
Game Programming

Comp-361 : Game Programming
Lecture 5

Alexandre Denault
Original notes by

Jörg Kienzle and Hans Vangheluwe
Computer Science
McGill University

Winter 2008

Time Slot

Monday
9h45

10h00
10h15
10h30
10h45
11h00
11h15

Wednesday
9h45
10h00
10h15
10h30
10h45
11h00
11h15

The Teams

Team Blown Away 2
Jmonkeys 7
The Admiralty 13
ZombiePirateNinjaMonkey 13
The Gamesters 15
BackShot 36
The Hacks 37
Team Magadath 41
Sons of Liberty 49
Vote* 63
The Broken Rubbers 50
Purple Dinosaurs! 77

Meetings

■ McConnell 322
■ Be on time!

What you should be doing?

■ You should have a team
■ You have nominated a team leader
■ You should have an initial plan

 What rules do you want to changes?
 What extra features do you want to do?
 How to split the work?

■ You should be exploring technologies
■ You do not need to have started coding

Comp 361 - First Deliverable

■ Short (3 or 4 pages) document with the following
 The name of the team members.
 How work will be tentatively broken down (with initial timetable).
 What technology do you plan to use.
 Any changes you plan to make to the game or the rules.
 A simple UML diagram describing the main data structures of the game.
 Two drawings illustrating what Phase 1 and Phase 3 of the game might

look like.
■ The grading will be based on completeness. This includes

 All the basic game components should be in the class diagram.
 The illustration should allow me to understand how to execute the basic

actions of the game.
■ Due January the 30th, in class
■ Late policy:

 Max grade is reduced by 20% per day late.
 Hand in only by WebCT only if late.

Visibility

■ Prefixes for attributes and methods
 + public – visible to any class
 # protected – visible to any subclass *
 – private – visible only to class itself
 ~ package – visible to any class within enclosing package

■ Visibility is a class feature. It is found only in class
diagrams.

Inheritance

Square
Square (int size)

Templates

Static Members

Minueto In a Nutshell

■ Multi platform 2D Graphic Programming Framework for
Game Development in Java
 Windowed and Full-Screen Graphics
 Loading and displaying images (jpg, png, …)
 Drawing standard shapes (lines, squares, circles, …)
 Displaying text
 Scaling and rotating images
 Game Input: Mouse and keyboard

Fire in the Sky

Minueto

■ Very simple to learn and use
 “Can be learn in less than an hour”

■ Allow a programmer to create a window and draw an
image in less than 10 lines of code

■ Multi-platform
 Provided by Java

■ Yet provide good performance!

Isn’t Java Too Slow for Games?

■ Several games have been successfully ported to Java
 Quake 2

■ Some commercial games written in Java have been
released
 Law and Order, Dead on the Money
 Bang Howdy
 Rune Scape
 Puzzle Pirates

Pong 36-Hours Challenge

■ Build a Pong game using Minueto.
 http://en.wikipedia.org/wiki/Pong

■ The game archive (zip) should not be more than 2 Mb.
■ Game will be evaluated on look and playability.
■ Best game gets a Veto coupon.
■ If more than 10 people participate, a Veto coupon will

also be drawn.
■ Hand-in by WebCT.

Components of Game

■ Initialization
 Create Game Window
 Load any resources needed by the game

■ Gameloop
 Check for input
 Update logic of game
 Render the screen
 Loop back to start of game loop

Typical Game

Initialization

Menu
Gameloop

Main
Gameloop

Result
Gameloop

Init – Create Window

MinuetoWindow mwiWindow = new
MinuetoFullscreen(640, 480, 32);

or

MinuetoWindow mwiWindow = new
MinuetoFrame(640, 480, true);

then

mwiWindow.setVisible(true);

FullScreen

■ Standard resolutions
 640x480
 800x600
 1024x768
 1280x1024

■ Color depth
 Recommended: 32

Init – Load Resources

MinuetoImageFile mimDemoImage;

try {
mimDemoImage = new

MinuetoImageFile(”strawberry.jpg”);
} catch (MinuetoFileException e) {

System.out.println(”Could not load file”);
return;

}

Example GameLoop

while (true) {
// handle all input from player
// and update state
while (meqQueue.hasNext()) {

meqQueue.handle();
}

// draw the new frame
mwiWindow.draw(…);
mwiWindow.render();

Thread.yield();
}

GameLoop – Input

■ Input is external stimuli to your game.
■ Input can come from:

 Keyboard
 Mouse
 Disk I/O
 Network

Keyboard Listener

public class DemoKeyboardHandler implements
MinuetoKeyboardHandler {

public void handleKeyPress(int iValue) { }
public void handleKeyRelease(int iValue) { }
public void handleKeyType(

int iValue, char keyChar) { }
}

mwiWindow = new MinuetoFrame(640, 480, true);
meqQueue = new MinuetoEventQueue();
mwiWindow.registerKeyboardHandler
(new DemoKeyboardHandler(), meqQueue);

Drawing

mwiWindow.draw(mimDemoImage, 100, 500);

Double Buffer

Example GameLoop

while (true) {
// handle all input from player
// and update state
while (meqQueue.hasNext()) {

meqQueue.handle();
}

// draw the new frame
mwiWindow.draw(…);
mwiWindow.render();

Thread.yield();
}

More Minueto

■ Visit http://minueto.cs.mcgill.ca/
 For step by step instructions, check out the howtos
 When working with Minueto, the APIs are your best friend

■ Download Minueto
 You’ll find 25 samples showing how to use Minueto
 You also get your own local copy of the API

■ Ask the T.A.s
 It's their job is to help you

	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

