
ASSIGNMENT 3

:::. .::::::. .,-::::: ::: ::: .-:::::’ :::::::.. :::. .,-::::: :::::::::::: :::. ::: .::::::. .:

;;‘;; ;;;‘ ‘ ,;;;’‘‘‘‘’ ;;; ;;; ;;;’’’’ ;;;;‘‘;;;; ;;‘;; ,;;;’‘‘‘‘’ ;;;;;;;;’’’’ ;;‘;; ;;; ;;;‘ ‘ ;;;

,[[’[[, ’[==/[[[[, [[[[[[[[[[[[,,== [[[,/[[[’ ,[[’[[, [[[[[,[[’[[, [[[’[==/[[[[, ’[[

$$$cc$$$c ’’’ $ $$$ $$$ $$$ ‘$$$"‘‘ $$$$$$c $$$cc$$$c $$$ $$ $$$cc$$$c $$’ ’’’ $ $$

888 888, 88b dP ‘88bo,__,o, 888 888 888 888b "88bo, 888 888,‘88bo,__,o, 88, 888 888, o88oo,. 88b dP ""

YMM "YMM "YMmMY" "YUMMMMMP" MMM MMM "MM, MMMM "WW" YMM "YMM "YUMMMMMP" MMM YMM "YMM "YUMMMM "YMmMY" MM

COMP-202, Summer 2010

Due: Thursday, May 27th, 2010

1 Introduction

In this assignment we will draw pretty pictures. But instead of drawing them in pixels, we will do so using characters
on the terminal. Our object is going to be the mandelbrot set, which is a fractal. A fractal is a complicated geometric
figure, whose boundary is not smooth - and when you zoom into the boundary, you will see structures that are
similar to the whole fractal itself (this is called ’self similar’). The fractal is generated from a formula, given a set
of coordinates in the 2d plane (i.e. an x- and y-coordinate), which produces a new set of coordinates:

xnew = xold · xold − yold · yold + xoriginal

ynew = 2 · xold · yold + yoriginal

Note how in order to compute the above, we needed the original coordinates that we started with.

When we repeatedly apply the formula to the coordinate, there are two possible things that can happen:

• Eventually we reach a coordinate whose absolute value is larger than 2. After that, when applying the
formula, the new coordinates will always have a larger absolute value (

√
(x2 + y2)) than before and we will

’go to infinity’. The original coordinate is then considered not to be in the mandelbrot set

• It doesn’t matter how often we repeat the formula, the absolute value of all coordinates will always stay
smaller than 2. The original coordinate is then considered part of the mandelbrot set.

The above formula generates the Mandelbrot set. If we want to generate different fractals, we can use different
formulas. But the idea of repeatedly applying a function and checking for divergence is the same.

Since we can not compute indefinitely, we will use an approximation. We will set a maximum number of times
we will apply the formula, i.e. a maximum number of iterations. If after that the produced coordinate has an
absolute value smaller than 2, then we will consider it part of the mandelbrot set. Of course the moment we reach
a coordinate whose absolute value is larger than 2, we don’t need to continue computing.

Our program will print out an area of the 2d plane, where it will find out for every displayed coordinate whether
it is part of the Mandelbrot set. If it is, we will represent the coordinate with a ’ ’. If it’s not, we will display
a character based on how many iterations of the formula it took to receive a coordinate whose absolute values is
larger than 2.

Please follow the below specification to write your program. Refer to assignment 2 for Do’s and Don’ts.

2 Specification

2.1 getIterationCount

Create a class Fractal with a constant global MAX ITERATIONS set to 1000. Add a method getIterationCount
taking two doubles as parameters, an x- and y-coordinate. The method should return (as an integer) how many
iterations it took before either reaching a coordinate whose absolute value is larger than 2, or MAX ITERATIONS if
that doesn’t happen within that many iterations. Hints:

• Be careful not to overwrite the old x coordinate with the new x coordinate before you have computed the new
y coordinate.

• Note that
√

v2 < 2 is equivalent to v · v < 4.

• Always test a new method you add using a main method.

• example values:

x 0.0 100.0 0.3 1.0 0.001643 0.0016437 0.00164372
y 0.0 0.0 1.0 0.3 0.82246 0.822467 0.8224673
iterations 1000 0 2 1 58 67 91

2.2 iterationCountToChar

Add a method, that given an integer iteration count, will return a character to represent it. If the given value is
equal to MAX ITERATIONS it should return ’ ’. Otherwise it should return the following, based on the last digit of
(int) i

ln(i)+1 (where i is the iteration count):

digit 0 1 2 3 4 5 6 7 8 9
return . , : ; ? & 8 S H @

2.3 computeFractal

Add a String method computeFractal, taking four doubles. It should return a string representing the fractal in
the given area of the 2d-plane. The area is given by the parameters in the following order: the x-coordinate of the
center, the width of the area (dx), the y-coordinate of the center and the height of the area (dy). Add two integer
constants called ROWS and COLUMNS, initialized to 40 and 120. Note that every character in the String will represent
a 2d-coordinate. The string should have ROWS · COLUMNS letters, and ROWS newlines. The first character should be
the representation of the top left corner of the area, the last two should be a character denoting the bottom right
corner of the area and a new line. The method should work regardless of what the constants are (So you could test
the method with something like 4 and 6 to check for off-by-one errors).

2.4 printVideo

Add a void method printVideo that starts at the coordinates (0.001643721971153, 0.822467633298876), zoomed
out (dx = 6,dy = 4), and prints out a video zooming in. it should zoom in with a factor of 0.9 from one frame to the
next. Note that we don’t need to pause for every frame, because the computation takes some time, anyway. Zoom
until you see the last ’baby mandelbrot’. The method should exit the program after displaying the last frame.

2.5 main

Add a main method. It should repeatedly print the fractal, then prompt the user for an action with

what next? (i)up, (k)down, (j)left, (l)right, (e)zoom in, (d)zoom out, (v)ideo+quit, (q)uit:

until q is entered (or the program exits because of the video). The actions are specified by the characters, other
characters get ignored. We start in the area xcenter = −.5, dx = 6, ycenter = 0, dy = 4. We move by adding
or subtracting 0.3 · dx or 0.3 · dy (why can’t we ’move’ by a constant amount, but have to move relative to the
width/height of the visible area?). We zoom in by multiplying dx and dy by 0.6, and zoom out by dividing by that
same number.

Page 2

