
1

COMP-573A Microcomputers

Programming and Debugging
Assembly under Linux

slides by Alexandre Denault

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 1

Helloworld.c

int main(int argc, char *argv[]) {

printf("Hello World");
}

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 2

Simple C Program

2

Using GCC to produce Assembly

● From the prompt, type :
$ gcc -S HelloWorld.c

● This will produce a file named HelloWorld.s
● You can produce cleaner assembly code using the –oN

flag, N being the optimization level
$ gcc -S -o3 HelloWorld.c

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 3

Assembly Ouput
● Assembly produced by GCC is easy to recognize:
.file "HelloWorld.c"

.section .rodata
.LC0:

.string "Hello World"

.text
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
…
pushl $.LC0
call printf
addl $16, %esp
leave
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 4

3

Mixing C and Assembly

● Sometimes, only a particular function needs to be written
in assembly.

● GCC allows several way to mix C code and assembly
code.
● Seperate files for C code and assembly code
● Inlining assembly code directly in the C code

● Adding assembly code to your C code makes your project
less portable. Unless special precaution are taken, you can
only compile on one architecute.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 5

Seperate File Compilation

● C code should be stored in .c files.
● Assembly code should be stored in .s files. (this is case

sensitive, .S are different types of files)
● The C code should have the function prototype of any

function called from assembly.
● Functions in the assembly code that will called from C

should be declared global.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 6

4

C program that uses assembly

cprogram.c

int add(int x, int y);

int main(void) {
int i,j,k;

i = 2;
j = 3;
k = add(i, j);
return k;

}

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 7

Assembly function called from C

add.s
.text

.globl add
.type add, @function

add:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
popl %ebp
ret

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 8

5

Compiling .s and .c files

● Once both your .c and .s files are ready, you need to
compile them togheter.

● This can be done by specifying both filenames to the gcc
command.
gcc cprogram.c add.s

● Don't forget the -g flag if you want to debug your new
executable.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 9

Inlining assembly in C code

● If you only want to add a few lines of assembly in
your C code, it might be preferable to inlining the
assembly code.

● This can be done using the asm function.
● GCC will have a harder time optimizing your

code if you use the asm directive.
● You can use the volatile keyword to prevent GCC

from optimizing out your code.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 10

6

Using the asm function

add.c
int add(int x, int y) {

asm volatile ("movl 12(%ebp), %eax");
asm volatile ("addl 8(%ebp), %eax");

}

● It is possible to have more than one assembly instruction in the
asm function.

● More information asm is available on the Internet.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 11

Using GDB to trace program execution

● First, you must compile the executable with the –g flag
$ gcc HelloWorld.s -g -o HelloWorld

● Please note that there is a difference between s and capital S in
the extension

● As taken from the man page:
file.s : Assembly code.
file.S :Assembly code which must be
preprocessed.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 12

7

Using GDB on Solaris 8 (Sparc)
● When working on the Sparc architecture, please try to use the gcc

and as command found in the /usr/local/pkgs if you are planning
to use the gdb debugger.

● First, you must compile the assembler with gas to produce an
object file with debugging information. The as normally found on
Solaris does not produce debugging information we can use with
gdb.
$ /usr/local/pkgs/binutils-2.14/bin/as
-gstabs addition.s -o addition.o

● Second, you must use gcc to generate an executable from that
object file. You should also add any C files (if needed) that are
needed to produce an executable.
$ /usr/local/pkgs/gcc3.2.2/bin/gcc
cprogram.c addition.o -o addition

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 13

Starting GDB

● Any executable compiled with the –g flag can be
used with gdb.
$ gdb HelloWorld
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or
distribute copies of it under certain conditions. Type
"show copying" to see the conditions. There is absolutely
no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...

(gdb)

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 14

8

Getting Help

● When using GDB, you can always type in the
“help” command to get a list of availible
commands.
(gdb) help

● You can also get help on a specific command by
typing “help” and the name of that command.
(gdb) help breakpoints
Making program stop at certain points.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 15

Breakpoints

● First step is set a breakpoint so we can slowly
trace the execution of the application.

● This can be done using the “break” command.

(gdb) break 1
Breakpoint 1 at 0x8048328: file HelloWorld.s, line
1.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 16

9

Running step-by-step

● We next to start the application. This is done using the
“run” command.
(gdb) run
Starting program: /home/adenau/comp573/HelloWorld

Breakpoint 1, main () at HelloWorld.s:10
10 pushl %ebp
Current language: auto; currently asm

● We can advance to the next instruction using the “nexti”
command.
(gdb) nexti
11 movl %esp, %ebp

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 17

Content of registers

● The “print” command can be used to print out
values of registers and variables.

● (gdb) print $ebp
● $1 = (void *) 0xbffff6b8
● The “x” command allows you to examine a block

of memory. It has several options.
(gdb) x /8xw 0xbffff6b8
0xbffff6b8: 0xbffff6d8 0x42015574 …
0xbffff6c8: 0xbffff70c 0x4001582c …

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 18

10

Complete Register Information
● The “info register” command gives us a quick overview

of the content of every register.
(gdb) info registers
eax 0x1 1
ecx 0x42015554 1107383636
edx 0x40016bc8 1073834952
ebx 0x42130a14 1108544020
esp 0xbffff6b8 0xbffff6b8
ebp 0xbffff6d8 0xbffff6d8
esi 0x40015360 1073828704
edi 0x8048370 134513520
eip 0x8048329 0x8048329
eflags 0x346 838
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x0 0
gs 0x33 51

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 19

Continual tracing information
● Sometimes, it’s more convenient to have trace information

printed out after every instruction. This can be done using
the display command.

(gdb) display $ebp
1: $ebp = (void *) 0xbffff6d8
(gdb) display $esp
2: $esp = (void *) 0xbffff6b8
(gdb) nexti
main () at HelloWorld.s:12
12 subl $8, %esp
2: $esp = (void *) 0xbffff6b8
1: $ebp = (void *) 0xbffff6b8

● The command “undisplay” cancels a display request.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 20

11

For more information on GDB

● More information about GDB is available on the
Internet (tutorials, examples, etc).

● Many other commands allow you to fine tune the
debugging process.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 21

ABI Compliance
● Certain architecture allow a great deal of freedom

on how registers and memory are used. (ex:
Sparc, PowerPC).

● The System V Application Binary Specification
(ABI) are use to establish standards on how
system resources are used.

● The ABI usually defines conventions on register
usage, stack format, etc.

● For x86, we can avoid having to look at the ABI
specification because we have the “The Floppy
Textbook”.

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 22

12

References

● The Floppy Textbook (1999 edition)
● Using the GNU Assembler (gas)

http://www.gnu.org/manual/gas/html_chapter/as_toc.html

● Man Pages : Gcc and Gdb
● GDB Tutorial

http://www.cs.princeton.edu/%7Ebenjasik/gdb/gdbtut.html

COMP-573A Microcomputers

Programming and Debugging Assembly under Linux Page 23

