calculus enhanced with constants. Since

we only describe normal forms, none of the terms can actually run, but we can still express

functions that would run forever if they were to be applied in the wrong ways. For instance,

the term λx.x x describes a function that applies its only input to itself. If we were to apply

this function to itself, we would obtain the self-reproducing term (λx.x x) (λx.x x), which

does not normalize. The problem with these terms is that the variable x is used as a both
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function and its argument, which introduces a form of impredicativity.

Types allow us to reject the bad terms described above. In LF, types are allowed to

depend on terms (hence we say that it is dependently-typed). A type depending on a term

M corresponds to a property of M expressed in first-order logic (FOL) and classifies those

terms that can be seen as proofs of that property. More generally, a type depending on

terms M1, ...,Mn represents a relation between those terms and is inhabited by proofs of

that relation. In other words, LF allows a Curry-Howard isomorphism with (intuitionistic)

FOL, according to which types are propositions and terms are proofs. Types are defined by

the following syntax:

Atomic types P ::= a M⃗

Canonical types A ::= P | Πx:A1.A2

The atomic types a M⃗ consist of an atomic type constant a applied to a spine. a must

have been declared and assigned a kind K (see the discussion of declarations below). The

spine M⃗ must be made of terms that match the corresponding type in K and we require

that all type families be fully applied. We will write only a for a nil.

Canonical types are either atomic or dependent function spaces Πx:A1.A2 from A1 to A2,

where x may occur in A2. We adopt the common convention of writing A1 → A2 instead of

Πx:A1.A2 when x does not occur in A2, and we call A1 → A2 a simple function space.

Next, the fact that types are allowed to depends on terms introduces the possibility that

some types are ill-formed. For instance, if we have a type even expressing that a number

is even, then even M is only meaningful when M is a number. To handle this, we need a

notion of kinds. Intuitively, a kind classifies types based on the objects to which they can
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be applied, similarly to how types classify terms based on the arguments to which they can

be applied. They are given by the following syntax:

Kinds K ::= type | Πx:A.K

The kind typeclassifies all the well-formed types, that is those with no unspecified de-

pendencies. Every other kind has the form Πx1:A1.Πx2:A2. · · ·Πxn:An.type and classifies

those types with dependencies on objects of types A1, A2, ...An. For our purposes, only type

constants a can have a kind different than type.

Next, we need a way to keep track of bound variables as we traverse open terms, which

we do using contexts. For now, we view contexts simply as lists of variables together with

their types. We thus obtain the following syntax for contexts:

Context Γ ::= · | Γ, x:A

where · is the empty context, and Γ, x:A extends the context Γ with a fresh (i.e. new)

variable x of type A.

An LF program consists of a sequence of declarations of either constant objects or atomic

type families. When declared, every constant object must be assigned a type and every

atomic type must be assigned a kind. Each declaration is stored in a globally accessible

signature, denoted Sig(Σ is also commonly used, but we reserve it for later).

In our work, constant declarations are bound within type declarations. This is because

constants are really constructors for atomic types, so they can only be defined while defining

the atomic type. In this case, there is only one form of LF declaration for us, given by the

following syntax :
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Declaration D ::= (LF a : K = c1 : A1 | c2 : A2 | ... | cn : An)

Signature Sig ::= · | Sig, D

For simplicity, this thesis treats only of sequential declarations. That is, a declaration may

only reference previously declared constants and types. Mutual definitions can be handled

by including subordination into our judgments (Virga, 1999).

Example: Simply typed λ-calculus

We demonstrate the usefulness of LF as a specification language by encoding a simply-

typed λ-calculus (STLC) with natural numbers. Every snippet of code needed in the mech-

anization is accompanied by an informal definition of what is encoded, so as to show how

closely related the formal and informal versions are. We begin by encoding the types of

STLC:

LF tp : type =

| nat : tp

| arr : tp → tp → tp;

STLC Types T ::=

N

| T1 → T2

On the left, we see the syntax of an LF declaration of the type tp. It is defined by the two

constructors nat and arr. The type of nat tells that this constructor is already a tp. On

the other hand, the type of arr indicates that this constructor must be given two arguments

of type tp in order to produce a new object of type tp. If we contrast this formal definition

with the informal syntax of STLC types on the right, we see that N is indeed a type on its

own, while the function types T1 → T2 necessitate two previously constructed types T1 and

T2. In other words, the formal and informal definitions of STLC types can clearly be seen

to encode the same concept.

14



Next, we encode the terms of STLC:

LF tm : type =

| zero : tm

| succ : tm

| lam : tp → (tm → tm) → tm

| app : tm → tm → tm;

STLC Terms e ::= x

| 0

| S e

| λx:T.e

| e1 e2

Here, the correspondence between formal and informal encoding is a little less clear. In

particular, the informal syntax includes variables x, but the formal definition does not have

a constructor for variables. Instead, the fact that tm includes variables is hidden in the

negative occurence of tm in the type of the constructor lam.

We note that negative occurences do not cause trouble in LF because of its weak function

space. Specifically, the negative occurence of tm in (tm → tm) is simply represented as an

LF variable of type tm that may occur within the positive occurence of tm. This is in

accordance with the principles of HOAS, whereby variables of the OL are represented as

variables of the meta-language (in this case, LF). HOAS then also permits the use of meta-

language substitutions for representing OL substitutions through function applications. This

provides us with the necessary tools to elegantly encode the typing judgment :
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LF oft : tm → tp → type =

| t-zero : oft zero nat

| t-succ : oft e nat →

oft (succ e) nat

| t-lam : ({x:tm} oft x T → oft (e x) T’) →

oft (lam T e) (arr T T’)

| t-app : oft e1 (arr T’ T) → oft e2 T’ →

oft (app e1 e2) T

Γ ⊢M : A – STLC typing

Γ ⊢ 0 : N

Γ ⊢ e : N
Γ ⊢ S e : N

Γ, x:T ⊢ e : T ′

Γ ⊢ λx:T.e : T → T ′

Γ ⊢ e1 : T ′ → T Γ ⊢ e2 : T ′

Γ ⊢ e1 e2 : T

The most interesting aspect of this definition is the encoding of the rule for λ-abstractions.

We use the curly braces {x:tm} to denote explicit universal quantification over tm. Notices

in particular how we represent the informal context extension Γ, x:T using the negative oc-

curences of tm and oft x T. Notice also how the dependency of the function body e on the

variable x is represented using a function application in oft (e x) T’.

Judgments

Now that we have defined and examplified the syntax of LF, we can discuss its judgments.

We focus here on the typing judgments, athough, for completeness, we also need a kinding

judgment and a context formation judgment. We leave out kinding from this discussion as

it is straightforward to define it, but we provide its definition in Appendix A We will discuss

context formation in depth later on, but for now we think of a context Γ as well-formed if it

contains no duplicate variable and every type in Γ is well-formed.

We use a bi-directional typing algorithm. This means that we have two main judgments:
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Γ ⊢ H ⇒ A – Synthesize type A for head H

(c:A) ∈ Sig

Γ ⊢ c ⇒ A

(x:A) ∈ Γ

Γ ⊢ x⇒ A

Γ ⊢ M⃗ : A′ > A – Apply A′ to M⃗ , resulting in A

Γ ⊢ nil : A > A

Γ ⊢M ⇐ A1 Γ ⊢ M⃗ : [M/x]A2 > A

Γ ⊢M ; M⃗ : Πx:A1.A2 > A

Γ ⊢ R ⇒ A – Synthesize type A for neutral term A

Γ ⊢ H ⇒ A′ Γ ⊢ M⃗ : A′ > A

Γ ⊢ H M⃗ ⇒ A

Γ ⊢M ⇐ A – Check M against A

Γ ⊢ R ⇒ A
Γ ⊢ R ⇐ A

Γ, x:A1 ⊢M ⇐ A2

Γ ⊢ λx.M ⇐ Πx:A1.A2

Figure 2.1: LF typing rules
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type synthesis for neutral terms, denoted Γ ⊢ R ⇒ A, and type checking for normal terms,

denoted Γ ⊢ M ⇐ A. As the names suggest, the type A is an output of type synthesis

judgment and an input of the type checking judgment. From a proof-theoretic perspective,

the synthesis phase corresponds to using only elimination rules, while the checking phase

uses only introduction rules. Here, we only have functions, so elimination is application and

introduction is λ-abstraction, but the idea generalizes to richer type systems.

In addition, we need a type synthesis judgment for heads, denoted Γ ⊢ H ⇒ A, and

a type checking judgments for spines, denoted Γ ⊢ M⃗ : A′ > A. Synthesis for heads is

simply a lookup in the signature (for constants) or context (for variables). Type checking

for spine takes in a spine M⃗ = M1; ...;Mn and a type A′ = Πx1:A1...Πxn:An.A
′′, then

validates that Γ ⊢ Mi ⇐ [M1/x1, ...,Mi−1/xi−1]Ai for each i and produces the output A =

[M1/x1, ...,Mn/xn]A
′′.

These judgments should be read bottom-up. This means that we start by a type-checking

phase, during which we peel off any λ-abstraction that occurs and extend the context with

the new variables. Once we reach a function application, we attempt to synthesize its type

by first synthesizing the type of the head, and then verifying that each argument in the spine

checks against the expected type. Once we have synthesized a type for the application, we

compare it (syntactically) with the type that we were checking against. A type-checking

derivation succeeds only when the comparison yields that the two types are indeed equal.

Generally, equality of dependent types reduces to equality between terms. Since our

language only allows normal terms, equality of terms is simply syntactic equality (modulo

α-renaming).
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Example: Comparing LF and OL derivations

To finish our presentation, let us see how an informal typing derivation in STLC compares

to its formal LF derivation. Consider the STLC function λx:N.S N that increments a natural

number. Clearly, this function has type N → N, which we can indeed validate with the

following proof:

(x:N) ∈ (x:N)
x:N ⊢ x : N

x:N ⊢ (S x) : N
⊢ (λx:N.S x) : (N → N)

In contrast, the corresponding encoding of the function λx:N.S x is the LF object

lam nat (λx. succ x), and the type N → N translates to arr nat nat. We then expect

the LF type oft (lam nat (λx. succ x)) (arr nat nat) to be inhabited by a proof sim-

ilar to the above. It is not difficult to work out that the LF object t-lam (λx.λt. t-succ t)

is the one we want, as demonstrated by the following LF derivation :

(t:oft x nat) ∈ (x:tm, t:oft x nat)

x:tm, t:oft x nat ⊢ t : (oft x nat)

x:tm, t:oft x nat ⊢ (t-succ t) : (oft (succ x) nat)

x:tm ⊢ (λt.t-succ t) : Πt:oft x nat.oft (lam nat (λx.succ x)) (arr nat nat)

⊢ (λx.λt.t-succ t) : (Πx:tm.Πt:oft x nat.oft (lam nat (λx.succ x)) (arr nat nat))

⊢ (t-lam (λx.λt. t-succ t)) : (oft (lam nat (λx. succ x)) (arr nat nat))

Now, we can clearly see that the informal STLC typing derivation and its formal LF

counterpart have roughly the same shape, although the formal proof has a few extra steps.

Specifically, there are two extra steps needed to perform the context extension properly.

In particular, notice how we end up with the context x:tm, t:oft x nat to represent the
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informal assumption x:N. This is inevitable since x:N introduces both the term variable x

and the assumption that it has type N.

Generally speaking, informal presentation of typed λ-calculi may allow various ways to

extend a context with new bindings. These bindings can have complex structures involving

several assumptions and constraints on how these assumptions are made. For instance, in a

polymorphic language, we may have type variables of any kind, but only allow term variables

to have a type of kind type.

In short, the correspondence between an OL context and the LF context representing

it is not always obvious. Since our HOAS is based around the principle that OL variables

can be represented as LF variables, it follows that OL contexts can be represented as LF

contexts. However, as we have just seen, an LF context must have a particular structure in

order to adequately encode an OL context. Therefore, to properly represent OLs, we need

a tool to enforce the particular structure of their contexts and facilitate their manipulation.

To achieve this, we will extend LF to Contextual LF.

2.1.2 Contextual LF

Contextual LF extends LF with contextual types. Simply, a contextual type Γ ⊢ A consists

of a type A together with a context Γ containing all of the free variables in A. An object

of type Γ ⊢ A has the form Γ ⊢ M and must satisfy Γ ⊢ M ⇐ A. The key advantage of

this approach lies in the fact that Γ ⊢ Πx:A.A′ is equivalent to Γ, x:A ⊢ A′, and similarly

for objects. This allows us to express traversals under binders directly through context

extensions.
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In addition, we revise the notion of LF contexts to improve their ability to represent OL

contexts. In particular, we add the notion of a schema to classify contexts based on their

structures, thus enforcing the correct representation of OL binders. Moreover, we extend

the language with an explicit substitution calculus that allows moving an object from one

context to another while preserving its meaningfulness.

Revision of contexts

As illustrated in our last example, representing the binding structures of an OL may require

multiple LF variables. To ensure the adequacy of our representations, we must specify how

to extend an LF context so that it actually corresponds to an OL context. To handle this,

Felty et al. (2015) suggests structuring contexts into lists of tuples of variables instead of flat

lists of variables. With this additional structure, we can more accurately characterize the

assumptions contained within a context. We achieve this by adding schemas to the language.

Schemas originated in the work of Schurmann (2000) as classifiers of LF contexts. They

were first included to Twelf (Pfenning and Schürmann, 1999), a proof environment that

implements LF. In this work, a schema element (or block schema in their terminology)

is a parameterized record type, and a context schema is a collection of schema elements.

Intuitively, the record of a schema element contains all the LF variables necessary to encode

one OL assumption, and it is parameterized with the premisses of the OL’s context formation

rules, in accordance with the judgment-as-types principle. Then, a context schema is the

list of all possible ways to introduce an OL assumption.

Beluga has had a notion of schemas since its beginning (Pientka, 2008), although it
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differs from Schurmann (2000) in that schema elements are just types. However, the language

presented by Pientka (2008) already contains tuples and it is simply-typed, so there is no need

for parameterizing them. In this sense, the difference from Schurmann (2000) is superficial.

Soon after, the dependently-typed formulation of Beluga by Pientka and Dunfield (2008)

returns to a notion of schema in line with Schurmann (2000). Since records are not valid LF

types, variables with record types may only be accessed through projections.

Later formulations by Cave and Pientka (2012, 2013); Pientka and Abel (2015) restrict

the records of schema elements to be single types. The removal of records simplifies the

treatment of contexts since there are no more projections to handle. However, we know that

this is insufficient to properly describe an OL context.

Here, we return again to a notion of schema with records. Moreover, we consider schemas

with a generative flavour: a schema specifies how a context can be constructed. In this sense,

we think of schemas as the atomic types of contexts, where schema elements correspond to

constructors. An important difference with atomic types is that schema elements only tell

us how to extend a context of the same schema. In a sense, every schema element can

be thought of as having an implicit argument corresponding to the context that is being

extended.

We now define contexts and schemas with the following syntax:
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Blocks of declarations B ::= · | Σx:A.B

Schema elements E ::= B | Πx:A.E

Context schemas G ::= · | G+w:E

Contexts Γ ::= · | ψ | Γ, x:A | Γ, b:w · M⃗

Heads H ::= ... | b.i

Blocks of declarations represent tuples of labelled assumptions, i.e. variables. The empty

block · is not valid on its own, rather it is a syntactic device that indicates the end of a block.

Empty blocks are not strictly necessary for the system to work, but facilitate the theoretical

development by providing a simple base case.

A schema element is a parameterized block of declarations. While blocks express specific

instances of assumptions, schema elements encode the general requirements of a particular

form of assumption. Note that every block of declarations is also a schema element that

relies on no additional parameters.

A schema is given as a list of named schema elements, and we write w to indicate

these names. Schema elements can only be defined within schema declarations, much like

constants are defined within type declarations. Consequently, every schema element used in

a mechanization must have a name. The empty schema · describes the collection of contexts

that can be formed without ever adding assumptions, i.e. only the empty context. Like for

blocks, the interest of an empty schema lies mainly in simplifying the meta-theory of our

system, and so it could be omitted entirely.

Finally, contexts are now allowed to contain blocks of declarations b:w · M⃗ . If w :

Π(
−−→
x:A).B, then w · M⃗ corresponds to the concrete block of declarations [M⃗/x⃗]/B. Since
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Σ-types are not proper LF types, block variables can only be used in LF objects through

projections, denoted b.i. Intuitively, this projection corresponds to a single variable within

the block, hence we extend our syntax of heads with b.i. We also need to add an inference

rule to the type synthesis for head judgment:

(b : w · M⃗) ∈ Γ ∆; Γ ⊢ w · M⃗ > B ∆;Γ ⊢ b : B ≫i
1 A

∆;Γ ⊢ b.i⇐ A

where the judgment ∆; Γ ⊢ w · M⃗ > B computes the concrete block of declarations B

represented by w · M⃗ , and the judgment ∆; Γ ⊢ b : B ≫i
1 A extracts the type A of the ith

component of B. We omit the definition of these judgments here as they are straightforward,

but provide them in Appendix A.

In addition, we allow LF contexts to start with a context variable ψ. We stress that

although ψ may occur within an LF context Γ, it is not itself an LF variable, but rather a

Contextual LF variable. As such, ψ must be bound outside of Γ. To handle this issue, we

use a meta-context ∆ that is allowed to contain, among other things, our context variables.

We will discuss meta-contexts in details when we formally introduce contextual types and

contextual objects. For now, it suffices to know that ∆ can contain assumptions ψ:G that

context variable ψ has schema G.

Note that, while arbitrary single assumptions x:A may still appear within an LF context,

the type A is not described by the syntax of schema elements. However, the type A is

essentially the same as the block of declarations (and therefore schema element) Σx:A.·. In

this sense, the single assumptions are not strictly necessary for mechanizations themselves.

However, several of our judgments (in particular, block and schema element well-formedness)

rely on adding single assumptions to LF contexts, so we need them for the meta-theory at
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∆ ⊢ Γ : G – LF context has schema G in meta-context ∆

∆ ⊢ G : schema
∆ ⊢ · : G SC-empty

(ψ : G) ∈ ∆

∆ ⊢ ψ : G
SC-var

∆ ⊢ Γ : G (w:E) ∈ G ∆;Γ ⊢ M⃗ : E > B

∆ ⊢ (Γ, b:w · M⃗) : G
SC-ext

∆;Γ ⊢ M⃗ : E > B – Instantiate schema element E with parameters M⃗ , yielding D.

∆; Γ ⊢ nil : B > B
Inst-block

∆;Γ ⊢M ⇐ A ∆;Γ ⊢ ([M/x]V )M⃗ : V > B

∆;Γ ⊢M ; M⃗ : Πx:A.V > B
Inst-pi

Figure 2.2: Schema-checking rules

least.

Now, let us go over the schema-checking judgment ∆ ⊢ Γ : G (see Figure 2.2). First, the

rule SC-empty tells us that the empty context inhabits every schema. The other base case

is the rule SC-var, that tells us that a context variable has the schema that it was declared

to have.

The rule SC-ext is used to validate schemas of contexts containing actual variables. It

is restricted to block variables b:w · M⃗ , where w : E is defined in the schema that we are

checking against. To validate that a context extension is correct, we simply need to check

the terms of M⃗ against the type parameters dictated by the schema element E. We perform

this verification with the auxiliary judgment ∆; Γ ⊢ M⃗ : E > B, which incidentally generates

the concrete block of declarations B. Although we do not need to generate the actual blocks

for schema-checking, we will need to do so in order to derive the types of variables later on
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and we can reuse the same judgment. In practice, we would use two separate judgments to

avoid type-checking M⃗ every time a block variable is used, which would significantly impact

performance.

Example: Terms of STLC

When we defined the type tm of terms in our OL, we assigned the type (tm → tm) → tm

to the constructor lam, and said that the negative occurence of tm posed no problem as it

would simply be represented as an LF variable in the ambient context. Now, we want to

make the LF context explicit and use it to represent the OL context, so we need to specify a

schema that classifies those LF context that correspond to and OL context. In this setting,

we only need a variable of type tm, so we define the schema as follows:

LF lam-ctx : schema =

| lc-var : block (x:tm);

This new explicit syntax of schema declarations is purposefully similar to the one of

atomic type declarations. In differs only in two ways: First, the kind is replaced with schema,

which we think of as analogous to the kind type. Second, the constructors are assigned

schema elements instead of types. The keyword block indicates which fresh variables should

be included in the new block of declarations.

Now, in the typing judgment oft, the rule for λ-abstraction is encoded through the

constructor t-lam : ({x:tm} oft x A → oft (M x) B) → oft (lam A M) (arr A B)

contains negative occurences of both tm and oft. In this case, adequately representing the

contexts of STLC requires extending the LF context with two variables. Thus, our schema
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lam-ctx, despite accurately representing all terms of the OL, is ill-suited to representing also

its typing derivations. We can solve this issue with a more sophisiticated context schema:

LF stlc-ctx : schema =

| typ-var : some [A:tp] block (x:tm, t:oft x A);

The keyword some corresponds to the Π of schema elements, and all the parameters are

introduced within the square brackets (in this case, there is only A:tp). Then, when provided

with a particular A, typ-var produces the block of declarations (x:tm, t:oft x A) which

corresponds to the negative occurences in the type of t-lam. We denote the extension of a

context Ψ : stlc-ctx as Ψ, b:typ-var A, and access the variables contained in the block

with the projections (b.1 to access x and b.2 for t).

Substitutions

Next, we address how the new structure of contexts impacts substitutions. Since we are using

a canonical forms presentation, we need to use hereditary substitutions as well (Watkins

et al., 2002). This means that substitutions must perform certain reduction steps to ensure

that the resulting object remains in normal form. Essentially, whenever a variable occurs in

a head position and is substituted for a λ-abstraction, the hereditary substitution will apply

β-reduction. For instance, [(λx.x)/x′](x′ M) would ordinarily yield (λx.x) M , which is not

normal, but the hereditary substitution will further reduce this into M .

So far, every substitution that we have used included an explicit specification of the

substituted variables. Our most recent one, [(λx.x)/x′], substitutes only the variable x′. In

what follows, we instead require that substitutions have the same shape as their context

27



∆;Γ′ ⊢ σ : Γ – σ is a well-formed substitution with domain Γ and co-domain Γ′.

∆ ⊢ Γ1 : ctx
∆;Γ1 ⊢ · : · Subst-empty

(ψ : G) ∈ ∆ ∆ ⊢ Γ1 : ctx

∆;Γ1 ⊢ idψ : ψ
Subst-id

(s:Γ1 ⊢ Γ2) ∈ ∆ Γ ⊢ σ : Γ1

∆;Γ ⊢ s[σ] : Γ2
Subst-var

∆;Γ1 ⊢ σ : Γ2 ∆;Γ1 ⊢M ⇐ [σ]A

∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)
Subst-tm

∆;Γ1 ⊢ σ : Γ2 ∆;Γ2 ⊢ w · M⃗ ′ > D ∆;Γ1 ⊢ M⃗ ⇐ [σ]D

∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:w · M⃗ ′)
Subst-spn

Figure 2.3: Explicit substitution calculus

domain. Now, let us look at the syntax of substitutions:

Substitutions σ ::= · | idψ | s[σ] | σ,M | σM⃗

We distinguish five forms of substitutions and write ∆; Γ′ ⊢ σ : Γ to indicate that σ has

domain Γ and co-domain Γ′. We will now discuss this judgment, whose formal definition is

given in Figure 2.3.

The empty substitution · has the empty context as a domain and can have any other

context as a co-domain. The substitution idψ is the identity for the context variable ψ, so

it has ψ for a domain.

Substitution variables s : Γ1 ⊢ Γ2 are located in the meta-context and have domain Γ2

and co-domain Γ1. These can only be used when paired with a delayed substutition σ, which

we indicate by writing it on the right of s rather than on its left. The delayed substitution

is necessary to ensure that substitution variables have the correct co-domain.
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Next, σ,M has domain Γ, x:A provided that σ has domain Γ and codomain Γ′, and

Γ′ ⊢ M ⇐ [σ]A. Notice that the terms composing a substitution must be meaningful in its

co-domain. These four forms were part of previous formulations of Beluga and have been

thoroughly discussed in the past (see Pientka (2008); Cave and Pientka (2013) for instance).

Here, we add a fifth form of substitutions, σ, M⃗ , that allows users to extend a substitution

with several objects at once, so that we can substitute blocks more easily. More precisely,

the spine M⃗ (which we really think of more as an n-ary tuple in this case) consists of terms

that match against each each variable in a block b:w · M⃗ ′. If we simply substitute M⃗ for b

in an LF object, we can obtain expressions of the form M⃗.i since b may only occur within

projections. This poses a problem since M⃗.i is not in normal form, which breaks the correct

behaviour of hereditary substitutions. Fortunately, we can extend hereditary substitutions

to compute the actual projections of the spine, simply by stating that:

[M⃗/b](b.i) =Mi if M⃗ =M1; ...;Mn and 1 ≤ i ≤ n

[M⃗/b](b.i) fails otherwise

For other objects, we define [M⃗/b](M ′) via the usual congruence rules, with the base cases

[M⃗/b](x) = x and [M⃗/b](c) = c.

Contextual objects

As mentionned above, a contextual type Γ ⊢ A consists of a type A together with a context

Γ containing all the free variables occuring in A. We also discussed how a contextual object

Γ ⊢M has type Γ ⊢ A if Γ ⊢M ⇐ A. If x:A ∈ Γ, then Γ ⊢ x⇐ A, so we have a contextual

object Γ ⊢ x of type Γ ⊢ A. However, we cannot say that x itself is a variable of type
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Γ ⊢ A. Consequently, this view of contextual objects is limited by a lack of variables with

contextual types. Similarly to context variables, the problem comes from the fact variables

of contextual types must exist outside of the LF context.

To address this issue, we simply allow our meta-contexts ∆ to contain assumptions of the

form u:(Γ ⊢ P ). We call u a meta-variable and restrict its type to Γ ⊢ P , that is contextual

atomic LF types. This restriction is superficial since the types Γ ⊢ Πx:A.A′ and Γ, x:A ⊢ A′

are isomorphic. Since we want meta-variables to occur within LF objects, we must once

again extend the syntax and type synthesis of heads:

Heads H ::= ... | u[σ] u:(Γ′ ⊢ A) ∈ ∆ ∆;Γ ⊢ σ : Γ′

∆;Γ ⊢ u[σ] ⇒ [σ]A

So, a meta-variable umay only occur in an LF object when it is paired with a substitution.

We have to this because u can denote an object meaningful in a different LF context from

the one we are currently working in. Again, we write the substitution on the the right

to indicate that it is a delayed computation. That is, once we substitute u with a proper

contextual object Γ′ ⊢ M , we apply the subsitution to bring M to context Γ. Note that,

while we include meta-variables in the syntax of heads, the restriction that they have an

atomic type means that we can only meaningfully apply it to the empty spine and convert

it to normal term. Accordingly, we could equivalently specify u[σ] as a normal term.

Meta-layer

We have now identified several kinds of variables that belong in the meta-context ∆. As we

move to the computation-level, we wish to be able to quantify over each of these variables.

In the current presentation, this would require the introduction of distinct function spaces
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∆ ⊢ M : A – Meta-object M has meta-type A

∆;Γ ⊢ R ⇐ P

∆ ⊢ (Γ̂.R) : (Γ.P )
MOft-tm

∆;Γ1 ⊢ σ : Γ2

∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)
MOft-subst

∆ ⊢ Γ : G (schema checking)

∆ ⊢ Γ : G (mtype checking)
MOft-ctx

Figure 2.4: Meta-level typing

for each kind of variables, leading to an unnecessarily verbose system. To address this issue,

Cave and Pientka (2012) suggests unifying the different kinds of assumptions into what they

call the meta-layer.

Simply put, we define a notion of meta-type that englobes the classifiers of contexts,

substitutions, and contextual objects. Similarly, we unify contexts, substitutions, and con-

textual objects into the notion of meta-object. This approach also simplifies the definitions

of meta-contexts and meta-substitutions, which we are finally ready to discuss. First, let us

look at the syntax of the meta-layer:

Meta-object M ::= Γ̂.R | Γ̂.σ | Γ̂

Meta-type A ::= Γ.P | Γ.Γ′ | G

Meta-variable X ::= u | s | ψ

Meta-context ∆ ::= · | ∆, X:A

Meta-substitution θ ::= · | θ,M

The meta-level typing rule, defined in Figure 2.4, are simply conversion rules from the

previously defined judgments. That is, we obtain ∆ ⊢ (Γ̂.R) : Γ.P by invoking the LF
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typing judgment ∆; Γ ⊢ R ⇐ P , that ∆ ⊢ Γ̂.σ : Γ.Γ′ by invoking the LF substitution

correctness judgment ∆; Γ ⊢ σ : Γ′, and that ∆ ⊢ Γ : G by invoking the schema-checking

judgment ∆ ⊢ Γ : G. The same idea applies for the judgment ∆ ⊢ A : mtype that validates

meta-type well-formedness. As for meta-context and meta-substitutions well-formedness, we

use judgments ⊢ ∆ : mctx and ∆ ⊢ θ : ∆′ (respectively). These are defined similarly to the

LF context and LF subsitutiton well-formedness judgments. We omit their definitions here,

but provide them in Appendix A for completeness.

2.1.3 Computations

Beluga is an ML-style functional programming language supporting pattern matching

over contextual LF objects. It features an indexed function space, so that types are allowed

to depend only on data-level objects. Contextual objects and types are embedded in the

computation-level via a box modality.

The central goal of Beluga is to provide a meta-language in which expressing OLs and

their meta-theory is reasonably easy. An OL is specified in Contextual LF using HOAS, as

described in the previous section. Then, we write proofs about the OL as recursive Beluga

programs. Crucially, a recursive function may only be seen as a proof if it is total, that is it

terminates on every input. This being said, we also allow non-terminating functions, making

Beluga into a general-purpose programming language rather than just a proof environment.

We present here a version of Beluga closely inspired by the one of Pientka and Abel

(2015), although it differs in two important ways. First, we do not consider recursion since

it complicates the syntax of patterns significantly. Specifically, valid recursive calls have to
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be specified as part of every pattern (although they can be inferred, so users don’t need to

provide them explicitly). Without recursion, patterns are just (boxed) contextual objects.

Second, our typing rules do not require coverage for pattern matching. This distinction

cements our view of Beluga as a general-purpose language, which will be crucial in es-

tablishing conservativity of our extension later on. We will discuss this further when we

define the refinement system for Beluga in Chapter 4. For now, let us look at the syntax

of Beluga:

Types τ ::= [A] | τ1 → τ2 | ΠX:A.τ

Contexts Ξ ::= · | Ξ, y:τ

Expressions e ::= [M] | fn y:τ ⇒ e | e1 e2 | mlam X:A ⇒ e | e M

| let [X] = e1 in e2 | caseτ [M] of b⃗

Branches b ::= Ω; [M] ⇒ e

We now discuss this syntax and the associated typing rules (see Figure 2.5) The lifting

of meta-types and meta-objects to the computation level is achieved via a (contextual) box

modality, which we denote using square brackets [A]. The elimination form for the modality

is given by the let expressions : an expression e1 : [A] is unboxed as the meta-variable X,

which may then be used in the expression e2.

We distinguish two kinds of function spaces, the simple function space τ1 → τ2 and

the dependent function space ΠX:A.τ . So, dependencies are restricted to objects from the

index domain, which provides strong reasoning power over the index domain without all the

difficulties of full dependent types. The expressions fn y:τ ⇒ e and e1 e2 correspond to the

introduction and elimination forms for simple function spaces, respectively. On the other
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hand, mlam X:A ⇒ e and e M correspond to the introduction and elimination forms for

dependent function spaces, respectively.

The language also supports pattern matching on meta-objects through the use of case

expressions. While we do not allow pattern matching on arbitrary expressions, any expression

that has a box type can be matched against by first unboxing it with a let expression and

then matching on the new variable. The type superscript τ in case expression corresponds

to the invariant that must be satisfied by all the branches in b⃗. We require that invariants

have the form Π∆1.ΠX0 : A0.τ0. Intuitively, the context ∆ in a branch ∆; [M] ⇒ e consists

of all and only the free modal variables occuring within M. Intuitively, a branch ∆; [M] ⇒ e

satisfies the invariant ΠX0:A0.τ0 if M has type A0 and e has type JM/X0Kτ0, where M, e,

and their types can depend on ∆.

Example: Evaluation in STLC

Now that we have Beluga’s computation-level at our disposal, we can finally start prov-

ing things. Since our current description of STLC does not include an evaluation semantics,

there is not much to prove at the moment. So, let us start by specifying a small-step opera-

tional semantics for STLC:
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∆;Ξ ⊢ e : τ – Expression e has type τ in context Γ and meta-context ∆

∆ ⊢ Ξ : cctx (y:τ) ∈ Ξ

∆;Ξ ⊢ y:τ CT-var
∆ ⊢ M : A ∆ ⊢ Ξ : cctx

∆;Ξ ⊢ [M] : [A]
CT-box

∆;Ξ, y:τ1 ⊢ e : τ2
∆;Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2

CT-fn
∆;Ξ ⊢ e1 : τ2 → τ1 ∆;Ξ ⊢ e2 : τ2

∆;Ξ ⊢ e1 e2 : τ1
CT-app

∆, X:A; Ξ ⊢ e : τ
∆;Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ CT-mlam

∆;Ξ ⊢ e : ΠX:A.τ ∆ ⊢ M : A
∆;Ξ ⊢ e M : JM/XKτ

CT-mapp

∆;Ξ ⊢ e1 : [A] ∆, X:A; Ξ ⊢ e2 : τ
∆;Ξ ⊢ let [X] = e1in e2 : τ

CT-let

τ = Π∆0.ΠX0:A0.τ0 ∆ ⊢ θ : ∆0 ∆ ⊢ M : JθKA0 ∆;Ξ ⊢ b : τ (for all b ∈ b⃗)

∆; Ξ ⊢ (caseτ [M] of b⃗) : Jρ,M/X0Kτ0
CT-case

∆;Ξ ⊢ b : τ

∆0 ⊢ M0 : A0 ∆,∆0 ⊢ A .
= A0/(θ,∆

′) ∆′; JθKΞ ⊢ JθKe : JθKτ0
∆;Ξ ⊢ (∆0; [M0] 7→ e) : Π∆1.ΠX0:A0.τ0

CT-branch

Figure 2.5: Beluga typing rules
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LF step : tm → tm → type =

| s-succ : step M N →

step (succ M) (succ N)

| s-beta : step (app (lam M) N) (M N)

| s-app1 : step M1 M2 →

step (app M1 N) (app M2 N)

| s-app2 : step N1 N2 →

step (app M N1) (app M N2);

M −→ N : M steps to N (single step)

M −→ N
S M −→ S N

(λx.M) N −→ [N/x]M

M1 −→M2

(M1 N) −→ (M2 N)

N1 −→ N2

(M N1) −→ (M N2)

There are four possible ways to evaluate a term. The rules s-succ, s-app1 and s-app2

are simply congruences that propagate the evaluation of subterms into larger ones. All

the real work happens in s-beta, which applies functions to their arguments. Notice how

substitution in the OL (denoted as [N/x]M in the informal rule) is represented as function

application (denoted as M N) in the LF representation.

Now, the rule s-succ only allows stepping a term of the form succ M, and all of the

remaining rules only allow stepping terms of the form app M N. In particular, there are no

ways to step either zero or lam M. These are instances of values of STLC and should be

seen as the endpoints of the evaluation process. We can encode what it means to be value

as follows:

LF val : tm → type =

| v-zero : val zero

| v-succ : val M → val (succ M)

| v-lam : val (lam M);
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And now we can prove that values don’t step using a recursive Beluga function:

LF false : type =;

rec vds : (Γ : lam-ctx) [Γ ⊢ val M] → [Γ ⊢ step M M’] → [⊢ false] =

fn V, S => case V of

| [Γ ⊢ v-zero] => impossible S

| [Γ ⊢ v-succ V’] =>

let [Γ ⊢ s-succ S’] = S in

vds [Γ ⊢ V’] [Γ ⊢ S’]

| [Γ ⊢ v-lam] => impossible S;

We start by declaring an empty type false so that we can express the intuitionistic nega-

tion (recall, ¬A ≜ (A → ⊥)). The keyword rec introduces a new recursive function, called

val-no-step in our case. The parenthesis around the context variable, (Γ : lam-ctx), in-

dicate implicit universal quantification over contexts of schema lam-ctx. Then, the function

(i.e. proof) proceeds by case analysis (i.e. induction) on the proof that we have a value.

The cases for zero and lam are quickly dismissed as impossible since no constructor of step

allows such terms to step. So, the only case with actual work to do is the one for succ,

where we essentially only need to defer to our inductive hypothesis.

Notice that we use here the schema lam-ctx and not stlc-ctx. This is because the

typing information is irrelevant to our purpose, so good design principles dictate that it

should be omited. However, this leads to significant challenges when we need to use the

lemma for typed terms, i.e. those defined in a context of schema stlc-ctx. Simply put,

the mismatching context schema prevents us from using the lemma since the inputs with
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stlc-ctx would not type-check against what val-no-step expects. The easy solution is

to copy the function and change the schema annotation on Γ to stlc-ctx, but this leads

to duplication of code that should be avoidable since val-no-step is perfectly safe to use

even with an stlc-ctx. Felty et al. (2015) discusses alternative solutions involving explicit

relations between contexts of the different schemas. We will discuss these in more depth

when presenting our case studies in Chapter 5.

2.1.4 User-defined computation-level types

Beluga supports (co)inductive and stratified computation-level types (Jacob-Rao et al.,

2018). A stratified type has an inductive structure hidden within its dependencies: any

negative occurence of the type in some constructor must depend on a term that is structurally

smaller than the constructor’s output’s dependency. These play a crucial role in representing

proofs by logical relations (Cave and Pientka, 2018), such as normalization proofs. Inductive

types are also important in expressing the aforementionned context relations.

We omit further discussion of (co)inductive and stratified types from the current pre-

sentation as their inclusion significantly complexifies the language and we wish to focus on

refinement types. However, given the usefulness of logical relations in the theory of program-

ming languages, including them into our extension with refinement should be a priority for

future work.
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2.2 Refinement types

Now that we have introduced Beluga in details, we move on to discussing previous work

on refinement types. Our work is inspired by the datasort tradition that was initiated by

Freeman and Pfenning (1991); Freeman (1994) for MiniML, a monomorphic fragment of

Standard ML’s core language. Their system uses refinement type inference so that users

don’t need to provide annotations, but the inferred refinements are usually intersections with

some undesired components.

Davies (2005), who coined the term datasort, extended this work to the full Standard

ML language (including modules). They ditched sort inference in favor of a bi-directional

sort-checking algorithm, so that only the desired sorts are used by the compiler. Unfortu-

nately, even sort-checking is untenable in the presence of intersections: the compiler needs to

choose the correct branch of an intersection when synthesizing sorts for neutral expressions,

making sort-checking PSPACE-hard (Reynolds, 1997).

Later, Lovas and Pfenning (2010); Lovas (2010) designed LFR, an extension of LF with

datasort refinement types. Our work starts by replacing the LF layer of Beluga by LFR,

and extending the refinements to the rest of the language. Before we can do this, we must

introduce LFR in greater details.

2.2.1 LFR

The LFR system (Lovas and Pfenning, 2010; Lovas, 2010) extends the Edinburgh logical

framework LF (Harper et al., 1993) with datasort refinement types. The objects of LFR are
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exactly the same as in LF, that is expressions of a λ-calculus with constants. The types of

LFR are also the same as those of LF, but they play a different role, in a sense secondary to

sorts. Because sorts express more specific information than types, the properties represented

by types become less interesting.

An atomic type is generated by specifying new (unique) constants (i.e. names) for con-

structing objects and a way to use them (the type of the constant). Since the constants are

always new, types provide unique syntactic classifiers of objects formed with constructors.

In this sense, atomic types can be considered intrinsic properties of objects, an idea rein-

forced by the fact that we can synthesize a unique type for every neutral terms (and atomic

types are only inhabited by neutral objects in a canonical form presentation). A similar

idea applies to function spaces, provided that variables bound by λ-abstractions have a type

annotation.

Sorts, on the other hand, can tell us more specific information about the order in which

constructors are used in an expression. This is achieved by removing the burden that every

constructor name be unique when declaring a new sort. Instead, a user defining a new sort

must specify a previously defined type and use only a subset of its constructors. In addition,

they may assign new sorts to the selected constructors. This provides the tools to isolate the

fragment of objects of a given type whose structure satisfies some regularity condition. Free-

man (1994) discusses how datasort definition corresponds to regular tree automata (Gécseg

and Steinby, 2015), which generalize regular expressions to trees. Importantly, sorts charac-

terize objects that exist independently of them, and are therefore extrinsinc properties. We

refer to Pfenning (2008) for a discussion of this two-layered approach to unify the intrinsic
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and extrinsic views of typing.

Types, sorts, and the refinement relation

Now, let us formally look at the refinement types of LFR. As mentionned above, the clas-

sifiers of our language are separated into two layers, types and sorts (or refinements), which

are related by a refinement relation. We write S ⊏ A to indicate that sort S refines type A.

Sorts are defined essentially in the same way as types, whose syntax we recall to highlight

the resemblance:

Type level Refinement level

Atomic families P ::= a | P M Q ::= s | Q M | P

Canonical families A ::= P | Πx:A1.A2 S ::= Q | Πx:S1.S2

The refinement relation ultimately boils down to what the user specifies. An atomic

type family a is defined by its constructors and their types. An atomic sort family s ⊏ a

is then defined by selecting a subset of the constructors of a and assigning them sorts that

refine their previously specified types. In this sense, refinements offer a way to safely reuse

constructors. Finally, the relation is lifted to other types with simple congruence rules :

Q ⊏ P
Q M ⊏ P M

S1 ⊏ A1 x:S1 ⊢ S2 ⊏ A2

Πx:S1.S2 ⊏ Πx:A1.A2

Intuitively, a refinement relation S ⊏ A holds if S and A have the same shape (including

term dependencies) and every atom s occuring in S refines the corresponding atom a in A.

Whether or not s ⊏ a can be determined by looking at the declaration of s in the signature.

Since s can only refine a single a, given any sort S, we can generate the unique type A such
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that S ⊏ A simply by traversing S and replacing any occurence of an atom s by the atom a

which it refines. Consequently, we can view the type A as an output of the judgment S ⊏ A.

The other syntactic categories of the language are similarly duplicated at the refinement

level. Each category is equipped with a refinement relation that is induced by the refinement

for types. In pure LFR, this means that we have kind refinements and context refinements,

but this duplication will keep happening as we reach the computation-level. We will discuss

contexts in details in Section 3.1 and focus our attention on kinds for now. Kinds and their

refinements (called classes by Lovas and Pfenning (2010)) are given by the following syntax:

Type level Refinement level

Kinds K ::= type | Πx:A.K L ::= sort | Πx:S.L

and the refinement relation is given by the following two rules :

sort ⊏ type
S ⊏ A x:S ⊢ L ⊏ K
Πx:S.L ⊏ Πx:A.K

Intuitively, the refinement relation L ⊏ K holds if L and K have the same shape and all the

sorts in L refine the corresponding type K. Hence, kind refinement is simply a consequence

of type refinement. In particular, since A is an output of S ⊏ A and sort only refines type,

we can also view K as an output of L ⊏ K. In fact, a similar principle applies to all of our

refinement relations to come since they are all induced by type refinements.

Example: From judgments to algorithms, an evaluation strategy for STLC

When we discussed the stepping semantics for STLC earlier, we defined a non-deterministic

judgment. In particular, there can be several ways to step a function application. For in-

stance, we can choose to first evaluate on the right and then on the left, of vice versa. In
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practice, we need to fix an evaluation strategy since algorithms must be deterministic.

Here, we use refinements to extract those stepping derivation that follow a call-by-value

(CBV) strategy. This means that we evaluate a function application by first reducing the

right-hand side to a λ-expression, then we reduce the left-hand side to a value, and finally

we apply β-reduction. We can impose these constraints by restricting some terms to values

in the sorts of the constructors of step. But first, we specify values as a refinement of terms:

LFR val ⊏ tm : sort =

| zero : val

| succ : val → val

| lam : (tm → tm) → val;

As mentionned before, a sort is defined by picking some constructors of a type and

assigning them sorts. Here, we pick all of the constructors except for app and we restrict

the sort of succ to val → val since the successor of an arbitrary term may not be a value.

Now, we can define a CBV strategy as a refinement of step:

LFR cbv ⊏ step : tm → tm → sort =

| s-succ : cbv M N → cbv (succ M) (succ N)

| s-app1 : cbv M1 M2 → cbv (app M1 N) (app M2 N)

| s-app2 : (V : val) cbv N1 N2 → cbv (app V N1) (app V N2)

| s-beta : (V : val) cbv (app (lam M) V) (M V);

Here, we have mainly restricted s-app2 and s-beta. We are only allowed to reduce the

argument of a function application if the function is already a value, and we only allow uses

of s-beta if the argument is already a value. Note that for s-app2, we only enforce that
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the left-hand side of an application has sort val, not that it is a lam. However, the typing

rules of STLC enforce that the left-hand side of function applications have function types,

and values of function types are all of the form lam M.

2.2.2 Subsorting

One goal of refinement types is to provide a manageable form of subtyping. However, we

want to maintain the fact that any well-formed expression has a unique type, and this

fundamentally goes against having subtyping. Instead, we use the notion of subsorting,

which is like subtyping, but at the level of sorts. Since we do allow well-formed expressions

to have several different sorts, a subsorting relation can be meaningful, provided that any

two subsorts refine the same type.

The refinement relation for atomic families Q ⊏ P is similar to the notion of constructor

subtyping (Barthe and Frade, 1999), according to which a subtyping relation P1 ≤ P2 occurs

between two inductive when P1 is defined by a subset of the constructors of P2. As such, it

is sensible to consider a notion of subsorting (i.e. subtyping at the level of sorts) such that

Q ≤ P whenever Q ⊏ P . In particular, a subsumption rule is admissible for refinements of

atomic families.

The similarity between subtyping and refinement does not carry to function spaces be-

cause the rule for establishing Πx:S1.S2 ⊏ Πx:A1.A2 requires that S1 ⊏ A1. This is in

contrast with subtyping, which is famously contra-variant in the domain of function spaces,

i.e. requires that A1 ≤ A′
1 to conclude that ΠA′

1.A
′
2 ≤ ΠA1.A2. The contra-variance is

essential in ensuring that subsumption remains sound on function spaces : A function de-
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fined over a large domain A is safe to use on objects from a smaller domain A′ ≤ A, but a

function defined over the small domain A′ may not be safe to use on all objects of type A.

For this reason, we cannot generally consider refinement types to be a form of subtyping,

although there is a natural subsorting relation that emerges from the refinement relation.

This being said, subsumption is admissible for all LF types because the function spaces are

weak, so there is no issue of ensuring totality. Once we reach the computation-level and

include pattern matching, allowing subsumption would not always preserve coverage.

We also allow the user to specify their own subsorting relation, but only for atomic sorts.

Intuitively, the subsorting relation s1 ≤ s2 ⊏ a corresponds to the presence of a conversion

rule from s1 to s2. We require that the subsort s1 be specified prior (or simultaneously) to

its supersort s2.

Once the user has defined subsorting on atomic sorts, the relation is propagated through

the rest of the language in two steps. First, we take the reflexive transitive closure of

subsorting for atomic sorts. Then, we define subsorting for function spaces with the usual

contra-variant rule. In this case, reflexivity and transitivity cannot be used directly for

function spaces, although the two rules are easily shown to be admissible via inductive

arguments.

Allowing reflexivity and transitivity only for atomic sorts ensures that any uses of these

rules can be validated with a simple procedures. Reflexivity is just syntactic equality of a

constant and transitivity can be established by traversing the lattice of sorts refining a given

type.

For any type A, the set of sorts S ⊏ A forms a partially ordered set (poset). We know
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that S ≤ A ⊏ A whenever S ⊏ A, so the poset has a maximal element (commonly denoted

⊤). Moreover, we can always define an empty sort ⊥ ⊏ A such that ⊥ ≤ S ⊏ A for any

S ⊏ A, so the poset can have a minimal element.

Example: Neutral and normal terms

We demonstrate the uses of subsorting by encoding neutral and normal terms of the

untyped λ-calculus. We use the same type tm as before, which we recall encoded an untyped

λ-calculus with natural numbers. A term is normal if none of its subterm can be evaluated

further. This is similar to the notion of values discussed in the previous example, except

that now we also need to ensure that the bodies of functions cannot be evaluated further.

To properly define normal terms, we must ensure that no λ-abstraction appears on the

left-hand side of a function application, as otherwise β-reduction could be performed. To

achieve this, we need to separate term formation into two phases, neutral and normal.

We start by constructing neutral terms from constants, variables, and function application.

Then, we convert neutral terms into normal terms, at which point only λ-abstractions can

be introduced. We encode this language of normal terms as follows:

LFR neutral ⊏ tm : sort =

| zero : neutral

| succ : neutral → neutral

| app : neutral → normal → neutral

and normal ≥ neutral ⊏ tm : sort =
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| lam : (neutral → normal) → normal;

When defining normal, we specify that it extends neutral. This means that any neutral

term may be interpreted as a normal term. Once we have a normal term, we can start

binding its free variables with lam. However, the constructor app can no longer be used

since it is not part of the definition of normal. Thus, these two sorts allow us to specify a

more precise order in which the constructors may be used.

Note that the negative occurence of tm in the type of lam is refined with the sort neutral.

This means that a context used to construct normal terms should have its variables restricted

to sort neutral. In this case, the schema lam-ctx discussed earlier no longer provides a good

representation of OL contexts used for constructing normal terms. To handle this difficulty,

we will need a notion of refinement schema, which will be introduced in the next chapter.

2.2.3 Changes to LFR

Our presentation of LFR differs from that of Lovas and Pfenning (2010); Lovas (2010) in

several ways and describes a slightly different language. The changes that we made were

motivated by two main reasons: because they facilitate a smooth integration of refinements

into the setting of Beluga, or because we considered them as improvements on the origial

LFR. We will now discuss these changes in details.

Our first modification concerns the embedding of types into sorts. Our syntax allows

interpreting any atomic type as an atomic sort, so that P ⊏ P for any atomic type P .

In contrast, Lovas and Pfenning (2010) have a special sort, called ⊤ (read top), such that

⊤ ⊏ A for any type A. Consequently, there is no distinction between the ⊤-sort for type
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A and the one for a different type A′. This means that upon encountering ⊤ in a sorting

derivation, the type that is refined cannot be directly inferred. In previous work, this issue

was solved by performing type-checking first, so that we could know which type is refined

by which ⊤. We consider this to be wasteful since sorting derivations have the same shape

as their typing counterparts. Thus, performing typing and sorting results in doing much of

the work twice. Moreover, there are many cases where ⊤ does not appear within a sort,

so that the whole typing derivation serves no real purpose. Using an explicit embedding

of types into sorts allows to switch to a typing procedure only when we encounter a type,

which reduces the amount of redundant work. In this sense, we consider this modification

as a strict improvement of Lovas and Pfenning (2010)’s work. We recall also from our first

example that every type can be redefined as a sort by the user. In this sense, it is redundant

to embed types into sorts. However, its presence is necessary to provide the subsorting

relation Q ≤ P ⊏ P .

Secondly, we distinguish sorting and typing contexts, whereas Lovas and Pfenning (2010)

used mixed contexts that ascribe both sorts and types to each variable. That is, their

contexts have the form x1 : S1 ⊏ A1, ..., xn : Sn ⊏ An, while we would have a refinement

relation directly between the contexts, that is (x1 : S1, ..., xn : Sn) ⊏ (x1 : A1, ..., xn : An).

The reason for this change is that it facilitates the transition to contextual refinements. We

will discuss this issue in more depth when we introduce Contextual LFR, in the next section.

The last technical modifications that we made is the omission of intersection sorts. Lovas

and Pfenning (2010) only allows constants to be given a sort once, but the whole idea of

refinements only works if we can assign them multiple sorts. The standard way to tackle this
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issue is to allow users to declare multiple sorts at once through intersection sorts. That is,

the sort S1 ∧ S2 classifies objects that inhabit both sorts S1 and S2. Here, we take instead a

different approach and allow constants to appear several times within a signature. However,

we also change the form of declaration so that each declared constructor appears inside a

type or sort declaration, following Cave and Pientka (2018).

Note that the absence of intersections prevents variations on the possible uses of a con-

structor for a particular sort. That is, we cannot have c : S⃗ → s and c : S⃗ ′ → s since c

can only have one sort generating an s. The original system of Lovas and Pfenning (2010)

does support such definitions since intersections can be used anywhere. Moreover, Lovas and

Pfenning (2010) gives an example that uses intersections in this way, namely the encoding

of the languages of the λ-cube (Barendregt, 1991). It would be difficult to reproduce this

mechanization in our language without including intersection sorts. This being said, the

addition of intersection sorts poses no fundamental challenge.

2.2.4 Other forms of refinements

Our work is inspired by the datasort approach of refinement types, but other forms of

refinements have been developped in the past. We briefly discuss here two alternative forms

of refinement types that are particularly interesting.

Another important (and perhaps more common) approach is index refinements, first in-

troduced by Xi (1998); Xi and Pfenning (1999) for the core language of Standard ML. They

design a family of dependently-typed ML-style languages parameterized by an arbitrary in-

dex domain C, called DML(C). Refinements are obtained by allowing quantification over

49



the index domain, which intuitively corresponds to having a refinement relation Πx:S.A ⊏ A,

where S ∈ C. In this way, most difficulties of dependent types can be avoided, similarly

to how we avoid them in Beluga’s computation-level. Datasort refinements and index re-

finements were combined by Dunfield (2007), essentially yielding an extension of DML with

intersections.

An important development of this approach came in the form of logically qualified (or

liquid) types (Rondon et al., 2008), this time as an extension of OCaml. In this methodol-

ogy, a refinement is expressed as {x : τ | P (x)}, where τ is a type and P is a boolean-valued

function over τ . The type τ can then be seen as the refinement {x : τ | true} and this

allows combining typing and sorting into one judgment, much like we have done for datasort

refinements.

Jones and Ramsay (2021) used refinement types to validate termination in the pres-

ence of non-exhaustive pattern matching. Given that Beluga views terminating functions

as proofs, the ability to validate it in the presence of non-exhaustive pattern matching is

particularly useful for our purpose. Jones and Ramsay (2021)’s notion of an intensional

refinement is obtained by removing some of the constructors from a datatype, but the re-

maining constructors cannot be assigned new sorts. Instead, a constructor c : A selected for

the sort s ⊏ a is assigned the sort S obtained by replacing every occurrence of a in A by

s. Moreover, the simplicity of intensional refinements allows Jones and Ramsay (2021) to

provide a practical language featuring full type and refinement inference. In a sense, inten-

sional refinements appear weaker than datasorts since users are not allowed to specify new

sorts for constructors. In particular, they cannot control the order in which constructors
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are applied. On the other hand, Jones and Ramsay (2021) do not consider that the absence

of base cases in a refinement leads to the refinement being empty. Rather, they view such

refinements as describing infinite structures. For instance, the refinement of the type of lists

that only maintains the list extension constructor is viewed as the refinement type of infinite

lists instead of that of non-empty lists.
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Chapter 3

Contextual LFR

This chapter presents the specification language, or data-level, of our extension of Beluga

with refinement types. ConventionalBeluga uses Contextual LF and our extension replaces

that by a contextual variant of the LFR system developed by Lovas and Pfenning (2010);

Lovas (2010). Contextual objects, sorts and types allow us to keep track of variables and

their types as we traverse open terms. This is crucial in obtaining pattern matching on LF

objects since we may need to match against functions. With contextual objects, we can

extend our context and analyze the body of a function while keeping track of the variables

that may occur within.

3.1 Contextual LFR

Next, we extend LFR with contextual modal types and sorts.

The main difference between LFR and Contextual LFR is that objects and classifiers are

bundled with a context in which they are meaningful. This facilitates traversing open objects
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in recursive functions since the ”free” variables are kept in the context, i.e. as part of the

object itself. In addition, substitutions are used to move between contexts while preserving

the meaningfulness of objects and types.

3.1.1 Contexts and schemas

Syntax of LFR contexts and schemas :

Type level Refinement level

Blocks of declarations B ::= · | Σx:A.B C ::= · | Σx:S.C

Schema elements E ::= B | Πx:A.E F ::= C | Πx:S.F

Contexts Γ ::= · | Γ, x:A | Γ, b:E · M⃗ Ψ ::= · | Ψ, x:S | Ψ.b:F · M⃗

Context schemas G ::= · | G+ E H ::= · | H + F

Blocks of declarations represent tuples of labelled assumptions, i.e. variables. The empty

block · is not valid on its own, rather it is a syntactic device that indicates the end of a block.

Empty blocks are not strictly necessary for the system to work, but facilitate the theoretical

development by providing a simple base case.

A schema element is a parameterized block of declarations. While blocks express specific

instances of assumptions, schema elements encode the general requirements of a particular

form of assumption. For instance, a typing assumption (informally denoted by x : A) is

characterized by the schema element ΠA : tp.Σx:tm.Σt:oft x A.·, while a particular instance

of this assumption would be Σx:tm.Σt:oft x A.·.

LFR contexts can contain two kinds of variables. Ordinary variables, denoted by x,

stand for an arbitrary LFR object of the specified type. Block variables, denoted by b, stand

for tuples of assumptions satisfying the specification of a schema element. In conventional
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Ω;Ψ ⊢ F ⊏ E – Refinement relation for schema elements

Ω ⊢ Ψ ⊏ Γ
Ω;Ψ ⊢ · ⊏ ·

Ω;Ψ ⊢ S ⊏ A Ω;Ψ, x:S ⊢ C ⊏ B

Ω;Ψ ⊢ Σx:S.C ⊏ Σx:A.B

Ω;Ψ ⊢ S ⊏ A Ω;Ψ, x:S ⊢ C ⊏ B

Ω;Ψ ⊢ Πx:S.F ⊏ Πx:A.E

Ω ⊢ H ⊏ G – Refinement relation for context schemas

⊢ Ω ⊏ ∆
Ω ⊢ · ⊏ ·

Ω ⊢ H ⊏ F Ω; · ⊢ F ⊏ E E /∈ G

Ω ⊢ H + F ⊏ G+ E

Ω ⊢ H ⊏ F Ω; · ⊢ F ⊏ E E ∈ G

Ω ⊢ H + F ⊏ G

Ω ⊢ Ψ ⊏ Γ – Refinement relation for contexts

⊢ Ω ⊏ Γ
Ω ⊢ · ⊏ ·

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ S ⊏ A

Ω ⊢ (Ψ, x:S) ⊏ (Γ, x:A)

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ F ⊏ E

Ω ⊢ (Ψ, b:F · M⃗) ⊏ (Γ, b:E · M⃗)

Figure 3.1: Refinement relations for contexts and schemas

Beluga, block variables are directly assigned with a block of declaration instead of a schema

element applied to some objects. Here, we require that these objects be specified explicitly,

so that they can be recovered when pattern matching on a context.

The refinement relations for contexts and schemas are simple. For schema elements, we

just check one sort at a time, starting with the parameters and then the assumptions in the

block. Similarly, contexts are checked one assumption at a time. For block assumptions,

refinement requires the same parameters to be used in the refined schema element. The

relation on schemas is similarly simple, but we take care not to allow duplicate schema

elements in G (or in H for that matter). We do this mainly because duplicate elements serve

no purpose in practice, but also to highlight the fact that multiple elements of H can refine

the same element of G.
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3.1.2 Objects

Now that we have discussed the classifiers of contextual LFR, let us look at the objects

that they classify. There are two kinds of interesting objects, namely terms and substitutions.

Terms are classified by sorts (and types), while substitutions are classified by contexts.

Only normal forms are allowed at the data-level, and this is enforced with a canonical form

presentation (Watkins et al., 2002). The syntax is as follows :

Neutral term R ::= c | x | b.k | R M

Spine M⃗ ::= · |M ; M⃗

Normal term M ::= R | u[σ] | λx.M

Substitution σ ::= · | σ,M | σ, M⃗

The separation of terms into neutral and normal ensures that no β-reduction can be done.

The typing rules (see Figure 3.2) will also guarantee that all terms are η-long. Substitutions

consist of normal terms and spines of normal terms. The domain of a substitution is not

specified in the substitution itself. Rather, a substitution has the same structure as its

domain context. In particular, substitution extension with a single term will match context

extensions with a single assumptions, while substitution extension with a spine will match

context extension with a block of assumptions.

3.2 Meta-types and meta-objects

The meta-layer unifies the different kinds of objects and classifiers of the data-level into

unique constructs. This facilitates function abstraction at the computation-level since oth-
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Ω;Ψ ⊢M ⇐ S ⊏ A – Check normal term M against sort S.

Ω;Ψ ⊢ R ⇒ S ⊏ A

Ω;Ψ ⊢ R ⇐ S ⊏ A

Ω;Ψ, x:S1 ⊢M ⇐ S2 ⊏ A2

Ω;Ψ ⊢ λx.M ⇐ Πx:S1.S2 ⊏ Πx:A1.A2

Ω;Ψ ⊢ R ⇒ S ⊏ A – Synthesize sort S for neutral term R.

(b : E · M⃗) ∈ Ψ E · M⃗ ⇝ C C ≫k S ⊏ A

Ω;Ψ ⊢ b.k ⇒ S ⊏ A

Ω;Ψ ⊢ R ⇒ Πx:S1.S2 ⊏ Πx:A1.A2 Ω;Ψ ⊢M ⇐ S1 ⊏ A1

Ω;Ψ ⊢ R M ⇒ [M/x]S2 ⊏ [M/x]A2

Ω;Ψ ⊢ b : D ≫k
i S – Extract sort S for kth projection of block b (ith step)

Ω;Ψ ⊢ b : Σx:S.D ≫k
k S

Ω;Ψ ⊢ b : [b.i/x]D ≫k
i+1 S

Ω;Ψ ⊢ b : Σx:S ′.D ≫k
i S

Ω;Ψ1 ⊢ σ : Ψ2 ⊏ Γ2 – σ is a well-formed substitution from Ψ2 to Ψ1

Ω ⊢ Ψ1 ⊏ Γ1

Ω;Ψ1 ⊢ · : · ⊏ ·
Ω;Ψ1 ⊢ σ : Ψ2 ⊏ Γ2 Ω;Ψ1 ⊢M ⇐ S ⊏ A

Ω;Ψ1 ⊢ (σ,M) : (Ψ2, x:S) ⊏ (Γ2, x:A)

Ω;Ψ1 ⊢ σ : Ψ2 ⊏ Γ2 (F [M⃗2]⇝ C) ⊏ (E[M⃗2]⇝ D) Ω;Ψ ⊢ M⃗1 ⇐ C ⊏ D

Ω;Ψ1 ⊢ (σ, M⃗1) : (Ψ2, b:F [M⃗2]) ⊏ (Γ2, b:E[M⃗2])

Figure 3.2: Bi-directional typing rules

erwise each kind of object would need a special kind of function space. As before, our

classifiers are separated into types and refinement types. Moreover, since meta-objects in-

clude contexts, we naturally obtain a refinement relation for objects as well.

The syntax is as follows :
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(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) – Sorting and typing judgments

⊢ Ω ⊏ ∆ Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ R ⇐ Q ⊏ P

(Ω ⊢ Ψ̂.R : Ψ.Q) ⊏ (∆ ⊢ Γ̂.R : Γ.P )
⊢ Ω ⊏ ∆ Ω ⊢ Ψ ⊏ Γ Ω ⊢ Ψ : H ⊏ G

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G)

⊢ Ω ⊏ ∆ Ω ⊢ Ψ1 ⊏ Γ1 Ω ⊢ Ψ2 ⊏ Γ2 Ω;Ψ1 ⊢ σ : Ψ2

(Ω ⊢ Ψ̂1.σ : Ψ1.Ψ2) ⊏ (∆ ⊢ Γ̂1.σ : Γ1.Γ2)

Figure 3.3: Meta-level typing and sorting

Type level Refinement level

Meta-types A ::= Γ.P | Γ.Γ′ | G S ::= Ψ.Q | Ψ.Ψ′ | H

Meta-objects M ::= Γ̂.R | Γ̂.σ | Γ N ::= Ψ̂.R | Ψ̂.σ | Ψ

Meta-contexts ∆ ::= · | ∆, X:A Ω ::= · | Ω, X:S

Meta-substitutions ρ ::= · | ρ,M θ ::= · | θ,N

Contexts with hats (Γ̂, Ψ̂) are called erased and contain no type or sort information, so

they consist only of variables. Erased contexts are sufficient in this setting since the LF

neutral objects and LF substitution do not refer to any type or sort information present in

the context. Note that if Ψ ⊏ Γ, then Ψ̂ = Γ̂. This means that if N ⊏ M are not just

contexts, then N = M. Accordingly, refinements of meta-objects (and later, computation-

level objects) only provides information when contexts are used as objects.

The refinement relation for meta-types is obtained by lifting the corresponding refine-

ment relations (developed previously). Similarly, the refinement relation for meta-objects

is obtained by lifting the refinement relation on LF contexts. For example, the natural
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refinement rule for Ψ.Q is the following :

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ Q ⊏ P

Ω ⊢ Ψ.Q ⊏ Γ.P

In a sense, this raises the refinement relation to the level of LFR judgments. It is helpful

to pursue this idea further by formulating our rules for the meta- and computation-level as

a refinement relation between judgments. The above rule would then become :

⊢ Ω ⊏ ∆ Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ Q ⊏ P

(Ω ⊢ Ψ.Q) ⊏ (∆ ⊢ Γ.P )

This judgment (Ω ⊢ S) ⊏ (∆ ⊢ A) can then serve as both a type well-formedness and a

refinement judgment. We can similarly unify the sorting and typing judgments (see Figure

3.3), the context well-formenedness and refinement judgments, and so on. In all of these

judgments, we can consider the type-level part to be an output.

3.3 Conservativity of refinements

Theorem 3.3.1 (Conservativity for data-level)

1. If (Ω;Ψ ⊢ L) ⊏ (∆; Γ ⊢ K : kind), then ∆;Γ ⊢ K : kind.

2. If (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type), then ∆;Γ ⊢ A⇐ type.

3. If (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type), then ∆;Γ ⊢ M⃗ : K > type.

4. If (Ω;Ψ ⊢ H ⇒ S) ⊏ (∆; Γ ⊢ H ⇒ A), then ∆;Γ ⊢ H ⇒ A.

5. If (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C), then ∆;Γ ⊢ V [M⃗ ] > C.

6. If (Ω;Ψ ⊢ b : D ≫k
i S) ⊏ (∆; Γ ⊢ b : C ≫k

i A), then ∆;Γ ⊢ b : C ≫k
i A.
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7. If (Ω;Ψ ⊢ R ⇒ S) ⊏ (∆; Γ ⊢ R ⇒ A), then ∆;Γ ⊢ R ⇒ A.

8. If (Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A), then ∆;Γ ⊢ M⃗ : A′ > A.

9. If (Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A), then ∆;Γ ⊢M ⇐ A.

10. If (Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block), then ∆;Γ ⊢ C : block.

11. If (Ω;Ψ ⊢ W ) ⊏ (∆; Γ ⊢ V : world), then ∆;Γ ⊢ V : world.

12. If (Ω ⊢ G) ⊏ (∆ ⊢ F : schema), then ∆ ⊢ F : schema.

13. If (Ω ⊢ Ψ : G) ⊏ (∆ ⊢ Γ : F ), then ∆ ⊢ Γ : F .

14. If (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx), then ∆ ⊢ Γ : ctx.

15. If (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2), then ∆;Γ1 ⊢ σ : Γ2.

16. If (Ω;Ψ ⊢ M⃗ ⇐ D) ⊏ (∆; Γ ⊢ M⃗ ⇐ C), then ∆;Γ ⊢ M⃗ ⇐ C.

17. If (⊢ Ω) ⊏ (⊢ ∆ : mctx), then ⊢ ∆ : mctx.

18. If (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype), then ∆ ⊢ A : mtype.

19. If (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A), then ∆ ⊢ M : A.

20. If (Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2), then ∆1 ⊢ θ : ∆2.

21. If (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A), then ∆;Γ ⊢ A⇐ type

22. If (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C : block), then ∆;Γ ⊢ C : block.

23. If (Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world), then ∆;Γ ⊢ V : world.
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24. If (Ω;Ψ ⊢ H1 ≤ H2) ⊏ (∆; Γ ⊢ G : schema), then ∆;Γ ⊢ G : schema.

25. If (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype), then ∆ ⊢ A : mtype.

Proof.

We argue by simultaneous induction on the given derivation D.

1. We have D :: (Ω;Ψ ⊢ L) ⊏ (∆; Γ ⊢ K : kind). There are two cases to consider

Case D =

D′

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ sort) ⊏ (∆; Γ ⊢ type : kind)
KR-type

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

Then ∆; Γ ⊢ type : kind by rule K-type

Case D =

D′

(Ω;Ψ, x:S ⊢ L) ⊏ (∆; Γ, x:A ⊢ K : kind)

(Ω;Ψ ⊢ Πx:S.L) ⊏ (∆; Γ ⊢ Πx:A.K : kind)
KR-pi

We have ∆; Γ, x:A ⊢ K : kind by inductive hypothesis on D′

Then ∆; Γ ⊢ Πx:A.K : kind by rule K-pi

2. We have D :: (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type). There are two cases to consider :

Case D =

D1 :
(
s:L) ⊏ (a:K)

)
∈ Σ

D2 : (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s M⃗) ⊏ (∆; Γ ⊢ a M⃗ ⇐ type)
TR-atom

We have (a:K) ∈ Σ by inversion on signature formation rules with D1

We have ∆; Γ ⊢ M⃗ : K > type by inductive hypothesis on D2

Then ∆; Γ ⊢ a M⃗ ⇐ type by rule T-atom
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Case D =

D′

(Ω;Ψ, x:S1 ⊢ S2) ⊏ (∆; Γ, x:A1 ⊢ A2 ⇐ type

(Ω;Ψ ⊢ Πx:S1.S2) ⊏ (∆; Γ ⊢ Πx:A1.A2 ⇐ type
TR-pi

We have ∆; Γ, x:A1 ⊢ A2 ⇐ type by inductive hypothesis on D′

Then ∆; Γ ⊢ Πx:A1.A2 ⇐ type by rule T-pi

3. We have D :: (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type). There are two cases

to consider :

Case D =

D′

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ nil : sort > sort) ⊏ (∆; Γ ⊢ nil : type > type
KR-spn-nil

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

Then ∆; Γ ⊢ nil : type > type by rule K-spn-nil

Case D =

D1 (Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)
D2 (Ω;Ψ ⊢ M⃗ : [M/x]L > sort) ⊏ (∆; Γ ⊢ M⃗ : [M/x]K > type)

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S.L > sort) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A.K > type)
KR-spn-cons

We have ∆; Γ ⊢M ⇐ A by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ : [M/x]K > type by inductive hypothesis on D2

Then ∆; Γ ⊢ (M ; M⃗) : Πx:A.K > type by rule K-spn-cons

4. We have D :: (Ω;Ψ ⊢ H ⇒ S) ⊏ (∆; Γ ⊢ H ⇒ A). There are three cases to consider

Case D =

D1

(c : S ⊏ A) ∈ Σ

D2

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ c ⇒ S) ⊏ (∆; Γ ⊢ c ⇒ A)
TRS-const

61



We have (c : A) ∈ Σ by inversion on signature formation rules on D1

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D2

Then ∆; Γ ⊢ c ⇒ A by rule TS-cons

Case D =

D1

(x:S) ∈ Ψ

D2

(x:A) ∈ Γ

D3

{(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)}

(Ω;Ψ ⊢ x⇒ S) ⊏ (∆; Γ ⊢ x⇒ A)
TRS-x

We have (x:A) ∈ Γ by assumption D2.{
We have ∆ ⊢ Γ : ctx by inductive hypothesis on D3

}
Then ∆; Γ ⊢ x⇒ A by rule TS-x

Case D =

D1 : (b:w[M⃗ ]) ∈ Ψ
D2 : (b:v[M⃗ ]) ∈ Γ

D3 : (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)
D4 : (Ω;Ψ ⊢ b : D ≫k

1 S) ⊏ (∆; Γ ⊢ b : C ≫k
1 A)

(Ω;Ψ ⊢ b.k ⇒ S) ⊏ (∆; Γ ⊢ b.k ⇒ A)
TRS-b

We have (b:v[M⃗ ]) ∈ Γ by assumption D2

We have ∆; Γ ⊢ v[M⃗ ] > C) by inductive hypothesis on D3

We have ∆; Γ ⊢ b : C ≫k
1 A by inductive hypothesis on D4

Then ∆; Γ ⊢ b.k ⇒ A by rule TS-b

5. We have D :: (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C). There are two cases to

consider :

Case D =

D′

{(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block)}

(Ω; Γ ⊢ D[nil] > D) ⊏ (∆; Γ ⊢ C[nil] > C)
R-Inst-nil

{
We have ∆; Γ ⊢ C : block by inductive hypothesis on D′

We have ∆; Γ ⊢ C[nil] > C by rule Inst-nil
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Case D =

D1 : ((w = W ) ⊏ (v = V )) ∈ Σ

D2 : (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C)

(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)
R-Inst-const

We have (v = V ) ∈ Σ by signature formation rules and D1

We have ∆; Γ ⊢ V [M⃗ ] > C by inductive hypothesis on D2

Then ∆; Γ ⊢ v[M⃗ ] > c by rule Inst-const

Case D =

D1 : {(Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)}
D2 : (Ω;Ψ ⊢ ([M/x]W )[M⃗ ] > D) ⊏ (∆; Γ ⊢ ([M/x]V )[M⃗ ] > C)

(Ω;Ψ ⊢ Πx:S.W [M ; M⃗ ] > D) ⊏ (∆; Γ ⊢ Πx:A.V [M ; M⃗ ]) > C
R-Inst-pi

{
We have ∆; Γ ⊢M ⇐ A by inductive hypothesis on D1

}
We have ∆; Γ ⊢ ([M/x]V )[M⃗ ] > C by inductive hypothesis on D2

Then ∆;Ψ ⊢ Πx:A.V [M ′M⃗ ] > C by rule Inst-pi

6. We have D :: (Ω;Ψ ⊢ b : D ≫k
i S) ⊏ (∆; Γ ⊢ b : C ≫k

i A). There are two cases to

consider :

Case D = (Ω;Ψ ⊢ b : Σx:S.D ≫k
k S) ⊏ (∆; Γ ⊢ b : Σx:A.C ≫k

k A)
R-Ext-stop

We have ∆; Γ ⊢ b : Σx:A.C ≫k
k A by rule Ext-stop.

Case D =

D′

(Ω;Ψ ⊢ b : [b.i/x]D ≫k
i+1 S) ⊏ (∆; Γ ⊢ b : [b.i/x]C ≫k

i+1)

(Ω;Ψ ⊢ b : Σx:S ′.D ≫k
i S) ⊏ (∆; Γ ⊢ b : Σx:A′.C ≫k

i A)
R-Ext-cont

We have ∆; Γ ⊢ b : [b.i/x]C ≫k
i+1 by inductive hypothesis on D′

Then ∆; Γ ⊢ b : Σx:A′.C ≫k
i A by rule Ext-cont

7. We have D :: Ω;Ψ ⊢ R ⇒ S) ⊏ (∆; Γ ⊢ R ⇒ A). There are two cases to consider :

63



Case D =

D1 : (Ω;Ψ ⊢ H ⇒ S ′) ⊏ (∆; Γ ⊢ H ⇒ A′)

D2 : (Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A)

(Ω;Ψ ⊢ H M⃗ ⇒ S) ⊏ (∆; Γ ⊢ H M⃗ ⇒ A)
TRS-app

We have ∆; Γ ⊢ H ⇒ A′ by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ : A′ > A by inductive hypothesis on D2

Then ∆; Γ ⊢ H M⃗ ⇒ A by rule TS-app

Case D =

D1 : (u : Ψ′.S) ∈ Ω

D2 : (u : Γ′.A) ∈ ∆

D3

(Ω;Ψ ⊢ σ : Ψ′) ⊏ (∆; Γ ⊢ σ : Γ′)

(Ω;Ψ ⊢ u[σ] : [σ]S) ⊏ (∆; Γ ⊢ u[σ] : [σ]A) TRS-mvar

We have (u : Γ′.A) ∈ ∆ by assumption D2

We have ∆; Γ ⊢ σ : Γ′ by inductive hypothesis on D3

Then ∆; Γ ⊢ u[σ] : [σ]A by rule TS-mvar

8. We have (Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A). There are two cases to consider

:

Case D =

D′

{(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)}

(Ω;Ψ ⊢ nil : S > S) ⊏ (∆; Γ ⊢ nil : A > A)
TRC-spn-nil

{
We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D′ }

We have ∆; Γ ⊢ nil : A > A by rule TC-spn-nil

Case D =

D1 : (Ω;Ψ ⊢ M ⇐ S′
1) ⊏ (∆; Γ ⊢ M ⇐ A′

1)
D2 : (Ω;Ψ ⊢ M⃗ : [M/x]S′

2 > S) ⊏ (∆; Γ ⊢ M⃗ : [M/x]A′
2 > A)

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S′
1.S

′
2 > S) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A′

1.A
′
2 > A)

TRC-spn-cons

We have ∆; Γ ⊢M ⇐ A′
1 by inductive hypothesis on D2

We have ∆; Γ ⊢ M⃗ : [M/x]A′
2 > A by inductive hypothesis on D2
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Then ∆; Γ ⊢ (M ; M⃗) : Πx:A′
1.A

′
2 > A by rule TC-spn-cons

9. We have D :: (Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A). There are two cases to consider :

Case D =

D1

(Ω;Ψ ⊢ R ⇒ S ′) ⊏ (∆; Γ ⊢ R ⇒ A)

D2

(Ω;Ψ ⊢ S ′ ≤ S) ⊏ (∆; Γ ⊢ A)

(Ω;Ψ ⊢ R ⇐ S) ⊏ (∆; Γ ⊢ R ⇐ A)
TRC-conv

We have ∆; Γ ⊢ R ⇒ A by inductive hypothesis on D′

Then ∆; Γ ⊢ R ⇐ A by rule TC-conv

Case D

D′

(Ω;Ψ, x:S ⊢M ⇐ S ′) ⊏ (∆; Γ, x:A ⊢M ⇐ A′)

(Ω;Ψ ⊢ λx.M ⇐ Πx:S.S ′) ⊏ (∆; Γ ⊢ λx.M ⇐ Πx:A.A′)
TRC-lam

We have ∆; Γ, x:A ⊢M ⇐ A′ by inductive hypothesis on D′

Then ∆; Γ ⊢ λx.M ⇐ Πx:A.A′ by rule TC-lam

10. We have (Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block). There are two cases to consider :

Case D =

D′

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ ·) ⊏ (∆; Γ ⊢ · : block) BR-empty

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

We have ∆ ⊢ · : block by rule B-empty

Case D =

D1 : (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

D2 : (Ω;Ψ, x:S ⊢ D) ⊏ (∆; Γ, x:A ⊢ C : block)

(Ω;Ψ ⊢ Σx:S.D) ⊏ (∆; Γ ⊢ Σx:A.C : block)
BR-sigma

We ∆;Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ C : block by inductive hypothesis on D2
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Then ∆; Γ ⊢ Σx:A.C : block by rule B-sigma

11. We have D :: (Ω;Ψ ⊢ W ) ⊏ (∆; Γ ⊢ V : world). There are two cases to consider :

Case D =

D′

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block)

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : world)
WR-conv

We have ∆; Γ ⊢ C : block by inductive hypothesis on D′

Then ∆; Γ ⊢ C : world by rule W-conv

Case D =

D1 : (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

D2 : (Ω;Ψ, x:S ⊢ W ) ⊏ (∆; Γ, x:A ⊢ V : world)

(Ω;Ψ ⊢ Πx:S.W ) ⊏ (∆; Γ ⊢ Πx:A.V : world)
WR-pi

We have ∆; Γ ⊢ A⇐ type by induction hypothesis on D2

We have ∆; Γ, x:A ⊢ V : world by induction hypothesis on D2

Then ∆; Γ ⊢ Πx:A.V : world by rule W-pi

12. We have D :: (Ω ⊢ G) ⊏ (∆ ⊢ F : schema). There are three cases to consider :

Case D =

D′

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : schema) SR-empty

We have ⊢ ∆; mctx by inductive hypothesis on D′

Then ∆ ⊢ · : schema by rule S-empty

Case D =

D1 (Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

D2 ((w = W ) ⊏ (v = V : world)) ∈ Σ

D3 w /∈ H

D4 v /∈ G

(Ω ⊢ H +w) ⊏ (∆ ⊢ G+ v : schema)
SR-ext

We have ∆ ⊢ G : schema by inductive hypothesis on D1
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We have (v = V : world) ∈ Σ by signature formation rules on D2

We have v /∈ G by assumption D4

Then ∆ ⊢ G+ v : schema by rule S-ext

Case D =

D1 (Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

D2 ((w = W ) ⊏ (v = V : world)) ∈ Σ

D3 w /∈ H

D4 v ∈ G

(Ω ⊢ H +w) ⊏ (∆ ⊢ G : schema)
SR-ext-dup

We have ∆ ⊢ G : schema by inductive hypothesis on D1.

13. We have (Ω ⊢ Ψ : G) ⊏ (∆ ⊢ Γ : F ). There are three cases to consider :

Case D =

D′

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · : H) ⊏ (∆ ⊢ · : G) SRC-empty

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Then ∆ ⊢ · : G by rule SC-empty

Case D =

D1

(ψ : H) ∈ Ω

D2

(ψ : G) ∈ ∆

(Ω ⊢ ψ : H) ⊏ (∆ ⊢ ψ : G)
SRC-var

We have (ψ : G) ∈ ∆ by assumption D2

Then ∆ ⊢ ψ : G by rule SC-var

Case D =

D1 : (Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G)

D2 :
{
(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)

} D3 : w ∈ H

D4 : v ∈ G

(Ω ⊢ (Ψ, b:w[M⃗ ]) : H) ⊏ (∆ ⊢ (Γ, b:v[M⃗ ]) : G)
SRC-ext

We have ∆ ⊢ Γ : G by inductive hypothesis on D1{
We have ∆; Γ ⊢ v[M⃗ ] > C by inductive hypothesis on D2
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We have v ∈ G by assumption D4

Then ∆ ⊢ (Γ, b:v[M⃗ ]) : G by rule SC-ext

14. We have (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx). There are four cases to consider :

Case D =

D′

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : ctx) CR-empty

We have ⊢ ∆ : mctx by inductive hypothesis on D′

Then ∆ ⊢ · : ctx by rule C-empty

Case D =

D1

(ψ : H) ∈ Ω

D2

(ψ : G) ∈ ∆

D3

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ψ) ⊏ (∆ ⊢ ψ : ctx)
CR-var

We have (ψ : G) ∈ ∆ by assumption D2

We have ⊢ ∆ : mctx by inductive hypothesis on D3

Then ∆ ⊢ ψ : ctx by rule C-var

Case D =

D1 : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

D2 : (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

(Ω ⊢ Ψ, x:S) ⊏ (∆ ⊢ (Γ, x:A) : ctx)
CR-cons-x

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D1

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D2

Then ∆ ⊢ (Γ, x:A) : ctx by rule C-cons-x

Case D =

D1 : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

D2 : (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (Ω;Ψ ⊢ v[M⃗ ] > C)

(Ω ⊢ Ψ, b:w[M⃗ ]) ⊏ (∆ ⊢ (Γ, b:v[M⃗ ]) : ctx)
CR-cons-b
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We have ∆ ⊢ Γ : ctx by inductive hypothesis on D1

We have Ω;Ψ ⊢ v[M⃗ ] > C by inductive hypothesis on D2

Then ∆ ⊢ (Γ, b:v[M⃗ ]) : ctx by rule C-cons-b

15. We have (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2). There are four cases to consider :

Case D =

D′

{(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)}

(Ω;Ψ1 ⊢ · : ·) ⊏ (∆; Γ1 ⊢ · : ·) SubstR-empty

{
We have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D′ }

Then ∆; Γ1 ⊢ · : · by rule Subst-empty

Case D =

D1 : (ψ : H) ∈ Ω

D2 : (ψ : G) ∈ ∆

D3

{(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)}

(Ω;Ψ1 ⊢ idψ : ψ) ⊏ (∆; Γ1 ⊢ idψ : ψ)
SubstR-id

We have (ψ : G) ∈ ∆ by assumption D2{
We have have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D3

}
Then ∆; Γ1 ⊢ idψ : ψ by rule Subst-id

Case D =

D1 : (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)

D2 : (Ω;Ψ1 ⊢M ⇐ [σ]S) ⊏ (∆; Γ1 ⊢M ⇐ [σ]A)(
Ω;Ψ1 ⊢ (σ,M) : (Ψ2, x:S)

)
⊏

(
∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)

) SubstR-tm

We have ∆; Γ1 ⊢ σ : Γ2 by inductive hypothesis on D2

We have ∆; Γ1 ⊢M ⇐ [σ]A by inductive hypothesis on D2

Then ∆; Γ1 ⊢ (σ,M) : (Γ2, x:A) by rule Subst-tm

Case D =

D1 (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)
D2 (Ω;Ψ2 ⊢ w[M⃗ ′] > C) ⊏ (∆; Γ2 ⊢ v[M⃗ ′] > D)
D3 (Ω;Ψ1 ⊢ M⃗ ⇐ [σ]C) ⊏ (∆; Γ1 ⊢ M⃗ ⇐ [σ]D)(

Ω;Ψ1 ⊢ (σ, M⃗) : (Ψ2, b:w[M⃗ ′])
)
⊏

(
∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:v[M⃗

′])
) SubstR-spn
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We have ∆; Γ1 ⊢ σ : Γ2 by inductive hypothesis on D1

We have ∆; Γ2 ⊢ v[M⃗ ′] > D by inductive hypothesis on D2

We have ∆; Γ1 ⊢ M⃗ ⇐ [σ]D by inductive hypothesis on D3

Then ∆; Γ1 ⊢ (σ, M⃗) : (Γ2, b:v[M⃗
′]) by rule Subst-spn

16. We have D :: (Ω;Ψ ⊢ M⃗ ⇐ D) ⊏ (∆; Γ ⊢ M⃗ ⇐ C). There are two cases to consider :

Case D =

D′

{(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)}

(Ω;Ψ ⊢ nil ⇐ ·) ⊏ (∆; Γ ⊢ nil ⇐ ·) ChkR-spn-nil

{
We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

We have ∆; Γ ⊢ nil ⇐ · by rule Chk-spn-nil

Case D =

D1 : (Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)

D2 : (Ω;Ψ ⊢ M⃗ ⇐ [M/x]D) ⊏ (∆; Γ ⊢ M⃗ ⇐ [M/x]C)

(Ω;Ψ ⊢ (M ; M⃗) ⇐ Σx:S.D) ⊏ (∆; Γ ⊢ (M ; M⃗) ⇐ Σx:A.C)
ChkR-spn-sigma

We have ∆; Γ ⊢M ⇐ A by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ ⇐ [M/x]C by inductive hypothesis on D2

Then ∆; Γ ⊢ (M ; M⃗) ⇐ Σx:A.C by rule Chk-spn-sigma

17. We have D :: (⊢ Ω) ⊏ (⊢ ∆ : mctx). There are two cases to consider :

Case D = (⊢ ·) ⊏ (⊢ · : mctx) MCR-nil

We have ⊢ · : mctx by rule MC-nil

Case D =

D1

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

D2

(Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(⊢ (Ω, X:S) ⊏ (⊢ (∆, X:A) : mctx)
MCR-cons
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We have ⊢ ∆ : mctx by inductive hypothesis on D2

We have ∆ ⊢ A : mtype by inductive hypothesis on D2

Then ⊢ (∆, X:A) : mctx by rule MC-cons

18. We have D :: (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype). There are three cases to consider :

Case D =

D′

(Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P ⇐ type)(
Ω ⊢ (Ψ.Q)

)
⊏

(
∆ ⊢ (Γ.P ) : mtype

) MTR-tp

We have ∆; Γ ⊢ P ⇐ type by inductive hypothesis on D′

Then ∆ ⊢ (Γ.P ) : mtype by rule MT-tp

Case D =

D′

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H) ⊏ (∆ ⊢ G : mtype)
MTR-schema

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Then ∆ ⊢ G : mtype by rule MT-schema

Case D =

D1

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)

D2

(Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2 : ctx)(
Ω ⊢ (Ψ1.Ψ2)

)
⊏

(
∆ ⊢ (Γ1.Γ2) : mtype

) MTR-subst

We have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D2

We have ∆ ⊢ Γ2 : ctx by inductive hypothesis on D2

Then ∆ ⊢ (Γ1.Γ2) : mtype by rule MT-subst

19. We have D :: (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A). There are three cases to consider :
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Case D =

D′

(Ω;Ψ ⊢ R ⇐ Q) ⊏ (∆; Γ ⊢ R ⇐ P )(
Ω ⊢ (Ψ̂.R) : (Ψ.Q)

)
⊏

(
∆ ⊢ (Γ̂.R) : (Γ.P )

) MOftR-tm

We have ∆; Γ ⊢ R ⇐ P by inductive hypothesis on D′

Then ∆ ⊢ (Γ̂.R) : (Γ.P ) by rule MOft-tm

Case D =

D′

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)(
Ω ⊢ (Ψ̂1.σ) : (Ψ1.Ψ2)

)
⊏

(
∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)

) MOftR-subst

We have ∆; Γ1 ⊢ σ : Γ2 by inductive hypothesis on D′

Then ∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2) by rule MOft-subst

Case D =

D′

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (schema checking)

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (msort checking)
MOftR-ctx

We have ∆ ⊢ Γ : G (schema checking) by inductive hypothesis on D′

Then ∆ ⊢ Γ : G (meta-type checking) by rule MOft-ctx

20. We have D :: (Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2). There are two cases to consider :

Case D =

D′

{(⊢ Ω1) ⊏ (⊢ ∆1 : mctx)}

(Ω1 ⊢ · : ·) ⊏ (∆1 ⊢ · : ·) MSubstR-nil

We have ⊢ ∆1 : mctx by inductive hypothesis on D′

Then ∆1 ⊢ · : · by rule MSubst-nil
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Case D =

D1 : (Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2)

D2 : (Ω1 ⊢ N : JρKS) ⊏ (∆1 ⊢ M : JθKA)(
Ω1 ⊢ (ρ,N ) : (Ω2, X:S)

)
⊏

(
∆1 ⊢ (θ,M) : (∆2, X:A)

) MSubstR-cons

We have ∆1 ⊢ θ : ∆2 by inductive hypothesis on D2

We have ∆1 ⊢ M : JθKA by inductive hypothesis on D2

Then ∆1 ⊢ (θ,M) : (∆2, X:A) by rule MSubst-cons

21. We have D : (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A). There are four cases to consider :

Case D =

D1

(LFR s1 ≤ s2 ⊏ a : L) ∈ Σ

D2

(Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s1 ≤ s2) ⊏ (∆; Γ ⊢ a)
Sub-atom

We have (LF a : K) ∈ Σ by signature formation rule

We have ∆; Γ ⊢ M⃗ : K > type by inductive hypothesis on D2

Then ∆ ⊢ a M⃗ ⇐ type by rule T-atom

Case D =

D′

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

(Ω;Ψ ⊢ S ≤ S) ⊏ (∆; Γ ⊢ A) Sub-refl

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D′

Case D =

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) (Ω;Ψ ⊢ S2 ≤ S3) ⊏ (∆; Γ ⊢ A)
(Ω;Ψ ⊢ S1 ≤ S3) ⊏ (∆; Γ ⊢ A) Sub-trans

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D1

Case D =

D1 : (Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A)
D2 : (Ω;Ψ, x:S2 ⊢ S ′

1 ≤ S ′
2) ⊏ (∆; Γ, x:A ⊢ A′)

(Ω;Ψ ⊢ Πx:S1.S
′
1 ≤ Πx:S2.S

′
2) ⊏ (∆; Γ ⊢ Πx:A.A′ Sub-pi

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ A′ ⇐ type by inductive hypothesis on D2
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Then ∆; Γ ⊢ Πx:A.A′ ⇐ type by rule T-pi

22. We have D : (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C : block). There are two cases to consider

:

Case D =

D′

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ)

(Ω;Ψ ⊢ · ≤ ·) ⊏ (∆;Ψ ⊢ ·) Sub-Bnil

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

Then ∆; Γ ⊢ · : block by rule B-emtpy

Case D =

D1 : (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A)
D2 : (Ω;Ψ, x:S1 ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C)

(Ω;Ψ ⊢ Σx:S1.D1 ≤ Σx:S2.D2) ⊏ (∆; Γ ⊢ Σx:A.C)
Sub-sigma

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ C : block by inductive hypothesis on D2

Then ∆; Γ ⊢ Σx:A.C : block by rule B-sigma

23. We have D : Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world). There are two cases to consider

:

Case D =

D′

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : block)

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : world)
SubW-conv

We have ∆;Ψ ⊢ C : block by inductive hypothesis on D′

Then ∆;Ψ ⊢ C : world by rule W-conv

Case D =

D1 : (Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A : type)

D2 : (Ω;Ψ, x:S2 ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world)

(Ω;Ψ ⊢ Πx:S1.W1 ≤ Πx:S2.W2) ⊏ (∆; Γ ⊢ Πx:A.V : world)
SubW-pi
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We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D2

We have ∆; Γ, x:A ⊢ V : world by inductive hypothesis on D2

Then ∆; Γ ⊢ Πx:A.V : world by rule W-pi

24. We have D : (Ω;Ψ ⊢ H1 ≤ H2) ⊏ (∆; Γ ⊢ G : schema). There are two cases to

consider :

Case D =

D′

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · ≤ H) ⊏ (∆ ⊢ G SubS-nil

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Case D =

(w /∈ G)

D1 : (Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

D2 : (Ω; · ⊢ W1 ≤ W2) ⊏ (∆; · ⊢ V : world)

(Ω ⊢ H1 +w:W1 ≤ H2 +w:W2) ⊏ (∆ ⊢ G+w:V )
SubS-sum

We have ∆ ⊢ G : schema by inductive hypothesis on D1

We have ∆; · ⊢ V : world by inductive hypothesis on D2

Then ∆ ⊢ G+w:V : schema by rule S-ext

25. We have D : (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype). There are three cases to consider :

Case D =

D′

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A)

(Ω ⊢ Ψ.S1 ≤ Ψ.S2) ⊏ (∆ ⊢ Γ.A)
SubM-tp

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D′

Then ∆ ⊢ Γ.A : mtype by rule MT-tp
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Case D =

D1

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1)

D2

(Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2)

(Ω ⊢ Ψ1.Ψ2 ≤ Ψ1.Ψ2) ⊏ (∆ ⊢ Γ1.Γ2)
SubM-subst

We have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D1

We have ∆ ⊢ Γ2 : ctx by inductive hypothesis on D2

Then ∆ ⊢ Γ1.Γ2 : mtype by rule MT-subst

Case D =

D′

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : mtype)
SubM-schema

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Then ∆ ⊢ G : mtype by rule MT-schema

■
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Chapter 4

Computation-level

Beluga’s computation-level is an ML-style functional programming language supporting

pattern matching over contextual objects. It features an indexed function space, so that

types are allowed to depend only on data-level objects. Contextual objects and types are

embedded in the computation-level via a box modality.

4.1 Computation-level refinements

In our extension, the computation-level is separated into a type layer and a refinement layer,

just like the data-level. Since contextual objects can occur in computation-level expression,

we maintain a refinement relation for expressions in addition to all other syntactic categories.

Our presentation is inspired by the one of Pientka and Abel (2015), but differs in two

important ways. First, we do not consider recursion since it complicates the syntax of

patterns significantly. Specifically, valid recursive calls have to be specified as part of every

pattern (although they can be inferred, so users don’t need to provide them explicitly).
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Without recursion, patterns are just (boxed) contextual objects. Second, our sorting (and

typing) rules do not require coverage for pattern matching. The syntax of the computation-

level is the following :

Type level Refinement level

Types τ ζ ::= [S] | ζ1 → ζ2 | ΠX:S.ζ

Contexts Ξ Φ ::= · | Φ, y:ζ

Expressions e f ::= [N ] | fn y:ζ ⇒ f | f1 f2 | mlam X:S ⇒ f | f N

| let [X] = f1 in f2 | caseζ [N ] of c⃗

Branches b c ::= Ω; [N ] ⇒ f

The lifting of meta-types and meta-objects to the computation level is achieved via a

(contextual) box modality, which we denote using square brackets [S]. The elimination form

for the modality is given by the let expressions : an expression e1 : [S] is unboxed as the

meta-variable X, which may then be used in the expression e2.

We distinguish two kinds of function spaces, the simple function space ζ1 → ζ2 and

the dependent function space ΠX:S.ζ. So, dependencies are restricted to objects from the

index domain, which provides strong reasoning power over the index domain without all the

difficulties of full dependent types.

The language also supports pattern matching on meta-objects through the use of case

expressions. While we do not allow pattern matching on arbitrary expressions, any expression

that has a box sort can be matched against by first unboxing it with a let expression and

then matching on the new variable. The sort superscript ζ in case expression corresponds to

the sort invariant that must be satisfied by all the branches in c⃗. We require that invariants
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have the form ΠX0 : S0.ζ0. Intuitively, a branch Ω; [N ] ⇒ e satisfies the invariant ΠX0:S0.ζ0

if N has sort S0 and e has sort JN /X0Kζ0, where N , e, and their sorts can depend on Ω.

The judgments for the computation-level have a similar structure as those for contextual

LFR. In particular, type-level and refinement-level judgments are performed simultaneously,

with the type-level judgment seen as an output of the simultaneous judgment. Since the

derivations produced on both sides of the refinement relation are almost exactly the same,

we give the rules with only the refinement part. For instance, sorting and typing is expressed

as (Ω;Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ), but we define only Ω;Φ ⊢ f : ζ for conciseness. We focus

here on the rules related to pattern matching. The remaining rules are standard and can be

found in the appendix. The rule for case-expressions is the following :

ζ = ΠΩ0.ΠX0:S0.ζ0 Ω ⊢ ρ : Ω0 Ω ⊢ N : JρKS0 Ω;Φ ⊢ c : ζ (for all c ∈ c⃗)

Ω;Φ ⊢ (caseζ [N ] of c⃗) : Jρ,N /X0Kζ0

The important part of this rule is the last premise, which requires validating that every

branch satisfies the given invariant. This is achieved with the judgment Ω;Φ ⊢ c : ζ defined

by the following rule :

Ω0 ⊢ N0 : S0 Ω,Ω0 ⊢ S .
= S0/(ρ,Ω

′) Ω′; JρKΦ ⊢ JρKf : JρKζ0
Ω;Φ ⊢ (Ω0; [N0] 7→ f) : ΠΩ1.ΠX0:S0.ζ0

Where the judgment Ω ⊢ S .
= S ′/(ρ,Ω′) denotes (meta-type) unification. Intuitively, it

means that JρKS and JρKS ′ are syntactically equal in Ω′. Note that since we allow term

dependencies in sorts, the different branches of pattern matching may have different sorts as

well.
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4.2 Termination checking

In Beluga, a recursive program corresponds to a proof only if it terminates. Pientka

and Abel (2015) established normalization for the fragment of Beluga where all pattern

matching satisfies coverage (meaning that every possible case is represented by one of the

patterns). Their presentation of Beluga is parametric in the index domain and assumes

only that three conditions are satisfied: First, there is a unification algorithm for objects of

the index domain; Second, there is a splitting algorithm for objects of the index domain; Last,

there is a well-founded order for objects of the index domain. In addition, they explain how

these three task can be achieved for contextual LF. In our extension, the index language is

replaced with contextual LFR, whose objects follow the same structure as those of contextual

LF. Consequently, the approach of Pientka and Abel (2015) can be adapted to our setting

without significant difficulties.

This section briefly goes over each of the algorithms and how they need to be modified

to fit our purpose. The key idea is the same as for the rest of the extension: we define

refinements directly on the judgments defining the algorithms. In particular, the refinement

rules closely mimic their type-level analogues, yielding straightforward conservativity results.

4.2.1 Unification

The main challenge of unification in the dependently-typed setting is to unify the terms on

which the types that we want to unify depend.
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4.2.2 Splitting

4.2.3 Order

4.3 Conservativity of extension

The conservativity results for the data-level (Theorem 3.3.1) carries over to the computation-

level via straightforward inductions.

Theorem 4.3.1 (Conservativity for computation-level)

1. If (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx), then ∆ ⊢ Ξ : cctx.

2. If (Ω;Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype), then ∆;Ξ ⊢ τ : ctype.

3. If (Ω;Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ), then ∆;Ξ ⊢ e : τ .

4. If (Ω;Φ ⊢ c : ζ) ⊏ (∆; Ξ ⊢ b : τ), then ∆;Ξ ⊢ b : τ .

5. If (Ω;Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆; Ξ ⊢ τ), then ∆;Ξ ⊢ τ .

Proof.

By simultaneous induction on the given derivation D.

1. We have D :: (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx). There are two cases to consider :

Case D =

D′

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : cctx) CCR-nil

81



We have ⊢ ∆ : mctx by Theorem 3.3.1 on D′

Then ∆ ⊢ · : cctx by rule CC-nil

Case D =

D1 : (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

D2 : (Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype)

(Ω ⊢ Φ, y:ζ) ⊏ (∆ ⊢ (Ξ, y:τ) : cctx)
CCR-cons

We have ∆ ⊢ Ξ : cctx by Theorem 3.3.1 on D1

We have ∆;Ξ ⊢ τ : ctype by inductive hypothesis on D2

Then ∆ ⊢ (Ξ, y:τ) : cctx by rule CC-cons

2. We have D :: (Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype). There are three cases to consider :

Case D =

D1

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

D2

(Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(Ω;Φ ⊢ [S]) ⊏ (∆; Ξ ⊢ [A] : ctype)
CTR-meta

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D1

We have ∆ ⊢ A : mtype by Theorem 3.3.1 on D2

Then ∆;Ξ ⊢ [A] : ctype by rule CR-meta

Case D =

D1 : (Ω; Φ ⊢ ζ1) ⊏ (∆; Ξ ⊢ τ1 : ctype)
D2 : (Ω; Φ ⊢ ζ2) ⊏ (∆; Ξ ⊢ τ2 : ctype)

(Ω;Φ ⊢ ζ1 → ζ2) ⊏ ∆;Ξ ⊢ τ1 → τ2 : ctype)
CTR-arr

We have ∆;Ξ ⊢ τ1 : ctype by inductive hypothesis on D1

We have ∆;Ξ ⊢ τ2 : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ τ1 → τ2 : ctype by rule CT-arr

Case D =

D1 : (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

D2 : (Ω, X:S; Φ ⊢ ζ) ⊏ (∆, X:A; Ξ ⊢ τ : ctype)

(Ω;Φ ⊢ ΠX:S.ζ) ⊏ (∆; Ξ ⊢ ΠX:A.τ : ctype)
CTR-pi
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We have ∆ ⊢ A : mtype by Theorem 3.3.1 on D1

We have ∆, X:A; Ξ ⊢ τ : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ ΠX:A.τ : ctype by rule CT-pi

3. We have D :: (Ω; Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ). There eight cases to consider

Case D =

D1

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (y:ζ) ∈ Φ

D2

(y:τ) ∈ Ξ

(Ω;Φ ⊢ y : ζ) ⊏ (∆; Ξ ⊢ y : τ)
CTR-var

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D1

We have (y:τ) ∈ Ξ by assumption D2

Then ∆ ⊢ y : ζ by rule CT-var

Case D =

D1

(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

D2

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω;Φ ⊢ [N ] : [S]) ⊏ (∆; Ξ ⊢ [M] : [A])
CTR-box

We have ∆ ⊢ M : A by Theorem 3.3.1 on D1

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D2

Then ∆;Ξ ⊢ [M] : [A] by rule CT-box

Case D =

D′

(Ω;Φ, y:ζ1 ⊢ f : ζ2) ⊏ (∆; Ξ, y:τ1 ⊢ e : τ2)

(Ω;Φ ⊢ (fn y:ζ1 ⇒ f) : ζ1 → ζ2) ⊏ (∆; Ξ ⊢ (fn y:τ1 ⇒ e) : τ1 → τ2)
CTR-fn

We have ∆;Ξ, y:τ1 ⊢ e : τ2 by inductive hypothesis on D′

Then ∆;Ξ ⊢ (fn y:τ1 ⇒ e) : τ1 → τ2 by rule CT-fn
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Case D =

D1 : (Ω; Φ ⊢ f1 : ζ2 → ζ1) ⊏ (∆; Ξ ⊢ e1 : τ2 → τ1)

D2 : (Ω; Φ ⊢ f2 : ζ2) ⊏ (∆; Ξ ⊢ e2 : τ2)

(Ω;Φ ⊢ f1 f2 : ζ1) ⊏ (∆; Ξ ⊢ e1 e2 : τ1)
CTR-app

We have ∆;Ξ ⊢ e1 : τ2 → τ1 by inductive hypothesis on D1

We have ∆;Ξ ⊢ e2 : τ2 by inductive hypothesis on D2

Then (∆; Ξ ⊢ e1 e2 : τ1) by rule CT-app

Case D =

D′

(Ω, X:S; Φ ⊢ f : ζ) ⊏ (∆, X:A; Ξ ⊢ e : τ)

(Ω;Φ ⊢ (mlam X:S ⇒ f) : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ (mlam X:A ⇒ e) : ΠX:A.τ)
CTR-mlam

We have ∆, X:A; Ξ ⊢ e : τ by inductive hypothesis on D′

Then ∆;Ξ ⊢ (mlam X:A ⇒ e) : ΠX:A.τ by rule CT-mlam

Case D =

D1 : (Ω; Φ ⊢ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ e : ΠX:A.τ)
D2 : (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

(Ω;Φ ⊢ f [N ] : JN /XKζ) ⊏ (∆; Ξ ⊢ e [M] : JM/XKτ)
CTR-mapp

We have ∆;Ξ ⊢ e : ΠX:A.τ by inductive hypothesis on D1

We have ∆ ⊢ M : A by Theorem 3.3.1 on D2

Then ∆;Ξ ⊢ e [M] : JM/XKτ by rule CT-mapp

Case D =

D1 : (Ω;Φ ⊢ f1 : [S]) ⊏ (∆; Ξ ⊢ e1 : [A])

D2 : (Ω, X:S; Φ ⊢ f2 : ζ) ⊏ (∆, X:A; Ξ ⊢ e2 : τ)

(Ω;Φ ⊢ (let [X] = f1 in f2) : ζ) ⊏ (∆; Ξ ⊢ (let [X] = e1 in e2) : τ)
CTR-let

We have ∆;Ξ ⊢ e1 : [A] by inductive hypothesis on D1

We have ∆, X:A; Ξ ⊢ e2 : τ by inductive hypothesis on D2

Then ∆;Ξ ⊢ (let [X] = e1 in e2) : τ by rule CT-let

Case D =

ζ = ΠX0:S0.ζ0
D′ : τ = ΠX0:A0.τ0

D′′ : (Ω ⊢ N : S0) ⊏ (∆ ⊢ M : A0)
Di : (Ω;Φ ⊢ ci : ζ) ⊏ (∆; Ξ ⊢ bi : τ) (for all i)

(Ω;Φ ⊢ (caseζ [N ] of c⃗) : JN/X0Kζ0) ⊏ (∆; Ξ ⊢ (caseτ [M] of b⃗) : JM/X0Kτ0)
CTR-case

84



We have τ = ΠX0:A0.τ0 by assumption D′

We have ∆ ⊢ M : A0 by Theorem 3.3.1 on D′′

We have ∆;Ξ ⊢ bi : τ by inductive hypothesis on Di (for each i)

Then ∆;Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0 by rule CT-case

4. We have D :: (Ω; Φ ⊢ c : ζ) ⊏ (∆; Ξ ⊢ b : τ). There is only one case to consider :

Case D =

D1 (Ω0 ⊢ℓ N0 : S0) ⊏ (∆0 ⊢ℓ M0 : A0)
D2 (Ω,Ω0; Φ ⊢ f : JN0/X0Kζ0) ⊏ (∆,∆0; Ξ ⊢ e : JM0/X0Kτ0)

(Ω;Φ ⊢ (Ω0; [N0] ⇒ f) : ΠX0:S0.ζ0) ⊏ (∆; Ξ ⊢ (∆0; [M0] ⇒ e) : ΠX0:A0.τ0)
CTR-branch

We have ∆0 ⊢ℓ M0 : A0 by lemma ?? on D1

We have ∆,∆0; Ξ ⊢ e : JM0/X0Kτ0 by inductive hypothesis on D2

Then ∆;Ξ ⊢ (∆0; [M0] ⇒ e) : ΠX0:A0.τ0 by rule CT-branch

5. We have D : (Ω; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆; Ξ ⊢ τ). There are three cases to consdier :

Case D =

D1

(Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype)

D2

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω;Φ ⊢ [S1] ≤ [S2]) ⊏ (∆; Ξ ⊢ [A])
SubC-meta

We have ∆ ⊢ A : mtype by inductive hypothesis on D1

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D2

Then ∆;Ξ ⊢ [A] : ctype by rule CT-meta

Case D =

D1

(Ω;Φ ⊢ ζ2 ≤ ζ1) ⊏ (∆; Ξ ⊢ τ)
D2

(Ω;Φ ⊢ ζ ′1 ≤ ζ ′2) ⊏ (∆; Ξ ⊢ τ ′)

(Ω;Φ ⊢ ζ1 → ζ ′1 ≤ ζ2 → ζ ′2) ⊏ (∆; Ξ ⊢ τ → τ ′
SubC-arr
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We have ∆;Ξ ⊢ τ1 : ctype by inductive hypothesis on D1

We have ∆;Ξ ⊢ τ2 : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ τ1 → τ2 : ctype by rule CT-arr

Case D =

D1 : (Ω ⊢ S2 ≤ S1) ⊏ (∆ ⊢ A)

D2 : (Ω, u:S2; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆, u:A; Ξ ⊢ τ)

(Ω;Φ ⊢ Πu:S1.ζ1 ≤ Πu:S2.ζ2) ⊏ (∆; Ξ ⊢ Πu:A.τ) SubC-pi

We have ∆ ⊢ A : mtype by inductive hypothesis on D1

We have ∆;Ξ ⊢ τ : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ Πu:A.τ : ctype by rule CT-pi

■
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Chapter 5

Case studies

The aim of this chapter is to demonstrate the usefulness of refinement types. As mentionned

previously, the main benefit of refinements is that they allow us to state theorems in a way

that closely resemble their informal statements. In conventional settings, theorem statements

can be very verbose due to type uniqueness. More precisely, the absence of subtyping means

that expressing a subtype requires defining an additional type encoding it as well as a type

encoding its embedding into the larger type. These embeddings must then appear within

theorem statements whenever we want to use an object of the subtype as an object of the

supertype.

5.1 Evaluation in untyped λ-calculus

Our first example consists of proving the determinacy of a particular evaluation strategy

for λ-terms. We start by defining a declarative small-step semantic, meaning that it allows

evaluating any subterm in any order. Then, we define a call-by-value evaluation algorithm
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as a refinement of the declarative small-step semantic.

5.1.1 Definition of the language

Before we can talk about evaluation, we must define a language to evaluate. For simplicity,

we will use an untyped λ-calculus with natural numbers.

Terms

It is defined as follows (left is Beluga code, right is informal specification) :

LF tm : type =

| zero : tm

| succ : tm → tm

| lam : (tm → tm) → tm

| app : tm → tm → tm;

Terms M ::= x Variables

| 0 Zero

| S M Successor

| λx.M Functions

|M N Application

Note that variables are part of the informal syntax, but are not modelled by any con-

structor of tm. Instead, the negative occurence of tm in the constructor lam implies that

variables of type tm may occur within other objects of type tm. This is in accordance with

the HOAS principle stipulating that variables in the OL are represented as LF variables (or,

more generally, as variables in the meta-language). Intuitively, we view the function space

(tm → tm) as consisting of objects of type tm (possibly) containing a variable of type tm.

As such, (tm → tm) is a weak function space (and so is every other LF function space).

The advantage of this approach is that the size of lam M is larger than the size of M. This
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allows us to recover an inductive view of types like tm that contain negative occurences in

their definition.

Small-step semantics

Now that we have defined the terms of the language, we can move on to its (small-step)

operational semantics. Conceptually, a step corresponds to a single action that could be

performed by an evaluation algorithm.

LF step : tm → tm → type =

| s-succ : step M N →

step (succ M) (succ N)

| s-beta : step (app (lam M) N) (M N)

| s-eta : step M (lam (λx.app M x))

| s-app1 : step M1 M2 →

step (app M1 N) (app M2 N)

| s-app2 : step N1 N2 →

step (app M N1) (app M N2)

| s-lam : ({x : tm} step (M x) (N x))

→ step (lam M) (lam N);

M −→ N : M steps to N (single step)

M −→ N
S M −→ S N

(λx.M) N −→ [N/x]M

M −→ λx.M x

M1 −→M2

(M1 N) −→ (M2 N)

N1 −→ N2

(M N1) −→ (M N2)

x ⊢M −→ N
(λx.M) −→ (λx.N)

d

d

d

89



LF mstep : tm → tm → type =

| m-refl : mstep M M

| m-step : step M M’ → mstep M’ N

→ mstep M N;

M −→∗ N : M steps to N (multiple steps)

M −→∗ M

M −→M ′ M ′ −→∗ N
M −→∗ N

5.1.2 Extracting an evaluation strategy

According to our small-step semantics, a given term may step in several different ways. As

such, it does not define a concrete evaluation algorithm, but rather a declarative notion of

evaluation. In practice, we need to precisely specify an order in which the rules are to be

used. For instance, the CBV strategy is to fully evaluate the arguments passed to a function

before applying β-reductions. We might also decide to omit some of the rules even though

they are meaningful evaluation steps. For instance, the extensionality rule s-lam is helpful

in the dependently-typed setting since we need term equality for type-cheking, but it is

typically omited in the simply-typed setting.

Our goal now is to extract from step and mstep a deterministic evaluation strategy.

First, we need to specify the stopping points of evaluation, that is values. Here, we consider

all functions to be values, in addition to zero and the successors of values. We represent this

using a refinement :

d

d

d
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LFR val ⊏ tm : sort =

| zero : val

| succ : val → val

| lam : (val → tm) → val;

Value V ::= x Variables

| 0 Zero

| S V Successor

| λx.M Functions

Next, we define a call-by-value semantics that evaluates function calls by first evaluating

the function, then the argument, and finally applies β-reduction. We also propagate eval-

uation under successor, but avoid all uses of η-expansions or extensionality. The resulting

strategy is then expressed as follows :

LFR cbv ⊏ step : tm → tm → sort =

| s-succ : cbv M N

→ cbv (succ M) (succ N)

| s-beta : (V : val)

cbv (app (lam M) V) (M V)

| s-app1 : cbv M1 M2

→ cbv (app M1 N) (app M2 N)

| s-app2 : (V : val) cbv N1 N2

→ cbv (app V N1) (app V N2);

M −→cbv N : single CBV step

M −→cbv N
S M −→cbv S N

(λx.M) V −→cbv [V/x]M

M1 −→cbv M2

(M1 N) −→cbv (M2 N)

N1 −→cbv N2

(V N1) −→cbv (V N2)

d

d

d

91



LFR eval ⊏ mstep : tm → val → sort =

| m-refl : eval V V

| m-step : cbv M M’ → eval M’ V

→ eval M V;

M −→∗
cbv N : CBV evaluation

V −→∗
cbv V

M −→cbv M
′ M ′ −→∗

cbv N

M −→∗
cbv V

5.1.3 Determinacy of evaluation

The main result of this section is that if evaluation succeeds, then it produces a unique value.

The fact that evaluation produces values is already known from the kind of eval, namely

tm → val → sort.

Values don’t step

Lemma 1 If V is a value, then V −→cbv M is impossible.

In order to state this formally, we need a notion of negation. Beluga is an intuitionistic

system, so negation is defined as ¬A ≜ (A → ⊥), where ⊥ is an empty type (representing

falsehood). We can specify this by defining an atomic LF type with no constructors :

LF false : type =;

rec val-no-step : {V : [⊢ val]} [⊢ cbv V M] → [⊢ false] =

mlam V => fn s => case [⊢ V] of

| [⊢ zero] => impossible s

| [⊢ succ V] => let [⊢ s-succ S] = s in

val-no-step [⊢ V] [⊢ S]
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| [⊢ lam (λx. M)] => impossible s;

Determinacy of cbv

Lemma 2 If M −→cbv N1 and M −→cbv N2, then N1 = N2.

Where equality N1 = N2 is just reflexivity. We encode this equality as a Beluga type :

LF eq : tm → tm → type =

| eq-refl : eq M M;

And now we can state and prove the lemma as follows :

rec cbv-det : [⊢ cbv M N1] → [⊢ cbv M N2] → [⊢ eq N1 N2] =

fn s1, s2 => case s1 of

| [⊢ s-succ S1] => let [⊢ s-succ S2] = s2 in

cbv-det [⊢ S1] [⊢ S2]

| [⊢ s-beta] => (case s2 of

| [⊢ s-beta] => [⊢ eq-refl]

| [⊢ s-app1 S2] => impossible (val-no-step [⊢ _] [⊢ S2]

| [⊢ s-app2 S2] => impossible (val-no-step [⊢ _] [⊢ S2])

| [⊢ s-app1 S1] => (case s2 of

| [⊢ s-beta] => impossible (val-no-step [⊢ _] [⊢ S1]

| [⊢ s-app1 S2] => cbv-det [⊢ S1] [⊢ S2]

| [⊢ s-app2 S2] => impossible (val-no-step [⊢ _] [⊢ S1])

| [⊢ s-app2 S1] => (case s2 of
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| [⊢ s-beta] => impossible (val-no-step [⊢ _] [⊢ S1]

| [⊢ s-app1 S2] => impossible (val-no-step [⊢ _] [⊢ S2]

| [⊢ s-app2 S2] => cbv-det [⊢ S1] [⊢ S2]);

Determinacy of eval

Theorem 1 If M −→∗
cbv V1 and M −→∗

cbv V2, then V1 = V2.

rec eval-det : [⊢ eval M V1] → [⊢ eval M V2] → [⊢ eq V1 V2] =

fn s1, s2 => case s1 of

| [⊢ m-refl] => (case s2 of

| [⊢ m-refl] => [⊢ eq-refl]

| [⊢ m-step S2 _] => impossible (val-no-step [⊢ _] [⊢ S2])

| [⊢ m-step S1 E1] => (case s2 of

| [⊢ m-refl] => impossible (val-no-step [⊢ _] [⊢ S1])

| [⊢ m-step S2 E2] => let [⊢ eq-refl] = cbv-det [⊢ S1] [⊢ S2] in

eval-det [⊢ E1] [⊢ E2]);

5.1.4 Improvements on the conventional proof

The first difference between our refinement solution and a conventional solution lies in the

encoding of values. Without refinements, we need to define val as a type. Since objects can

only have one type, this requires introducing three new constructors, say v-zero v-succ,

and v-lam, to be used in place of zero, succ, and lam, respectively. As a consequence, we
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cannot directly view an object of type val as having type tm. To remedy this situation, we

need an explicit embedding of values into terms, which can be defined as follows :

LF val-to-tm : val → tm → type =

| vt-zero : val-to-tm v-zero zero

| vt-succ : val-to-tm V M → val-to-tm (succ V) (succ M)

| vt-lam : val-to-tm (lam M) (lam M)

In the evaluation strategy, this embedding is then needed explicitly wherever we pre-

viously used an implicit quantification over values. For instance, the rule s-beta is given

type val-to-tm V N → cbv (app (lam M) N) (M N). In this example, we never need to

consider a CBV evaluation as an arbitrary small-step evaluation, so there is no need to define

an explicit embedding of cbv into step.

LF eval’ : tm → val → type =

| m-refl : val-to-tm V M → eval’ M V

| m-step : cbv M N → eval N V → eval M V;

The statements of theorems is similarly affected by the need to embed values into terms

explicitly. This means that we abstract over more types, so the resulting proofs (functions)

need to handle additional parameters. Due to the simplicity of our current example, the

impact is small (see ?? for a more significant one). In fact, it is really only visible in the

elaborated version of the statements. This is evident if we look at the first lemma (that

values don’t step) :

rec val-no-step’ : [⊢ val-to-tm V M] → [⊢ cbv M N] → [⊢ false]
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On the surface, this statement is very similar to its version using refinements : the only

difference is that we have the embedding as the first parameter instead of the value itself.

However, here we implicitly quantify over V, M, and N, while the refinement solution only

implicitly quantifies over N. This means that the compiler has less work to do to fill in the

gaps in the proof.

Although simple, this first example illustrates several of the key ideas behind refinements.

In particular, we observed how sorts are defined by imposing further constraints on the con-

structors of atomic types, providing a natural subset interpretation. However, it concerned

only closed objects, but Beluga excels at reasoning about and under binders.

5.1.5 Normal terms

The result about determinacy of evaluation can be extended to a semantics that evaluates

under binders. To achieve this, we must specialize our notion of values to normal terms.

This means that not all functions are considered end-points of evaluation, but only those

that contain no redeces.

LFR neut ⊏ tm : sort =

| zero : neut

| succ : neut → neut

| app : neut → norm → neut

and neut ≤ norm ⊏ tm : sort =

| lam : (neut → norm) → norm;

Neutral term R ::= x

| 0

| S R

| R M

Normal term N ::= R

| λx.N
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LFR n-step ⊏ step : tm → tm → sort =

| s-succ : n-step M M’

→ n-step (succ M) (succ M’)

| s-beta : (N : norm)

n-step (app (lam M) N) (M N)

| s-app1 : n-step M1 M2

→ n-step (app M1 M’) (app M2 M’)

| s-app2 : (N : val) n-step M1 M2

→ n-step (app N M1) (app N M2)

| s-lam : ({x:neut} n-step (M1 x) (M2 x))

→ n-step (lam M1) (lam M2);

M −→n M
′ : single step

M −→n M
′

S M −→n S M ′

(λx.M) N −→n [N/x]M

M1 −→n M2

(M1 M
′) −→n (M2 M

′)

M1 −→n M2

(N M1) −→n (N M2)

x ⊢M −→n M
′

(λx.M) −→n (λx.M ′)

LFR n-eval ⊏ mstep : tm → norm → sort =

| m-refl : n-eval N N

| m-step : cbv M M’ → n-eval M’ N

→ n-eval M N;

M −→∗
cbv N : CBV evaluation

V −→∗
cbv V

M −→cbv M
′ M ′ −→∗

cbv N

M −→∗
cbv V
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5.2 Bi-directional type-checking

tm : type =

| zero : tm

| succ : tm → tm

| refl : tm → tm

| lam : (tm → tm) → tm

| app : tm → tm → tm;

LF tp : type =

| nat : tp

| eq : tp → tm → tm → tp

| pi : tp → (tm → tp) → tp;

LF kd : type =

| typ : kd

| kpi : tp → (tm → kd) → kd;
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LF oft : tm → tp → type

| t-zero : oft zero nat

| t-succ : oft M nat

→ oft (succ M) nat

| t-refl : oft M A

→ oft (refl M) (eq A M M)

| t-lam : ({x:tm} oft x A → oft (M x) (B x))

→ oft (lam M) (pi A B)

| t-app : oft M (pi A B) → oft N A

→ oft (app M N) (B N);

LF ofk : tp → kd → type

| k-nat : ofk nat typ

| k-eq : ofk A typ → oft M A

→ ofk (eq A M M) typ

| k-pi : ofk A typ → ({x:tm} oft x A →

ofk (B x) typ)

→ ofk (pi A B) typ;
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LF wf-kd : kd → type =

| wf-typ : wf-kd typ

| wf-pi : ofk A typ → ({x:tm} oft x A →

wf-kd (L x))

→ wf-kd (kpi A L);

schema xtG =

| xtW : some [A : tp, W : ofk A typ] block (x:tm, t:oft x A);

LFR neut ⊏ tm : sort =

| app : neut → norm → neut

and neut ≤ norm ⊏ tm : sort =

| zero : norm

| succ : norm → norm

| refl : norm → norm

| lam : (neut → norm) → norm;
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LFR atom ⊏ tp : sort =

| nat : atom

| eq : canon → norm → norm → atom

and atom ≤ canon ⊏ tp : sort =

| pi : canon → (neut → canon) → canon

LFR synth ⊏ oft : neut → canon → sort =

| t-app : synth M (pi A B) → check N A

→ synth (app M N) (B N)

and synth ≤ check ⊏ oft : norm → canon → sort =

| t-zero : check zero nat

| t-succ : check M nat

→ check (succ M) nat

| t-refl : check M A

→ check (refl M) (eq A M M)

| t-lam : ({x:neut} synth x A → check (M x) (B x))

→ check (lam M) (pi A B)

schema neutG =

| xtW : some [A : tp, W : ofk A typ] block (x:neut, t:synth x A);
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rec subderiv : (Γ : xtG) [Γ ⊢ oft M A] → [Γ ⊢ ofk A typ] =

fn d => case d of

| [Γ ⊢ #b.2] => let [Γ1, b:xtW A W, Γ2] = [Γ] in

[Γ1, b:xtW A W, Γ2 ⊢ W[..]]

| [Γ ⊢ t-zero] => [Γ ⊢ k-nat]

| [Γ ⊢ t-succ _] => [Γ ⊢ k-nat]

| [Γ ⊢ t-refl D] => let [Γ ⊢ K] = subderiv [Γ ⊢ D] in

[Γ ⊢ k-eq K D]

| [Γ ⊢ t-lam (λx.λt. D)] =>

|

5.3 Equality in polymorphic λ-calculus

Felty et al. (2015) proposed a series of benchmarks aimed at comparing the capabilities of

different proof environment at reasoning about binders. Our next case study, proving the

equivalence of algorithmic and declarative equalities in the polymorphic λ-calculus, is one

of these benchmarks. The challenge here is that we must handle different kinds of binders

simultaneously. This is due to the fact that the OL contains both type variables α and term

variables x.

LF tp : type =

| arr : tp → tp → tp

| all : (tp → tp) → tp;

Type A,B ::= α Variables

| A→ B Simple functions

| ∀α.A Polymorphic functions
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LF tm : type =

| lam : (tm → tm) → tm

| app : tm → tm → tm

| tlam : (tp → tm) → tm

| tapp : tm → tp → tm;

Term M,N ::= x Variables

| λx.M Simple functions

|M N Simple application

| Λα.M Polymorphic functions

|M A Polymorphic application

LF oft : tm → tp → type =

| of-lam : ({x:tm} oft x A → oft (M x) B)

→ oft (lam M) (arr A B)

| of-app : oft M (arr A B) → oft N A

→ oft (app M N) B

| of-tlam : ({α:tp} oft (M α) (A α))

→ oft (tlam M) (all A)

| of-tapp : oft M (all B) → {A:tp}

→ oft (tapp M A) (B A);

LF atp : tp → tp → type =

| at-arr : atp A1 A2 → atp B1 B2

→ atp (arr A1 B1) (arr A2 B2)

| at-all : ({α:tp} atp α α→ atp (A α) (B α))

→ atp (tlam A) (tlam B);

LF deq : tm → tm → type =
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| d-lam : ({x:tm} deq x x → deq (M x) (N x))

→ deq (lam M) (lam N)

| d-app : deq M1 M2 → deq N1 N2

→ deq (app M1 N1) (app M2 N2)

| d-tlam : ({α:tp} atp α α→ deq (M α) (N α))

→ deq (tlam M) (tlam N)

| d-tapp : deq M N → atp A B

→ deq (tapp M A) (tapp N B)

| d-ref : deq M M

| d-sym : deq M N

→ deq N M

| d-tra : deq M1 M2 → deq M2 M3

→ deq M1 M3;

LFR aeq ⊏ deq : tm → tm → sort =

| d-lam : ({x:tm} aeq x x → aeq (M x) (N x))

→ aeq (lam M) (lam N)

| d-app : aeq M1 M2 → aeq N1 N2

→ aeq (app M1 N1) (app M2 N2)

| d-tlam : ({α:tp} atp α α→ aeq (M α) (N α))

→ aeq (tlam M) (tlam N)

| d-tapp : aeq M N → atp A B
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→ aeq (tapp M A) (tapp N B);

schema aeqG =

| α W : block (α:tp, at:atp α α)

| aeqW : block (x:tm, ae:aeq x x);

schema atpG ⊏ aeqG =

| α W : block (α:tp, at:atp α α);
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Chapter 6

Conclusion

We have developed an extension of Beluga with datasort refinement types. While datasort

refinements are mainly used to provide subtyping and intersection types to a language, our

work focuses on the refinement relation itself. In particular, we discussed how refinements

allow validating the correctness of proofs containing non-exhaustive pattern matching. As

such, refinement types can help a proof environment reproduce the informal method of

omitting irrelevant possibilities, which crucially relies on knowing what a function will be

called on.

Through this extension, we studied the notion of refinement schemas. They allow ex-

tracting more precise information about contexts, much like refinements extract more precise

properties (than types) about objects. In particular, refinement schemas are useful to deal

with a special kind of context relations, namely those when contexts are related by refine-

ments.
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6.1 Discussion

Handling contexts is at the source of many difficulties in the field of programming languages.

? notes that –insert large percertage– of mechanizing meta-theory consisted of proving prop-

erties of contexts and substitutions. Contextual types offer an elegant solution to manage

these issues with HOAS, but there remains challenges, such as those explored by Felty et al.

(2015). We have shown that schema refinements provide an adequate solution to some of the

problems surrounding context relation. However, there remains several interesting context

relations not encompassed by our refinement relations.

The challenges of handling contexts were also manifest in the development of the current

work. In Lovas and Pfenning (2010)’s LFR, the variables in contexts are both sorted and

typed, that is contexts have the form x1 : S1 ⊏ A1, ..., xn : Sn ⊏ An. We wanted to keep

a clear separation between sorts and types at all levels of Beluga, and the presence of

contextual sorts and types required separating contexts into sorting and typing. However,

contexts are also meta-objects in Beluga, so this separation induced a further separation

and refinement relation on meta-objects and computation-level expressions.

The fact that there were now several refinement relations to consider simultaneously

led to their formulation over judgments. This formulation was instrumental in obtaining a

straightforward proof of conservativity (with previous attempts at formulating the extension

requiring several lemma).

In Beluga, every computation-level expression has a unique type, but can have many

sorts. ? discusses this phenomenon and how it relates intrinsic and extrinsic views of typing,

107



respectively. That is, types may be viewed as an intrinsic, syntactic property of expressions,

whereas sorts represent properties that are externally asserted. The fact that our judgments

produce typing derivation then shows that sorts can only express properties about objects

that are intrinsically meaningful.

Conceptually, and extrinsic view of terms is satisfying. This is especially true because

terms evaluate in the same way no matter the particular typing discipline enforced. However,

this view relies on the possibility to define terms independently of types (or sorts), which

proves difficult when we consider contexts as objects. This is because we cannot discard the

type information of the variables in a context without losing information on its structure,

especially in the case of blocks. Our new formulation of contexts and schemas using worlds

provides a partial solution to this problem. A context only inhabits a schema G if all of its

variables are constructed from the worlds of G. These worlds are referred to as constants

applied to terms. In this case, schemas are analogous to atomic types in that they specify

constructors with which a context may be created to fit that schema.

Felty et al. (2015) raise the important issue that contexts are not simply flat lists of

variables, as is so often depicted on paper. They suggest using instead the slightly richer

structure of lists of parameterized tuples, which we represent using schemas. This simple

improvement already provides several benefits, so one might naturally consider a notion of

schema that permits a more general structure. For instance, allowing contexts made out

of other contexts would immediately yield a representation of those contexts separated into

zones, such as our ∆; Γ. If we further allow a notion of dependent schema (that is a family of

schemas indexed by objects of a type), we can also represent an infinite hierarchy of levels,
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as in layered modal type theory (?).

6.2 Future work

Our current definition of refinement schemas is limited by the fact that our meta-theory

requires sorts to refine only one type. In particular, we can only establish that H ⊏ G when

every element of G is refined by some element of H. However, if H ⊏ G, then it would also

make sense to conclude H ⊏ G+v for any element v. In that case, H would express the more

precise property of not containing any assumption of the form v. Likewise, the refinement

relations on blocks and schema elements could be extended in interesting ways. At the

moment, refinement is only possible between blocks of the same size and that are submitted

to the same number of constraints. Allowing a large and heavily constrained block to refine

a small and lightly constrained block would offer suitable encodings of several more context

relations. Similarly, refinements of contexts can be generalized to express conditions in which

strengthening can be performed safely. Our early experiments suggest that generalizing

the refinement relation in this way would allow the representation of several more context

relations. In fact, all the relations suggested by Felty et al. (2015) can be represented with

minor changes to refinements. Consequently, our next goal is to provide a more flexible form

of refinements and to modify our proof of conservativity so that it no longer relies on type

uniqueness for refinements.

An important limitation of refinement type systems is that refinements cannot be fur-

ther refined. Instead, they have to be related with a subsorting relation, which is similar

to subtyping except that it relates sorts instead of types. As discussed previously, refine-
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ment and subtyping are fundamentally different relations. This issue was also raised by ?,

who designed a system in which multiple layers of refinements are allowed. Although their

work was for a simply-typed setting, we expect that a similar approach would work well in

Beluga.

Our work currently extends the core of Beluga, but ignores several of the more advanced

features. In particular, (co)inductive and stratified types (Jacob-Rao et al., 2018) play an

important role in representing proofs by logical relations (Cave and Pientka, 2018). We

expect that our current system can be extended in a straightoforward way, simply by defining

sorting rules that mimic the typing rules.
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Birkhäuser Boston, Boston, MA.

Rondon, P. M., Kawaguci, M., and Jhala, R. (2008). Liquid types. SIGPLAN Not.,

43(6):159–169.

Schurmann, C. E. (2000). Automating the Meta Theory of Deductive Systems. PhD thesis,

Carnegie Mellon University, USA, USA. AAI9986626.

Virga, R. (1999). Higher-Order Rewriting with Dependent Types. PhD thesis, Carnegie

Mellon University, USA. AAI9950039.

114



Watkins, K., Cervesato, I., Pfenning, F., and Walker, D. (2002). A concurrent logical

framework I: Judgments and properties. Technical Report CMU-CS-02-101, Carnegie

Mellon University.

Xi, H. (1998). Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon

University, USA, USA. AAI9918624.

Xi, H. and Pfenning, F. (1999). Dependent types in practical programming. In Proceedings of

the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’99, page 214–227, New York, NY, USA. Association for Computing Machinery.

115



Appendix A

Definition of Contextual LFR

A.1 Syntax

A.1.1 Syntax of CLFR objects

Heads H ::= c | x | b.k

Spines M⃗ ::= nil |M ; M⃗

Neutral terms R ::= H M⃗ | u[σ]

Normal terms M ::= R | λx.M

Substitutions σ ::= · | idψ | σ, M⃗

A.1.2 Syntax of CLFR classifiers
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Syntactic category Type level Refinement level

Kinds K ::= type | Πx:A.K L ::= sort | Πx::S.L

Atomic families P ::= a · M⃗ Q ::= s · M⃗

Canonical families A ::= P | Πx:A1.A2 S ::= Q | Πx::S1.S2

Blocks C ::= A | Σx:A.C D ::= S | Σx::S.D

Worlds V ::= C | Πx:A.V W ::= D | Πx::S.W

Contexts Γ ::= · | ψ | Γ, x:A | Γ, b:(E · M⃗) Ψ ::= · | ψ | Ψ, x::S | Ψ, b::(F · M⃗)

Schemas G ::= · | G+ v H ::= · | H +w

A.1.3 Syntax of meta-layer

Syntactic category Type level Refinement level

Meta-objects M ::= Γ̂.R | Γ̂.σ | Γ N ::= Ψ̂.R | Ψ̂.σ | Ψ

Meta-types A ::= Γ.P | Γ1.Γ2 | G S ::= Ψ.Q | Ψ1.Ψ2 | H

Meta-contexts ∆ ::= · | ∆, X:A Ω ::= · | Ω, X:S

Meta-substitutions θ ::= · | θ,M ρ ::= · | ρ,N

Meta-variables X ::= u | ψ
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A.2 Type-level judgments

A.2.1 Type formation

∆;Γ ⊢ K : kind – K is a well-formed kind.

∆ ⊢ Γ ctx
∆;Γ ⊢ type : kind

K-type
∆;Γ, x:A ⊢ K : kind

∆;Ψ ⊢ Πx:A.K : kind
K-pi

∆;Γ ⊢ A⇐ type – Canonical type family A is well-formed.

(a:K) ∈ Σ ∆;Γ ⊢ M⃗ : K > type

∆;Γ ⊢ a M⃗ ⇐ type
T-atom

∆;Γ ⊢ A1 : type ∆;Γ, x:A ⊢ A2 ⇐ type

∆;Γ ⊢ ΠA1.A2 ⇐ type
T-pi

∆;Γ ⊢ M⃗ : K > type – Check spine M⃗ against K with target type.

∆ ⊢ Γ ctx
∆;Γ ⊢ nil : type > type

K-spn-nil

∆;Γ ⊢M ⇐ A ∆;Γ ⊢ M⃗ : [M/x]K > type

∆;Γ ⊢ (M ; M⃗) : Πx:A.K > type
K-spn-cons

A.2.2 Typing

∆;Γ ⊢ H ⇒ A – Synthesize type A for head H

(c:A) ∈ Σ ∆ ⊢ Γ ctx

∆;Γ ⊢ c ⇒ A
TS-const

(x:A ∈ Γ) ∆ ⊢ Γ ctx

∆;Γ ⊢ x⇒ A
TS-x

(b : v[M⃗ ]) ∈ Γ ∆; Γ ⊢ v[M⃗ ] > C ∆;Γ ⊢ b : C ≫k
1 A

∆;Γ ⊢ b.k ⇒ A
TS-b
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∆;Γ ⊢ V [M⃗ ] > C – Instantiate block C for element V applied to M⃗

∆;Γ ⊢ C[nil] > C
Inst-nil

(v = V ) ∈ Σ ∆;Γ ⊢ V [M⃗ ] > C

∆;Γ ⊢ v[M⃗ ] > C
Inst-const

{∆;Γ ⊢M ⇐ A} ∆;Γ ⊢ ([M/x]V )[M⃗ ] > C

∆;Γ ⊢ Πx:A.V [M ; M⃗ ] > C
Inst-pi

∆;Γ ⊢ b : D ≫k
i A – Extract type A for kth projection of block variable b

∆;Γ ⊢ b : Σx:A.C ≫k
k A

Ext-stop
∆;Γ ⊢ b : [b.i/x]C ≫k

i+1 A

∆;Γ ⊢ b : Σx:A′.C ≫k
i A

Ext-cont

∆;Γ ⊢ R ⇒ A – Synthesize type A for neutral term R

∆;Γ ⊢ H ⇒ A′ ∆;Γ ⊢ M⃗ : A′ > A

∆;Γ ⊢ H M⃗ ⇒ A
TS-app

(u : Γ′.A) ∈ ∆ ∆;Γ ⊢ σ : Γ′

∆;Γ ⊢ u[σ] : [σ]A TS-mvar

∆;Γ ⊢ M⃗ : A′ > A – Apply type A′ to spine M⃗ to obtain type A

{∆;Γ ⊢ A⇐ type}
∆;Γ ⊢ nil : A > A

TC-spn-nil

∆;Γ ⊢M ⇐ A′
1 ∆;Γ ⊢ M⃗ : [M/x]A′

2 > A

∆;Γ ⊢ (M ; M⃗) : Πx:A′
1.A

′
2 > A

TC-spn-cons

∆;Γ ⊢M ⇐ A – Check normal term M against type A.

∆; Γ ⊢ R ⇒ A

∆;Γ ⊢ R ⇐ A
TC-conv

∆;Γ, x:A ⊢M ⇐ A′

∆;Γ ⊢ λx.M ⇐ Πx:A.A′ TC-lam
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A.2.3 Schemas

∆;Γ ⊢ C : block – Block of declarations C is well-formed

{∆ ⊢ Γ : ctx}
∆;Γ ⊢ · : block B-empty

∆;Γ ⊢ A⇐ type ∆;Γ, x:A ⊢ C : block

∆;Γ ⊢ Σx:A.C : block
B-sigma

∆;Γ ⊢ V : world – World V is well-formed

∆; Γ ⊢ C : block

∆;Γ ⊢ C : world
W-conv

∆;Γ ⊢ A⇐ type ∆;Γ, x:A ⊢ V : world

∆;Γ ⊢ Πx:A.V : world
W-pi

∆ ⊢ G : schema – Schema G is well-formed

⊢ ∆ : mctx
∆ ⊢ · : schema S-empty

∆ ⊢ G : schema (v = V : world) ∈ Σ v /∈ G

∆ ⊢ G+ v : schema
S-ext

∆ ⊢ Γ : G – LF context Γ has schema G in meta-context ∆

∆ ⊢ G : schema
∆ ⊢ · : G SC-empty

(ψ : G) ∈ ∆

∆ ⊢ ψ : G
SC-var

∆ ⊢ Γ : G v ∈ G
{
∆;Γ ⊢ v[M⃗ ] > D

}
∆ ⊢ (Γ, b:v[M⃗ ]) : G

SC-ext

A.2.4 Contexts

∆ ⊢ Γ : ctx – LF context Γ is well-formed in meta-context ∆

⊢ ∆ : mctx
∆ ⊢ · : ctx C-empty

(ψ : G) ∈ ∆ ⊢ ∆ : mctx

∆ ⊢ ψ : ctx
C-var

∆ ⊢ Γ : ctx ∆;Γ ⊢ A⇐ type

∆ ⊢ (Γ, x:A) : ctx
C-cons-x

∆ ⊢ Γ : ctx ∆;Γ ⊢ v[M⃗ ] > C

∆ ⊢ (Γ, b:v[M⃗ ]) : ctx
C-cons-b
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∆;Γ1 ⊢ σ : Γ2 – σ is a well-formed subsitution from Γ2 to Γ1

{∆ ⊢ Γ1 : ctx}
∆;Γ1 ⊢ · : · Subst-empty

(ψ : G) ∈ ∆ {∆ ⊢ Γ1 : ctx}
∆;Γ1 ⊢ idψ : ψ

Subst-id

∆;Γ1 ⊢ σ : Γ2 ∆;Γ1 ⊢M ⇐ [σ]A

∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)
Subst-tm

∆;Γ1 ⊢ σ : Γ2 ∆;Γ2 ⊢ v[M⃗ ′] > D ∆;Γ1 ⊢ M⃗ ⇐ [σ]D

∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:v[M⃗
′])

Subst-spn

∆;Γ ⊢ M⃗ ⇐ D – n-ary tuple M⃗ checks against block of declarations D

{∆ ⊢ Γ : ctx}
∆;Γ ⊢ nil ⇐ · Chk-spn-nil

∆;Γ ⊢M ⇐ A ∆;Γ ⊢ M⃗ ⇐ [M/x]D

∆;Γ ⊢ (M ; M⃗) ⇐ Σx:A.D
Chk-spn-sigma

A.2.5 Meta-layer

⊢ ∆ : mctx – ∆ is a well-formed meta-context

⊢ · : mctx MC-nil
⊢ ∆ : mctx ∆ ⊢ A : mtype

⊢ (∆, X:A) : mctx
MC-cons

∆ ⊢ A : mtype – A is a well-formed meta-type in meta-context ∆

∆; Γ ⊢ P ⇐ type

∆ ⊢ (Γ.P ) : mtype
MT-tp ∆ ⊢ G : schema

∆ ⊢ G : mtype
MT-schema

∆ ⊢ Γ1 : ctx ∆ ⊢ Γ2 : ctx

∆ ⊢ (Γ1.Γ2) : mtype
MT-subst

∆ ⊢ M : A – Meta-objects M has meta-type A

∆;Γ ⊢ R ⇐ P

∆ ⊢ (Γ̂.R) : (Γ.P )
MOft-tm

∆;Γ1 ⊢ σ : Γ2

∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)
MOft-subst
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∆ ⊢ Γ : G (schema checking)

∆ ⊢ Γ : G (mtype checking)
MOft-ctx

∆1 ⊢ θ : ∆2 – θ is a well-formed meta-substitution from ∆2 to ∆1

{⊢ ∆1 : mctx}
∆1 ⊢ · : · MSubst-nil

∆1 ⊢ θ : ∆2 ∆1 ⊢ M : JθKA
∆1 ⊢ (θ,M) : (∆2, X:A)

MSubst-cons

A.3 Refinement-level judgments

A.3.1 Sort formation

(Ω;Ψ ⊢ L) ⊏ (∆; Γ ⊢ K : kind) – L is a kind refinement of K

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ sort) ⊏ (∆; Γ ⊢ type : kind)
KR-sort

(Ω;Ψ, x:S ⊢ L) ⊏ (∆; Γ, x:A ⊢ K : kind)

(Ω;Ψ ⊢ Πx:S.L) ⊏ (∆; Γ ⊢ Πx:A.K : kind)
KR-pi

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type) – Sort S refines type A

(s:L ⊏ a:K) ∈ Σ (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s M⃗) ⊏ (∆; Γ ⊢ a M⃗ ⇐ type)
TR-atom

{(Ω;Ψ ⊢ S1) ⊏ (∆; Γ ⊢ A1 ⇐ type)}
(Ω;Ψ, x:S1 ⊢ S2) ⊏ (∆; Γ, x:A1 ⊢ A2 ⇐ type)

(Ω;Ψ ⊢ Πx:S1.S2) ⊏ (∆; Γ ⊢ Πx:A1.A2 ⇐ type)
TR-pi

(Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type) – Check M⃗ against L with target sort

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ nil : sort > sort) ⊏ (∆; Γ ⊢ nil : type > type)
KR-spn-nil

(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A)

(Ω;Ψ ⊢ M⃗ : [M/x]L > sort) ⊏ (∆; Γ ⊢ M⃗ : [M/x]K > type)

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S.L > sort) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A.K > type)
KR-spn-cons
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A.3.2 Sorting

(Ω;Ψ ⊢ H ⇒ S) ⊏ (∆; Γ ⊢ H ⇒ A) – Synthesize sort S for head H

(c :: S ⊏ A) ∈ Σ {(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)}
(Ω;Ψ ⊢ c ⇒ S) ⊏ (∆; Γ ⊢ c ⇒ A)

TRS-const

(x:S) ∈ Ψ (x:A) ∈ Γ {(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)}
(Ω;Ψ ⊢ x⇒ S) ⊏ (∆; Γ ⊢ x⇒ A)

TRS-x

(b:w[M⃗ ]) ∈ Ψ

(b:v[M⃗ ]) ∈ Γ

(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)

(Ω;Ψ ⊢ b : D ≫k
1 S) ⊏ (∆; Γ ⊢ b : C ≫k

1 A)

(Ω;Ψ ⊢ b.k ⇒ S) ⊏ (∆; Γ ⊢ b.k ⇒ A)
TRS-b

(Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C) – Instantiate block D for element WM⃗

{(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block)}
(Ω;Ψ ⊢ D[nil] > D) ⊏ (∆; Γ ⊢ C[nil] > C)

R-Inst-nil

((w = W ) ⊏ (v = V )) ∈ Σ (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C)

(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)
R-Inst-const

{(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A)}
(Ω;Ψ ⊢ ([M/x]W )[M⃗ ] > D) ⊏ (∆; Γ ⊢ ([M/x]V )[M⃗ ] > C)

(Ω;Ψ ⊢ Πx:S.W [M ; M⃗ ] > D) ⊏ (∆; Γ ⊢ Πx:A.V [M ; M⃗ ] > C)
R-Inst-pi

(Ω;Ψ ⊢ b : D ≫k
i S) ⊏ (∆; Γ ⊢ b : C ≫k

i A) – Extract sort S for kth projection of b

(Ω;Ψ ⊢ b : Σx:S.D ≫k
k S) ⊏ (∆; Γ ⊢ b : Σx:A.C ≫k

k A)
R-Ext-stop

(Ω;Ψ ⊢ b : [b.i/x]D ≫k
i+1 S) ⊏ (∆; Γ ⊢ b : [b.i/x]C ≫k

i+1 A)

(Ω;Ψ ⊢ b : Σx:S ′.D ≫k
i S) ⊏ (∆; Γ ⊢ b : Σx:A′.C ≫k

i A)
R-Ext-cont

(Ω;Ψ ⊢ R ⇒ S) ⊏ (∆; Γ ⊢ R ⇒ A) – Synthesize sort S for neutral term R

(Ω;Ψ ⊢ H ⇒ S ′) ⊏ (∆; Γ ⊢ H ⇒ A′)

(Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A)

(Ω;Ψ ⊢ H M⃗ ⇒ S) ⊏ (∆; Γ ⊢ H M⃗ ⇒ A)
TRS-app
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(u : Ψ′.S) ∈ Ω (u : Γ′.A) ∈ ∆ (Ω;Ψ ⊢ σ : Ψ′) ⊏ (∆; Γ ⊢ σ : Γ′)

(Ω;Ψ ⊢ u[σ] : [σ]S) ⊏ (∆; Γ ⊢ u[σ] : [σ]A) TRS-mvar

(Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A) – Apply sort S ′ to M⃗ to obtain sort S

{(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)}
(Ω;Ψ ⊢ nil : S > S) ⊏ (∆; Γ ⊢ nil : A > A)

TRC-spn-nil

(Ω;Ψ ⊢M ⇐ S ′
1) ⊏ (∆; Γ ⊢M ⇐ A′

1)

(Ω;Ψ ⊢ M⃗ : [M/x]S ′
2 > S) ⊏ (∆; Γ ⊢ M⃗ : [M/x]A′

2 > A)

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S ′
1.S

′
2 > S) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A′

1.A
′
2 > A)

TRC-spn-cons

(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A) – Check normal term M against sort S.

(Ω;Ψ ⊢ R ⇒ S ′) ⊏ (∆; Γ ⊢ R ⇒ A) (Ω;Ψ ⊢ S ′ ≤ S) ⊏ (∆; Γ ⊢ A)
(Ω;Ψ ⊢ R ⇐ S) ⊏ (∆; Γ ⊢ R ⇐ A)

TRC-conv

(Ω;Ψ, x:S ⊢M ⇐ S ′) ⊏ (∆; Γ, x:A ⊢M ⇐ A′)

(Ω;Ψ ⊢ λx.M ⇐ Πx:S.S ′) ⊏ (∆; Γ ⊢ λx.M ⇐ Πx:A.A′)
TRC-lam

A.3.3 Schemas

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block) – Block of declarations D refines C

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ ·) ⊏ (∆; Γ ⊢ · : block) BR-empty

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type) (Ω;Ψ, x:S ⊢ D) ⊏ (∆; Γ, x:A ⊢ C : block)

(Ω;Ψ ⊢ Σx:S.D) ⊏ (∆; Γ ⊢ Σx:A.C : block)
BR-sigma

(Ω;Ψ ⊢ W ) ⊏ (∆; Γ ⊢ V : world) – World W refines V

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block)

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : world)
WR-conv

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type) (Ω;Ψ, x:S ⊢ W ) ⊏ (∆; Γ, x:A ⊢ V : world)

(Ω;Ψ ⊢ Πx:S.W ) ⊏ (∆; Γ ⊢ Πx:A.V : world)
WR-pi
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(Ω ⊢ H) ⊏ (∆ ⊢ G : schema) – Schema H refines G

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : schema) SR-empty

w /∈ H

v /∈ G

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

((w = W ) ⊏ (v = V : world)) ∈ Σ

(Ω ⊢ H +w) ⊏ (∆ ⊢ G+ v : schema)
SR-ext

w /∈ H

v ∈ G

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

((w = W ) ⊏ (v = V : world)) ∈ Σ

(Ω ⊢ H +w) ⊏ (∆ ⊢ G+ v : schema)
SR-ext-dup

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) – Context Ψ has schema H

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · : H) ⊏ (∆ ⊢ · : G) SRC-empty
(ψ : H) ∈ Ω (ψ : G) ∈ ∆

(Ω ⊢ ψ : H) ⊏ (∆ ⊢ ψ : G)
SRC-var

w ∈ H

v ∈ G

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G){
(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)

}
(Ω ⊢ (Ψ, b:w[M⃗ ]) : H) ⊏ (∆ ⊢ (Γ, b:v[M⃗ ]) : G)

SRC-ext

A.3.4 Contexts

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx) – LFR context Ψ refines Γ

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : ctx) CR-empty

(ψ : H) ∈ Ω (ψ : G) ∈ ∆ (⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ψ) ⊏ (∆ ⊢ ψ : ctx)
CR-var

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx) (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

(Ω ⊢ Ψ, x:S) ⊏ (∆ ⊢ (Γ, x:A) : ctx)
CR-cons-x
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(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx) (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (Ω;Ψ ⊢ v[M⃗ ] > C)

(Ω ⊢ Ψ, b:w[M⃗ ]) ⊏ (∆ ⊢ (Γ, b:v[M⃗ ]) : ctx)
CR-cons-b

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2) – σ is a well-formed subsitution from Ψ2 to Ψ1

{(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)}
(Ω;Ψ1 ⊢ · : ·) ⊏ (∆; Γ1 ⊢ · : ·) SubstR-empty

(ψ : H) ∈ Ω (ψ : G) ∈ ∆ {(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)}
(Ω;Ψ1 ⊢ idψ : ψ) ⊏ (∆; Γ1 ⊢ idψ : ψ)

SubstR-id

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)

(Ω;Ψ1 ⊢M ⇐ [σ]S) ⊏ (∆; Γ1 ⊢M ⇐ [σ]A)(
Ω;Ψ1 ⊢ (σ,M) : (Ψ2, x:S)

)
⊏

(
∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)

) SubstR-tm

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)

(Ω;Ψ2 ⊢ w[M⃗ ′] > C) ⊏ (∆; Γ2 ⊢ v[M⃗ ′] > D)

(Ω;Ψ1 ⊢ M⃗ ⇐ [σ]C) ⊏ (∆; Γ1 ⊢ M⃗ ⇐ [σ]D)(
Ω;Ψ1 ⊢ (σ, M⃗) : (Ψ2, b:w[M⃗ ′])

)
⊏

(
∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:v[M⃗

′])
) SubstR-spn

(Ω;Ψ ⊢ M⃗ ⇐ C) ⊏ (∆; Γ ⊢ M⃗ ⇐ D) – n-ary tuple M⃗ checks against block C

{(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)}
(Ω;Ψ ⊢ nil ⇐ ·) ⊏ (∆; Γ ⊢ nil ⇐ ·) ChkR-spn-nil

(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A)

(Ω;Ψ ⊢ M⃗ ⇐ [M/x]D) ⊏ (∆; Γ ⊢ M⃗ ⇐ [M/x]C)

(Ω;Ψ ⊢ (M ; M⃗) ⇐ Σx:S.D) ⊏ (∆; Γ ⊢ (M ; M⃗) ⇐ Σx:A.C)
ChkR-spn-sigma

A.3.5 Meta-layer

(⊢ Ω) ⊏ (⊢ ∆ : mctx) – Ω refines ∆

(⊢ ·) ⊏ (⊢ · : mctx) MCR-nil
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(⊢ Ω) ⊏ (⊢ ∆ : mctx) (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(⊢ (Ω, X:S) ⊏ (⊢ (∆, X:A) : mctx)
MCR-cons

(Ω ⊢ S) ⊏ (∆ ⊢ A : mtype) – S refines A / is a well-formed meta-sort

(Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P ⇐ type)(
Ω ⊢ (Ψ.Q)

)
⊏

(
∆ ⊢ (Γ.P ) : mtype

) MTR-tp

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H) ⊏ (∆ ⊢ G : mtype)
MTR-schema

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx) (Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2 : ctx)(
Ω ⊢ (Ψ1.Ψ2)

)
⊏

(
∆ ⊢ (Γ1.Γ2) : mtype

) MTR-subst

(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) – Meta-objects N has meta-sort S

(Ω;Ψ ⊢ R ⇐ Q) ⊏ (∆; Γ ⊢ R ⇐ P )(
Ω ⊢ (Ψ̂.R) : (Ψ.Q)

)
⊏

(
∆ ⊢ (Γ̂.R) : (Γ.P )

) MOftR-tm

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)(
Ω ⊢ (Ψ̂1.σ) : (Ψ1.Ψ2)

)
⊏

(
∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)

) MOftR-subst

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (schema checking)

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (msort checking)
MOftR-ctx

(Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2) – ρ is a meta-substitution refinement of θ from Ω2 to Ω1

{(⊢ Ω1) ⊏ (⊢ ∆1 : mctx)}
(Ω1 ⊢ · : ·) ⊏ (∆1 ⊢ · : ·) MSubstR-nil

(Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2) (Ω1 ⊢ N : JρKS) ⊏ (∆1 ⊢ M : JθKA)(
Ω1 ⊢ (ρ,N ) : (Ω2, X:S)

)
⊏

(
∆1 ⊢ (θ,M) : (∆2, X:A)

) MSubstR-cons

A.3.6 Subsorting rules

For LFR sorts (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) – S1 is a subsort of S2
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(LFR s1 ≤ s2 ⊏ a : L) ∈ Σ (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s1 ≤ s2) ⊏ (∆; Γ ⊢ a)
Sub-atom

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A)
(Ω;Ψ ⊢ S ≤ S) ⊏ (∆; Γ ⊢ A) Sub-refl

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) (Ω;Ψ ⊢ S2 ≤ S3) ⊏ (∆; Γ ⊢ A)
(Ω;Ψ ⊢ S1 ≤ S3) ⊏ (∆; Γ ⊢ A) Sub-trans

(Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A) (Ω;Ψ, x:S2 ⊢ S ′
1 ≤ S ′

2) ⊏ (∆; Γ, x:A ⊢ A′)

(Ω;Ψ ⊢ Πx:S1.S
′
1 ≤ Πx:S2.S

′
2) ⊏ (∆; Γ ⊢ Πx:A.A′ Sub-pi

For blocks (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C) – D1 is a sub-block of D2

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ)

(Ω;Ψ ⊢ · ≤ ·) ⊏ (∆;Ψ ⊢ ·) Sub-Bnil

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) (Ω;Ψ, x:S1 ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C)
(Ω;Ψ ⊢ Σx:S1.D1 ≤ Σx:S2.D2) ⊏ (∆; Γ ⊢ Σx:A.C)

Sub-sigma

For worlds (Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V ) – W1 is a sub-world of W2

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : block)

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : world)
SubW-conv

(Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A) (Ω;Ψ, x:S2 ⊢ S ′
1 ≤ S ′

2) ⊏ (∆; Γ ⊢ A′)

(Ω;Ψ ⊢ Πx:S1.S
′
1 ≤ Πx:S2.S

′
2) ⊏ (∆; Γ ⊢ Πx:A.A′)

SubW-pi
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For schemas (Ω;Ψ ⊢ H1 ≤ H2) ⊏ (∆; Γ ⊢ G) – H1 is a sub-schema of H2

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · ≤ H) ⊏ (∆ ⊢ G SubS-nil

(w /∈ G) (Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema) (Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world)

(Ω ⊢ H1 +w:W1 ≤ H2 +w:W2) ⊏ (∆; Γ ⊢ G+w:V )
SubS-sum

For meta-sorts (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A) – S1 is a sub-meta-sort of S2

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A)
(Ω ⊢ Ψ.S1 ≤ Ψ.S2) ⊏ (∆ ⊢ Γ.A)

SubM-tp

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1) (Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2)

(Ω ⊢ Ψ1.Ψ2 ≤ Ψ1.Ψ2) ⊏ (∆ ⊢ Γ1.Γ2)
SubM-subst

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : mtype)
SubM-schema
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Appendix B

Definition of Beluga

B.1 Syntax

Category Type level Refinement level

Types τ ::= [A] | τ1 → τ2 | ΠX:A.τ ζ ::= [S] | ζ1 → ζ2 | ΠX::S.ζ

Expressions e ::= y | [M] | fn y:τ ⇒ e | e1 e2 f ::= y | [N ] | fn y::ζ ⇒ f | f1 f2

| mlam X:A ⇒ e | e M | mlam X::S ⇒ f | f M

| let [X] = e1 in e2 | let [X] = f1 in f2

| caseτ [M] of b⃗ | caseζ [N ] of c⃗

Branches b ::= ∆; [M] ⇒ e c ::= Φ; [N ] ⇒ f

Contexts Ω ::= · | Ω, y:τ Ξ ::= · | Ξ, y::ζ
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B.2 Type-level judgments

∆ ⊢ Ξ : cctx – Computation context formation

⊢ ∆ : mctx
∆ ⊢ · : cctx CC-nil

∆ ⊢ Ξ : cctx ∆;Ξ ⊢ τ : ctype

∆ ⊢ Ξ, y:τ : cctx
CC-cons

∆;Ξ ⊢ τ : ctype – Type formation

∆ ⊢ A : ctype ∆ ⊢ Ξ : cctx

∆;Ξ ⊢ [A] : ctype
CT-meta

∆;Ξ ⊢ τ1 : ctype ∆;Ξ ⊢ τ2 : ctype
∆;Ξ ⊢ τ1 → τ2 : ctype

CT-arr

∆ ⊢ A : mtype ∆, X:A; Ξ ⊢ τ : ctype

∆;Ξ ⊢ ΠX:A.τ : ctype
CT-pi

∆;Ξ ⊢ e : τ – Expression e has type τ

∆ ⊢ Ξ : cctx (y:τ) ∈ Ξ

∆;Ξ ⊢ y:τ CT-var
∆ ⊢ M : A ∆ ⊢ Ξ : cctx

∆;Ξ ⊢ [M] : [A]
CT-box

∆;Ξ, y:τ1 ⊢ e : τ2
∆;Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2

CT-fn
∆;Ξ ⊢ e1 : τ2 → τ1 ∆;Ξ ⊢ e2 : τ2

∆;Ξ ⊢ e1 e2 : τ1
CT-app

∆, X:A; Ξ ⊢ e : τ
∆;Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ CT-mlam

∆;Ξ ⊢ e : ΠX:A.τ ∆ ⊢ M : A
∆;Ξ ⊢ e M : JM/XKτ

CT-mapp

∆;Ξ ⊢ e1 : [A] ∆, X:A; Ξ ⊢ e2 : τ
∆;Ξ ⊢ let [X] = e1in e2 : τ

CT-let

τ = Π∆0.ΠX0:A0.τ0 ∆ ⊢ θ : ∆0 ∆ ⊢ M : JθKA0 ∆;Ξ ⊢ b : τ (for all b ∈ b⃗)

∆; Ξ ⊢ (caseτ [M] of b⃗) : Jρ,M/X0Kτ0
CT-case

∆;Ξ ⊢ b : τ – Branch b matches invariant τ

∆0 ⊢ M0 : A0 ∆,∆0 ⊢ A .
= A0/(θ,∆

′) ∆′; JθKΞ ⊢ JθKe : JθKτ0
∆;Ξ ⊢ (∆0; [M0] 7→ e) : Π∆1.ΠX0:A0.τ0

CT-branch
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B.3 Refinement-level judgments

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) – Computation context formation

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : cctx) CCR-nil

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (Ω;Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype)

(Ω ⊢ Φ, y:ζ) ⊏ (∆ ⊢ Ξ, y:τ : cctx)
CCR-cons

(Ω;Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype) – Sort/type formation

(Ω ⊢ S) ⊏ (∆ ⊢ A : ctype) (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω;Φ ⊢ [S]) ⊏ (∆; Ξ ⊢ [A] : ctype)
CTR-meta

(Ω;Φ ⊢ ζ1) ⊏ (∆; Ξ ⊢ τ1 : ctype) (Ω; Ξ ⊢ ζ2) ⊏ (∆; Ξ ⊢ τ2 : ctype)
(Ω;Φ ⊢ ζ1 → ζ2) ⊏ (∆; Ξ ⊢ τ1 → τ2 : ctype)

CTR-arr

(Ω ⊢ S) ⊏ (∆ ⊢ A : mtype) (Ω, X:S; Φ ⊢ ζ) ⊏ (∆, X:A; Ξ ⊢ τ : ctype)

(Ω;Φ ⊢ ΠX:S.ζ) ⊏ (∆; Ξ ⊢ ΠX:A.τ : ctype)
CTR-pi

(Ω;Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ) – Sorting and typing judgments for expressions

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (y:ζ) ∈ Φ (y:τ) ∈ Ξ

(Ω;Φ ⊢ y:ζ) ⊏ (∆; Ξ ⊢ y:τ) CTR-var

(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω;Φ ⊢ [N ] : [S]) ⊏ (∆; Ξ ⊢ [M] : [A])
CTR-box

(Ω;Φ, y:ζ1 ⊢ f : ζ2) ⊏ (∆; Ξ, y:τ1 ⊢ e : τ2)
(Ω;Φ ⊢ fn y:ζ1 ⇒ f : ζ1 → ζ2) ⊏ (∆; Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2)

CTR-fn

(Ω;Φ ⊢ f1 : ζ2 → ζ1) ⊏ (∆; Ξ ⊢ e1 : τ2 → τ1) (Ω;Φ ⊢ f2 : ζ2) ⊏ (∆; Ξ ⊢ e2 : τ2)
(Ω;Φ ⊢ f1 f2 : ζ1) ⊏ (∆; Ξ ⊢ e1 e2 : τ1)

CTR-app

(Ω, X:S; Φ ⊢ f : ζ) ⊏ (∆, X:A; Ξ ⊢ e : τ)
(Ω;Φ ⊢ mlam X:S ⇒ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ) CTR-mlam
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(Ω;Φ ⊢ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ e : ΠX:A.τ) (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

(Ω;Φ ⊢ f N : JN /XKζ) ⊏ (∆; Ξ ⊢ e M : JM/XKτ)
CTR-mapp

(Ω;Φ ⊢ f1 : [S]) ⊏ (∆; Ξ ⊢ e1 : [A]) (Ω, X:S; Φ ⊢ f2 : ζ) ⊏ (∆, X:A; Ξ ⊢ e2 : τ)
(Ω;Φ ⊢ let [X] = f1 in f2 : ζ) ⊏ (∆; Ξ ⊢ let [X] = e1in e2 : τ)

CTR-let

ζ = ΠX0:S0.ζ0
τ = ΠX0:A0.τ0

(Ω ⊢ N : S0) ⊏ (∆ ⊢ M : A0)

(Ω;Φ ⊢ ci : ζ) ⊏ (∆; Ξ ⊢ bi : τ) (for all i)

(Ω;Φ ⊢ (caseζ [N ] of c⃗) : Jθ,N/X0Kζ0) ⊏ (∆; Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0)
CTR-case

(Ω;Φ ⊢ c : ζ) ⊏ (∆; Ξ ⊢ b : τ) – Branch c/b matches invariant ζ/τ

(Ω0 ⊢ℓ N0 : S0) ⊏ (∆0 ⊢ℓ M0 : A0)

(Ω,Ω0; Φ ⊢ f : JN0/X0Kζ0) ⊏ (∆,∆0; Ξ ⊢ e : JM0/X0Kτ0)

(Ω;Φ ⊢ (Ω0; [N0] ⇒ f) : ΠX0:S0.ζ0) ⊏ (∆; Ξ ⊢ (∆0; [M0] ⇒ e) : ΠX0:A0.τ0)
CTR-branch

(Ω;Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆; Ξ ⊢ τ) – ζ1 is a computation-level sub-sort of ζ2

(Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype) (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω;Φ ⊢ [S1] ≤ [S2]) ⊏ (∆; Ξ ⊢ [A])
SubC-meta

(Ω;Φ ⊢ ζ2 ≤ ζ1) ⊏ (∆; Ξ ⊢ τ) (Ω;Φ ⊢ ζ ′1 ≤ ζ ′2) ⊏ (∆; Ξ ⊢ τ ′)
(Ω;Φ ⊢ ζ1 → ζ ′1 ≤ ζ2 → ζ ′2) ⊏ (∆; Ξ ⊢ τ → τ ′

SubC-arr

(Ω ⊢ S2 ≤ S1) ⊏ (∆ ⊢ A) (Ω, u:S2; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆, u:A; Ξ ⊢ τ)
(Ω;Φ ⊢ Πu:S1.ζ1 ≤ Πu:S2.ζ2) ⊏ (∆; Ξ ⊢ Πu:A.τ) SubC-pi
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B.4 Signatures

Signatures Σ ::= · | Σ,D

Declarations D ::= LF a : K = c1:A1 | ... | cn:An LF type

LFR s ⊏ a : L = c1:S1 | ... | cn:Sn LFR sort

schema g = w1:V1 | ... | wn:Vn LF schema

schema h ⊏ g = w1:W1 | ... | wn:Wn LFR schema

rec f : ζ = f Recursive function

⊢ Σ : sig – Σ is a well-formed signature

⊢ · : sig
⊢ Σ : sig ⊢Σ D : decl

⊢ (Σ,D) : sig

⊢Σ D : decl – D is a well-formed declarature in signature Σ

a /∈ Σ c1, ..., cn /∈ Σ ·; · ⊢Σ K : kind ·; · ⊢Σ,a:K Ai ⇐ type (for all i)

⊢Σ (LF a : K = c1:A1 | ... | cn:An) : decl

s /∈ Σ

(LF a : K = c1:A1 | ... | cn:An) ∈ Σ

(·; · ⊢Σ L) ⊏ (·; · ⊢Σ K : kind)

(·; · ⊢Σ,s⊏a:L Sij) ⊏ (·; · ⊢Σ,s⊏a:L Aij) (for all j)

⊢Σ (LFR s ⊏ a : L = ci1 :Si1 | ... | cik :Sik) : decl

g /∈ Σ w1, ...wn /∈ Σ ·; · ⊢σ Vi : world (for all i)

⊢Σ (schema g = w1:V1 | ... | wn:Vn) : decl

h /∈ Σ (schema g = w1:V1 | ... | wn:Vn) ∈ Σ (·; · ⊢Σ Wij) ⊏ (·; · ⊢Σ Vij : world) (for all j)

⊢Σ (schema h ⊏ g = wi1 :Wi1 | ... | wik :Wik) : decl

f /∈ Σ (·; · ⊢Σ,rec f:ζ f : ζ) ⊏ (·; · ⊢Σ,rec f:ζ e : τ)

⊢Σ (rec f : ζ = f) : decl
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