
Class Diagrams

Comp-304 : Class Diagrams
Lecture 9

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Classes vs Objects

■ An object is an instance of some class
■ Many objects may be instances of the same class
■ Classes are static, depict the design and structure at 

design-time
■ Objects are dynamic and are instantiated (from a class) 

at run-time, they have state



Attributes vs Variables

■ Attributes are considered at design-time, are some 
abstractly defined property

■ Variables are considered at implementation-time, are 
concretely defined properties

■ An attribute may be known as date at design-time, but at 
implementation-time, it must be decided if the date 
variable will be a series of integers or a string



Objects

■ Objects consist of an 
object name (underlined 
with the class name of the 
class it is an instance of) 
and its variables (and 
their values if they have 
default values)

■ Object names are written 
in lowerCamelCase.

■ Why is there not method 
names?



Example

■ Here is a concrete example of 
an object called o1, an 
instance of class 2DPoint.

■ When the object is 
instantiated, the default value 
of x and y is 10.

■ An object with no names is 
anonymous.



Constraint

■ Now, suppose ALL our 
2D points must have an 
(x,y) coordinate such that 
both x and y are between 
0 and 10

■ This is a constraint.



Derived Attributes

■ Some attributes are 
known as derived 
attributes. 

■ They depend on other 
attributes and are 
calculated by some 
formula. 

■ Derived attributes are 
written with a / in front.

■ Derived attributes cannot 
have set methods.



Visibility

■ A set of prefixes for attributes and methods
 + public – visible to any class
 # protected – visible to any subclass
 – private – visible only to class itself
 ~ package – visible to any class within enclosing package

■ Visibility is a class feature. It is found only in class 
diagrams.



Inheritance

■ We discussed Inheritance 
extensively the last 
classes.

■ In UML, inheritance is 
illustrated using a line 
with a white arrow.

■ In this case, Cube is a 
Rectangle.



Interfaces in UML

■ In UML, interfaces are often used to represent hardware 
that needs to interact this software.
 The ball sign is used to illustrate the require relation.
 The arc sign is used to illustrate the offered service.



Java-Style Interfaces

■ In Java, interfaces form a 
contract between the 
class and the outside 
world.

■ This contract is enforced 
at build time by the 
compiler. 
 all methods defined by that 

interface must be 
implemented by the class.

■ In UML, these interfaces 
are described using 
<<stereotypes>>.



Abstract Members

■ Abstract methods of 
written in italic.

■ If a class is abstract, it's 
name is written in italic.
 Any class with an abstract 

method is considered 
abstract.

■ Abstract methods cannot 
be implemented because 
they are missing part of 
their implementation.
 Abstract method are 

inherited and the missing 
methods are implemented.



Templates

■ As we saw with 
generacity, Templates are 
a mechanism to specify 
the types of objects in a 
class at declaration time.

■ In UML, they are defined 
with a box in the upper 
left corner of the class.



Package

■ A package is a collection of classes that, together, 
perform a certain task.

■ Classes and objects in package have a prefix:
 ClassName::PackageName
 objectName:ClassName::PackageName

■ A package may contain other packages.



Static Members

■ Static members of a class (either attributes or 
methods) exist at the class level. 

■ They can be used without instantiated an object.
■ In UML, these are underlined.


