
Class Diagrams

Comp-304 : Class Diagrams
Lecture 9

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Classes vs Objects

■ An object is an instance of some class
■ Many objects may be instances of the same class
■ Classes are static, depict the design and structure at 

design-time
■ Objects are dynamic and are instantiated (from a class) 

at run-time, they have state



Attributes vs Variables

■ Attributes are considered at design-time, are some 
abstractly defined property

■ Variables are considered at implementation-time, are 
concretely defined properties

■ An attribute may be known as date at design-time, but at 
implementation-time, it must be decided if the date 
variable will be a series of integers or a string



Objects

■ Objects consist of an 
object name (underlined 
with the class name of the 
class it is an instance of) 
and its variables (and 
their values if they have 
default values)

■ Object names are written 
in lowerCamelCase.

■ Why is there not method 
names?



Example

■ Here is a concrete example of 
an object called o1, an 
instance of class 2DPoint.

■ When the object is 
instantiated, the default value 
of x and y is 10.

■ An object with no names is 
anonymous.



Constraint

■ Now, suppose ALL our 
2D points must have an 
(x,y) coordinate such that 
both x and y are between 
0 and 10

■ This is a constraint.



Derived Attributes

■ Some attributes are 
known as derived 
attributes. 

■ They depend on other 
attributes and are 
calculated by some 
formula. 

■ Derived attributes are 
written with a / in front.

■ Derived attributes cannot 
have set methods.



Visibility

■ A set of prefixes for attributes and methods
 + public – visible to any class
 # protected – visible to any subclass
 – private – visible only to class itself
 ~ package – visible to any class within enclosing package

■ Visibility is a class feature. It is found only in class 
diagrams.



Inheritance

■ We discussed Inheritance 
extensively the last 
classes.

■ In UML, inheritance is 
illustrated using a line 
with a white arrow.

■ In this case, Cube is a 
Rectangle.



Interfaces in UML

■ In UML, interfaces are often used to represent hardware 
that needs to interact this software.
 The ball sign is used to illustrate the require relation.
 The arc sign is used to illustrate the offered service.



Java-Style Interfaces

■ In Java, interfaces form a 
contract between the 
class and the outside 
world.

■ This contract is enforced 
at build time by the 
compiler. 
 all methods defined by that 

interface must be 
implemented by the class.

■ In UML, these interfaces 
are described using 
<<stereotypes>>.



Abstract Members

■ Abstract methods of 
written in italic.

■ If a class is abstract, it's 
name is written in italic.
 Any class with an abstract 

method is considered 
abstract.

■ Abstract methods cannot 
be implemented because 
they are missing part of 
their implementation.
 Abstract method are 

inherited and the missing 
methods are implemented.



Templates

■ As we saw with 
generacity, Templates are 
a mechanism to specify 
the types of objects in a 
class at declaration time.

■ In UML, they are defined 
with a box in the upper 
left corner of the class.



Package

■ A package is a collection of classes that, together, 
perform a certain task.

■ Classes and objects in package have a prefix:
 ClassName::PackageName
 objectName:ClassName::PackageName

■ A package may contain other packages.



Static Members

■ Static members of a class (either attributes or 
methods) exist at the class level. 

■ They can be used without instantiated an object.
■ In UML, these are underlined.


